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Maternal methylmercury exposure 
during early-life periods adversely 
affects mature enamel structure of 
offspring rats at human exposure 
levels: a concern for oral health
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Although there are many studies on the health effects of methylmercury (MeHg) 
toxicity during in utero and early development, little is known about its effects on 
mineralized tissues present in the oral cavity, such as enamel structure. Therefore, 
this study evaluated the effects of MeHg exposure on the physico-chemical, 
ultrastructural and functional properties of mature tooth enamel. Specifically, 
we  studied offspring of mothers exposed to MeHg during the prenatal and 
postnatal periods which are the developmental stages associated with tooth 
enamel formation. Female rats were exposed to MeHg at a dose of 40 μg/kg/day 
for 42 days of pregnancy and lactation. The enamel of offspring was analyzed by 
(1) Fourier Transform Infrared Spectroscopy and Raman to assess physicochemical 
composition, (2) Scanning Electron Microscopy for ultrastructural evaluation, (3) 
Transmitted Polarizing Light Microscopy for analysis of the enamel extracellular 
matrix, and (4) resistance and hardness were evaluated by microhardness. The 
results showed that MeHg exposure during this sensitive enamel formation 
period induced changes in inorganic and organic content and enamel prisms 
ultrastructure alterations and disturbed the organic extracellular matrix due to a 
decreased enamel strength. These novel findings establish for the first time that 
maternal exposure to MeHg pre and postnatal promoted relevant changes in 
mature enamel of their offspring rats.
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1. Introduction

Mercury is a ubiquitous toxic metal in the environment, which 
continues to pose public health concerns worldwide (1). Mercury is 
currently one of the top  10 identified public health hazardous 
chemicals (2, 3). Mercury species are mainly classified into three 
groups: metallic (Hg0), inorganic (Hg2+), and organic mercury 
[CH3Hg+, (CH3)2Hg, etc.] (2, 4), with the metallo-organic 
methylmercury (MeHg) being particularly toxic to humans because 
of its toxicokinetic properties. MeHg is primarily formed in the 
environment upon methylation of Hg+2 by methanogenic and sulfate-
reducing bacteria (3, 5). In addition, human artisanal and small-scale 
gold mining (ASGM) leads to the release of mercury into the 
environment, especially MeHg (3, 6, 7).

Human exposure may occur in occupational settings, such as the 
use of the metal in odontology practice or ASGM, when 
predominantly Hg0 is inhaled, or by environmental routes when 
MeHg is ingested through contaminated food (6, 8). This metal has 
soluble complexes mainly linked to the sulfur atom of the thiol 
binders (9). MeHg is absorbed in the gastrointestinal tract and 
distributed into the blood and is demethylated for a long period to 
mercuric Hg in tissues, including in the fetal liver (10). In the latter 
case, the propensity of MeHg to bioaccumulate and biomagnify 
through the food chain, leads to chronic exposures in populations 
and pose risks to human health (3, 6). After ingestion, MeHg leads 
to physiological and biochemical alterations in various human 
organs (11). Evidence of MeHg toxicity to neurological, 
immunological, cardiovascular, and reproductive pathways in 
humans is widespread in the literature. Studies from our research 
group have demonstrated effects on the motor cortex, cerebellum, 
hippocampus, alveolar bone and salivary glands (12–17).

MeHg toxicity is also of major concern upon fetal and neonatal 
exposures, posing risk to human development due to the ability 
of MeHg to readily cross the placenta and the blood–brain 
barriers, and its transport into breast milk during the lactation 
period (18, 19). Recently, structures associated with the oral cavity 
have been affected by organic mercury exposure, including the 
salivary glands, alveolar bone and periodontal ligament and pulp 
stem cells (15, 17, 20–22). However, as far as mineralized tissues, 
such as bone and teeth, studies on the effects of MeHg are scant, 
both in adults and neonates.

Tooth enamel is an embryonic epithelial-derived tissue, acellular 
and irreparable surface layer, which has no physiological means of 
repair (23), with remarkable characteristics of supporting masticatory 
forces, at the same time capable of protecting the tooth structure from 
external variations and participate in the dynamic demineralization-
remineralization process (24–26), emphasizing the great importance of 
this tissue for maintaining oral cavity homeostasis. In utero 
environmental exposures of the developing offspring can cause oral 
abnormalities, such as tooth malformations, which makes the tooth 
more susceptible to dental caries (27, 28). Of all the childhood dental 
diseases, dental caries remains one of the most prevalent (29). More 
than 530 million children worldwide have untreated caries in the 
primary dentition, with the prevalence of the disease increasing with 
age (30). In this way, structural damage to enamel, even during its 
formation, is irreparable and generally associated with increased 
susceptibility to secondary injury (31). In rodents, enamel formation 
commences in the embryonic period, enabling a suitable translational 
correlation with deciduous teeth in humans (32–34).

To date, there no evidence has been advanced in associating 
MeHg exposure with aberrant enamel homeostasis. Accordingly, this 
study aimed to evaluate the effects of maternal exposure to MeHg on 
the physicochemical, structural, and functional properties of mature 
dental enamel in offspring rats.

2. Materials and methods

2.1. Animals and experimental groups

Eight pregnant rats, Rattus norvegicus, 90 days old, weighing 
250–300 g, were randomly divided into two experimental groups (n = 4 
per group). Identification of the genital plug coincided with embryonic 
day 1. During the gestational and lactational periods, rats were randomly 
kept in polypropylene cages (1 per cage), with ad libitum access to food 
and distilled water, in an acclimatized room (25 ± 2°C) on a 12-h light/
dark cycle. An average of 2 males were born for every female rat 
throughout pregnancy, and 1 female gave birth to an average of 5 males 
every litter. No deaths and exclusions were identified throughout the 
gestational period. The animals were provided and delivered by the 
Central Animal Facility of the Federal University of Para, under a 
protocol of the Ethics Committee on Animal Use No. 8613011217 
(CEUA/UFPA last approval date in 11/22/2019) and followed the 
ARRIVE 2.0 guidelines (35). All the procedures of animal care followed 
the Guide for the Care and Use of Laboratory Animals (36).

2.2. Methylmercury administration

The procedure for MeHg exposure was performed by dissolving 
MeHg chloride (Sigma-Aldrich, United States) in ethanol (vehicle) 
and incorporating it into cookies (Teddy Grahams, Nabisco, Canada) 
in order to achieve a dosage of 40 μg/kg/day (37), for 42 days, 
according to the protocol outlined in previous studies (38, 39).

For this purpose, each dam was weighed weekly for dose 
calculation, and the appropriate amount of solution was placed on the 
cookie and subsequently dried at room temperature. The control group 
received cookies with vehicle only, in the same proportional volume 
and for the same period. The cookies were offered once a day, 
individually to the rats. The postnatal period is characterized by 
lactation, which in rats lasts an average of 21 days. During both periods 
(pregnancy and lactation), only the mother received the treatment. Our 
experimental design consisted of two moments: the first, when the 
dams were directly exposed to the cookies (with or without MeHg) 
during the 21 days of pregnancy, and the lactation until 21-day of life; 
and the second, which did not involve MeHg exposure to the dam or 
to the offspring. The animals were kept separated until the 41 days of 
life, which is the period between adolescence and early adulthood 
(40–42). This period corresponds to the animal’s incisors developmental 
stages (32, 33).

2.3. Sample collection

After the gestational and lactational MeHg-exposure periods, the 
offspring were divided by sex and kept in collective cages following the 
guidelines of experimental animal care, as previously described (36). 
At 41 days of life, the offspring were anesthetized via intraperitoneal 
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with ketamine hydrochloride (180 mg/kg) and xylazine hydrochloride 
(30 mg/kg), euthanized, and the maxillary incisors were collected.

A set of animals (n = 10 per group) were perfused with heparinized 
saline solution (0.9%) and fixed with 4% formaldehyde. Hemimaxillae 
covering posterior portion of one upper incisor from 8 rats from each 
group were decalcified by immersion in aqueous solution of 5% nitric 
acid and 4% formaldehyde (under constant shaking for 24 h). After 
dehydration and clarification, demineralized samples were paraffin-
embedded, and 5 μm-thick longitudinal serial sections were obtained 
using a Leica RM2125 microtome (Leica Microsystems, Wetzlar, 
Germany). Twenty longitudinal sections of hemimaxillae exhibiting 
buccal secretory stage enamel organic extracellular matrix (EOECM) 
of upper incisor were carefully chosen, using as parameter the 
parallelism of the cut along the long axis of the sample. Therefore, 
sections showing lateral secretory stage enamel were rejected and the 
secretory stage enamel of all the chosen sections from each group 
presented similar height and equivalent matrix proteins arrangement, 
and thus the groups could be compared as for their birefringence. 
After removal of the paraffin with xylene and hydration, the sections 
were analyzed by transmitted polarizing light microscopy (TPLM).

Left side incisors (n = 10 per group) were used for SEM analysis, 
while right side incisors were used for hardness analysis. Once 
perfused, the 20 other teeth incisors (n = 10 per group) were collected 
for TPLM analyzes (right side). The remaining incisors were used for 
FTIR-ATR and Raman analyzes (left side). The experimental design 
is summarized in Figure 1.

2.4. Physico-chemical properties of enamel 
analysis

To determine possible physico-chemical changes in enamel from 
the vibrational modes of phosphate, carbonate and amide, present in 
the mineral and organic component of the tissue, the enamel surface 
of the incisal edge was analyzed by infrared spectrometry, obtained by 
attenuated total reflectance (ATR), using a Thermo spectrometer, 
model Nicolet iS50 FT-IR, in the 4,000–400 cm−1 spectral region, at 
100 scans and 4 cm−1 resolution. As a pre-treatment, the samples were 
dried at room temperature for 4 h. Data acquisition was performed 

using OMNIC software from the spectra record and the results were 
determined by integrating the average area found under the bands of 
the samples of the respective groups.

2.5. Phosphate mineral content analysis

To determine the possible crystalline structure changes from 
symmetric stretching band of phosphate, Raman spectra were 
obtained with a Horiba XploRA Confocal Microscope using the near 
infrared laser (785 nm) with a 1,200 line/mm grating. Thus, the 
spectral range investigated was from 300 cm−1 to 1800 cm−1 with a 
spectral resolution of 4 cm−1. Using an entrance slit of 100 μm and a 
confocal hole of 300 μm, the scattered light collected by the objective 
was dispersed onto the air-cooled CCD array of an Andor iDus 
detector. A 100× objective (N.A. = 0.9) was used to focus on the 
enamel surface, as well as a 50% neutral density filter rendering an 
incident power on the sample of 5.0 ± 0.4 mW (lasercheck®, 
Edmund optics).

Spectra were obtained by three accumulations of 20 s each and an 
average of five measurements were performed on each sample. To 
determine the depolarization ratio (ρ) of the most intense band in the 
Raman spectrum, assigned to the symmetric stretching band of 
phosphate ions (ν1 ~ 959 cm−1), in each spot, spectra were recorded in 
two orthogonal polarizations of scattered light (perpendicular and 
parallel to the polarization of the incident laser). The ρ959 was then 
determined according to (43):

 
ρ959

959

959

=
⊥I

I II

where I II959  is the intensity of the Raman band at ~959 cm−1 
using parallel polarization and I959 ⊥ is the intensity of the Raman 
band at ~959 cm−1 using perpendicular polarization between the 
incident laser and the scattered radiation.

Moreover, unpolarized spectra were recorded and the ratio of the 
symmetric stretching and bending modes of phosphate (959/430–
449 cm−1) and phosphate to carbonate (959/1070 cm−1) ratios 
were calculated.

FIGURE 1

Sample description and experimental stages. Pregnant rats’ exposure to MeHg (40 μg/kg/day) during pregnancy and lactation periods (42 exposure 
days). The incisors of offspring were collected for mature enamel analysis by physical–chemical (FTIR-ATR), phosphate content (Raman), 
ultraestructural (SEM), microhardness analyzes, and secretory stage enamel organic extracellular matrix (TPLM). In each evaluation, right/left 
hemimaxillary incisors were used (n = 10 per group). DPN, days postnatal.
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FIGURE 2

Schematic representation of cross-sectional hardness measurements.

Spectral deconvolution was performed using the software LabSpec 
(v5.58.25, Horiba, France), making use of a linear baseline correction 
to remove the background due to fluorescence. The intensities were 
determined by integrating the area under the bands.

2.6. Ultrastructural analysis

For ultrastructural analysis using scanning electron microscopy 
(SEM), incisors from the control and exposed groups were used. The 
incisal ridge was sectioned transversely with a carborundum disk, 
assembling in a straight handpiece and under irrigation, forming 
blocks with dimensions of 5 × 5 mm. The samples were sanded under 
irrigation with sandpaper sheets (3 M, Brazil) with granulation # 2000 
and # 2500 and polished with felt disk, mounted on a straight 
handpiece, and polishing paste (3 M, Brazil). Cross sections of mature 
enamel were obtained from the tooth portion below the alveolar bone 
crest, not exposed to masticatory friction. Subsequently, all blocks 
were washed in distilled water, in an ultrasonic bath for 1 min. After 
drying, they were immersed in sodium hypochlorite at 1% for 5 min 
and washed again in an ultrasonic bath with distilled water for 30 s. 
Next, they were immersed in a 17% EDTA solution for 10 s, to remove 
micro debris originating from the cleavage and polishing process, and 
again washed in an ultrasonic bath for 1 min.

Each specimen was immersed for 5 min in an ascending series of 
alcoholic solutions (70, 90%, and absolute ethanol alcohol) and 
subsequently dried at room temperature (44). The samples were 
assembled, metallized, and observed using a scanning electron 
microscope (LEO-1430; Carl Zeiss, Germany). The micrographs were 
obtained in several regions of the incisal enamel: area at magnifications 
of 1,500× and 4,000 × .

2.7. Secretory enamel organic extracellular 
matrix analysis

Unstained longitudinal sections of one hemimaxilla from 10 rats 
from each group were analyzed by TPLM to determinate the optical 
retardation (nm) of birefringent brightness in the secretory stage 

EOECM of the maxillary incisor. The incisor tooth of each 
hemimaxilla was sectioned transversally at 2 mm above the alveolar 
bone crest, using a hard tissue microtome (South Bay Technology Inc., 
Model 650, United States). Twenty sections from each incisor were 
immersed in an 80% aqueous glycerin imbibing medium for 30 min. 
Five measurements of optical retardation were performed by a viewer 
blind to the investigated groups. A mean value for optical retardations 
was calculated for each animal (8 mean values were obtained from 
each group). Leica DM LP microscope (Leica Microsystems), 
polarizing filters, Brace-Köhler compensator (Wild Leitz, Wetzlar, 
Germany), and polychromatic light were used. Twenty-five percent of 
the sections studied with TPLM were stained with hematoxylin and 
eosin (HE) and analyzed with bright field light microscopy (BFLM) 
for confirming satisfactory structural preservation.

2.8. Microhardness analysis

The incisors were embedded in acrylic resin and the specimens 
were ground, polished and submitted to microhardness analysis in 
longitudinal sections, employing the microhardness meter Shimadzu 
HMV-2.000TM, with a Knoop indenter under a static load of 15 g for 
10 s (45). In brief, three sequences of indents were performed at 20, 40 
and 60 mm from the external enamel surface. The first sequence was 
made at 200 μm of the incisal edge, and the others at 500 μm from each 
other (Figure 2). The data were used for the calculation of mean cross-
sectional hardness (KHN) and integrated area of hardness in 
depth (ΔKHN).

2.9. Statistical analyzes

The data distribution was tested by the Shapiro–Wilk method for 
verification of normality, and then analyzed by Student’s t-test 
(parametric data), except for the analysis of enamel organic 
extracellular matrix, where the Mann–Whitney test (non-parametric 
data) was used, with p values set at <0.05. The results were expressed 
as the mean ± standard error of mean or median and interquartile 
deviation, according to the normality of data.
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3. Results

3.1. Maternal exposure to MeHg changes 
the inorganic and organic content iof the 
enamel structure of rats

In infrared spectrometry, obtained by ATR, animals exposed 
during maternal MeHg exposure (see Figure 3, red line) showed a 
decrease in the absorbance of bands assigned to phosphate (PO4

3−), 
carbonate (CO3

2−), and two types of amides. In the graphic, there were 
changes in the v2 and v4 vibrations of PO4

3− in the range of 476–674 cm−1 
and v1 vibration in 958 cm−1 band. In the ion CO3

2−, differences were 
evident in vibrational modes, v2 and v3, in the bands of 871 cm−1 and 
1,415–1,456 cm−1, respectively. Finally, there were changes in the 
absorbance of Amide I + H20 in the 1,646 cm−1 band and in Amide III 
corresponding to the 1,540 cm−1 band. The reduction in the absorbance 
of these chemical components is attributed to the change in the 
crystallinity, crystal size, and/or solubility of the crystals (Figure 3).

3.2. Maternal exposure to MeHg altered the 
crystalline structure in the mature enamel 
of rat incisors

The Raman spectra of enamel (Figure 4) were dominated by the 
symmetric stretching band of phosphate at ~959 cm−1. The distribution 
of depolarization ratio (ρ959) values in different areas of enamel were 
observed on the Raman mapping. The yellow/orange intensity 
observed in the control group (left side) is related to a phosphate 
highly polarization. On the other hand, in the exposed group (right 
side), a decrease in polarization was observed, as shown by the 
increase in blue colors. Furthermore, in the graphic below, the control 
enamel exhibited lower depolarization ratio values of ρ959 

(0.065 ± 0.014) in comparison with those in the exposed enamel 
(0.218 ± 0.034; p = 0.0035; Figure 4).

Mineral content comparisons, regarding PO4ν1/CO3ν1 and 
PO4ν1/PO4ν2 ratio and revealed a decrease in the phosphate to 
carbonate ratio from (17.37 ± 5.17) in control group (13.80 ± 4.95, 
p = 0.02) to in exposed group, while the ν1 and ν2 phosphate modes did 
not exhibit significant changes between groups (control group: 
4.37 ± 1.31; exposed group: 4.25 ± 1.29; p = 0.89; Figure 5).

3.3. Maternal exposure to MeHg causes 
ultrastructural changes in the mature 
enamel

Analysis of enamel ultrastructure by scanning electron microscopy 
(Figure 6), revealed changes in the organization and integrity of the 
enamel prisms. As shown in electromicrographs B, D, and F, depicting 
the enamel of the exposed group, there was a change in the deposition 
and integrity of the enamel prisms compared with the 
electromicrographs of the exposed group (A, C, and E). In F, in the 
most superficial region of the enamel, a prismatic disorganization was 
noted (Figure 6).

3.4. Maternal MeHg exposure may induce 
physicochemical and structural alterations 
of mature dental enamel of the offspring 
by disturbing molecular order of secretory 
enamel organic extracellular matrix

MeHg did not induce evident morphological changes in the 
secretory stage EOECM, as revealed by BFLM; nevertheless, it is 
noteworthy that some animals from the exposed group exhibited 

FIGURE 3

Effects of maternal MeHg exposure (40 μg/kg/day) and transfer to the offspring during the pre- and postnatal periods on FTIR infrared spectroscopic 
profile analysis in the enamel of the incisors of offspring rats (41 days old). The qualitative results were expressed by absorbance as a function of 
wavelength (cm−1), assigned to vibrations mode of PO43−, CO32−, amide I and III, in the comparison between the FTIR spectra of the control group 
(blue line) with that of the exposed group (red line).
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a granular pattern of this matrix at TPLM, which is 
characteristically observed at the maturation stage of amelogenesis 
(Figure 7).

Maternal exposure to MeHg caused a slight decrease in optical 
retardation values of birefringence brightness of the secretory stage 
EOECM in the MeHg-exposed offspring group (median = 9.50; 
q1 = 8.63; q3 = 10.25; IQR = 1.62; q = quartile; IQR = interquartile 
range) compared to the control group (median = 9.86; q1 = 9.67; 
q3 = 10.18; IQR = 0.51), without statistical difference between the 
groups (p = 0.5995; Figure 8).

3.5. Maternal exposure to MeHg alters the 
resistance and hardness of the dental 
enamel of offspring

Long-term exposure to MeHg caused a significant decrease in the 
mean (±SD) enamel integrated area of hardness in depth of the 

exposed group (5,478 ± 112) compared to the control group 
(5,982 ± 60.01; p = 0.001; Figure 9A). The same trend was observed for 
mean cross-sectional hardness, where there was a significant 
difference between the exposed (273.8 ± 5.40) and control groups 
(297.7 ± 3.12; p = 0.001; Figure 9B).

4. Discussion

In the present study, we evaluated the effects of gestational and 
lactational MeHg exposure on the physico-chemical, morphological, 
and microhardness properties in offsprings’ enamel. Our novel 
findings showed that MeHg exposure via maternal exposure was 
associated with changes in offspring enamel mineralization and 
crystallinity reflected by a reduction in the absorbance of phosphate 
and carbonate bands and increasing depolarization ratio of phosphate. 
Moreover, morphological analysis of the offspring enamel 
ultrastructure revealed that the organization and integrity of the 

FIGURE 4

Effects of maternal MeHg exposure (40 μg/kg/day) and transfer to the offspring during the pre- and postnatal periods on the distribution of phosphate 
mineral content on the enamel surface generated by Raman analysis in the enamel of the incisors of offspring rats (41 days old, n = 10 per group). (A) A 
plot of the depolarization ratio obtained from the control group; (B) A plot of the depolarization ratio obtained from the exposed group. (C) A graph of 
the values related to the ratio between the perpendicular and parallel incidence of the phosphate band, the predominant chemical content in enamel. 
*Student’s t-test, p < 0.05.
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prisms were affected by maternal MeHg exposure, concomitant with 
disturbances in molecular ordering of secretory enamel organic 
extracellular matrix as evidenced by transmitted polarizing light 
microscopy. Lastly, the maternal exposure was associated with 
significant alterations in the resistance and microhardness of 
offsprings’ enamel.

The exposure model employed a dose of 40 μg/kg/day, 
implemented by intake of cookies adulterated with MeHg (38, 39). 
Some aspects of this model deserve to be highlighted, given their 
valuable translational relevance. First, the chronic exposure of mothers 
via the oral pathway represents a physiological real-life model of 
exposure that mirrors exposures of human populations. As it has been 
already discussed (46), many in vitro and preclinical studies fail to 
recapitulate human exposures because of the different administration 
routes (disregarding the toxicokinetics characteristics of the exposure) 
and excessive dosing. In fact, considering the recently proposed 
allometric approach for mercury dosing of translational relevance (6), 
many studies have used excessively high doses of MeHg, triggering 
toxic mechanisms that may be of no translational relevance to exposed 
human populations. Second, we used a dose approximately equivalent 
to the Benchmark dose or LOAEL (Low Observed Adverse Effects 
Levels) estimated by the World Health Organization (with humans 
chronically exposed via contaminated-fish consumption presenting 

about 50 μg/g of hair mercury) (3) as described by Crespo-Lopez et al. 
(6), the weekly MeHg intake equivalent in rats was calculated as 
215.83 μg/Kg, close to the dose used in our work (280 μg/Kg per 
week). Accordingly, our model simulates exposure of pregnant 
women, which triggers the first signals of neurological consequences 
of mercury. Furthermore, levels as high as 75 μg/g of hair mercury in 
adults have been recently described in Amazonian populations living 
in regions without ASGM influence (47, 48), supporting that these 
levels are readily found in human populations. Therefore, our findings 
are of translational relevance to vulnerable populations. Third, chronic 
MeHg consumption would cause a potential health risk, especially in 
children and pregnant women (49). Amazonian populations subside 
on fish, the main protein of the diet (50), and, therefore, their exposure 
to MeHg is a chronic problem. Recently, we have demonstrated that 
indirect exposure of the mother to MeHg causes damage to several 
brain regions, salivary glands and alveolar bone in the offspring (15, 
21, 51).

MeHg is absorbed in the gastrointestinal tract and distributed to 
the blood. This metal forms soluble complexes mainly with thiol 
groups. While bile and feces are the major routes of excretion, breast 
milk is also a notable route in pregnant organisms (52). The offspring 
is commonly exposed during fetal life and during the breastfeeding 
period, followed by exposure in early childhood (53). MeHg can easily 

FIGURE 5

Effects of maternal MeHg exposure (40 μg/kg/day) and transfer to the offspring during the pre- and postnatal periods on the ratio of phosphate/
phosphate and phosphate/carbonate mineral content on the enamel surface generated by Raman analysis in the enamel of the incisors of offspring 
rats (41 days old, n = 10 per group). (A,B) Comparison spectra of parallel and perpendicular polarized spectra for control and exposed groups. (C,D) a 
graph of the values related to the PO4ν1/CO3ν1 ratio and PO4ν1/PO4ν2 ratio. *Student’s t-test, p < 0.05.
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cross the placenta and absorbed by fetal tissues, leading to 
developmental alterations in children exposed in utero and early in life 
(54). High levels of proteins are found in breast milk, making it 
possible for these proteins to bind to metals. Therefore, breastfeeding 
can serve as a significant route of exposure to MeHg in infants (55).

Studies have shown that MeHg exposure during the prenatal 
period can alter the activity of key embryonic cellular signaling 
pathways (56, 57). In calcified long tissues, a study demonstrated that 
prenatal exposure to MeHg led to a significant delay in the 
development of different components of the appendicular skeleton of 
rat fetuses, such as delays in the formation of ossification centers and 
decreased growth of long bones, altering bone mineral density and 
content (58). As in oral calcified tissues, maternal exposure to MeHg 
in alveolar bone was able to induce changes in mineral composition, 
cause histological damage to osteocytes and collagen associated with 
a decrease in the quantity and thickness of alveolar bone (21). Tooth 
enamel has also been shown to be a target of this exposure during its 
formation, as the highly regulated process called amelogenesis occurs 
during the developmental stages (59). It is during these phases that 
enamel matrix proteins are secreted, until their maturation (60). This 

secretion of enamel matrix proteins during the expansion and 
development of mineral crystals (59), are associated with the 
mechanical and structural properties of their surface (61). 
Disturbances of these enamel properties are more prevalent in the 
deciduous dentition, during childhood, due to biological imbalances 
affecting cells involved in enamel formation and maturation (62, 63), 
as well as enamel quality could possibly play a role as a possible 
indirect marker of the harmful consequences of exposure to 
environmental agents.

Given the difficulty in obtaining human tooth samples during the 
early stages of enamel formation, we focused on rat incisors as they 
are especially useful given their continuous growth permitting analysis 
throughout all stages of enamel formation (25, 59, 64).

MeHg exposure in mothers modifed the mineral components in 
offspring enamel, phosphate and carbonate compounds, as well as the 
crystalline structure. Enamel is a highly mineralized tissue, containing 
92–96% inorganic components, 1–2% organic matter, and 3–4% water. 
The inorganic component is mainly represented by calcium phosphate 
crystals in the form of hydroxyapatite (HAp) (23). The organic 
material contains proteins, mainly amelogenin, ameloblastin, and 

FIGURE 6

Effects of maternal MeHg exposure (40 μg/kg/day) and transfer to the offspring during the pre- and postnatal periods on morphological and structural 
aspects of the enamel of the incisors of offspring rats (41 days old). Electromicrographs of the cross-sectioned rat incisor. (A,C,E) Micrographs of the 
control group. (B,D,F) Electromicrographs of the group exposed to MeHg. (A,B) Is the enamel prismatic structure at 1500× magnification, where the 
entire thickness of the enamel is sectioned transversely. (*) indicate dentin. (C,D) at 4000× magnification, where the arrows indicate the enamel prisms. 
(E,F) the enamel surface region is found. Scale bar: (A,B) 10 μm; (C–F) 20 μm.
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tuftelin, which play a role in the elasticity, viscoelasticity, and hardness 
of mineralized tissues, and by scarce amounts of lipids and 
carbohydrates [Qamar et  al., 2021; (65)]. Reduced absorbance of 
phosphate, carbonate and amide components in dental enamel 

structure, observed in FTIR-ATR, may indicate a change in enamel 
composition and ultrastructure, which may affect its physical and 
mechanical properties (66). Thus, the reduction in absorbance of these 
compounds may be an indication of the decrease in the amount of 
them present in enamel, and the variation in mineral composition of 
dental enamel. Further evaluation of the phosphate to carbonate ion 
revealed a decrease of this ratio, meaning a higher decrease of 
phosphate ion. The presence of carbonate ions in enamel has been 
shown to have a significant effect on the structure and properties of 
enamel. Carbonate ions can substitute for phosphate ions in the 
hydroxyapatite lattice, leading to changes in crystal structure, 
solubility, and mechanical properties (67) determined a decrease in 
enamel crystallinity concomitant with an increase of carbonate 
content. A reduced phosphate to carbonate ratio in enamel, with the 
formation of an irregular surface, can be  an indication of a less 
resistant and more friable weaker and vulnerable enamel structure.

In addition to its mineral structure, we  found morphological 
changes in the enamel. The dominant characteristic of enamel on a 
microscopic scale is enamel prisms (65). In the histological structure 
of the enamel observed in this study, maternal exposure to MeHg 
caused a change in the organization and integrity of the prisms of the 
offspring’s incisors. The rat incisor has a lamellar pattern of uniseriate 
prisms in the internal enamel and incisally parallel prisms directed to 
the external enamel (24, 64). Each prism consists of a set of crystalline 
apatite structures that are aligned parallel to each other and 
maintained as a cohesive unit (65). In this way, prismatic 

FIGURE 7

Effects of maternal MeHg exposure (40 μg/kg/day) and transfer to the offspring during the pre- and postnatal periods on morphological and structural 
aspects of the enamel of the incisors of offspring rats (41 days old, n = 10 per group). Bright-field light and polarizing light microscopies of the secretory 
stage EOECM of rats from control (A,B) and maternal MeHg transfer (C,D) groups. In the polarizing light micrograph, the analyzer is at 90° with the 
polarizer and the specimen exhibits position of maximum birefringence, as indicated by the arrow at 45° in relation to crossed bars. Bar of each 
micrograph represents 100 μm. (A) Birefringence of the secretory stage EOECM of enamel from control group. (B) Bright field of section A, after 
staining with HE. (C) birefringence of an unstained 5 μm thick section of the secretory stage EOECM of a rat upper incisor from MeHg group. (D) bright 
field of section C, after staining with HE.

FIGURE 8

Effects of maternal MeHg exposure (40 μg/kg/day) and transfer to the 
offspring during the pre- and postnatal periods on morphological 
and structural aspects of the enamel of the incisors of offspring rats 
(41 days old, n = 10 per group). Optical retardations of birefringence 
brightness (nm) of unstained 5 μm thick sections of the secretory 
stage EOECM from control and MeHg groups (p > 0.05, Mann–
Whitney test).
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disorganization has the potential of compromising molecular 
functions (25) of developmental enamel, such as phosphate and ion 
transport, movement of ameloblasts, remodeling of junctional 
complexes of these cells during amelogenesis, factors that influence 
enamel prismatic architecture (25).

Transmitted polarizing light microscopy reveals tissue molecular 
order with possible functional relevance in common unstained 
histological sections. This is the first report on the effects of MeHg via 
maternal transfer, on the birefringence of secretory stage EOECM 
which showed maximum brightness when enamel rods were oriented 
at 45° with respect to the polarizer and analyzer filters in exposed and 
control samples. Most MeHg rats did not present expressive changes 
in morphological and anisotropic properties of their secretory enamel 
matrices, as revealed by TPLM and BFLM. A granular pattern of some 
of those matrices was noted by TPLM (Figure  7C), which is 
characteristically observed at the maturation stage of amelogenesis 
and means extensive proteolysis (68). These results indicate that 
mature enamel alterations induced by maternal MeHg transfer may 
be preceded by important alterations in aggregational features of the 
secretory stage EOECM and in the orientation of its prismatic 
components. The enamel is characterized by anisotropic mechanical 
properties, which collectively ensure the efficiency of the mastication 
process and functional stress, which are influenced by the orientation 
and structural organization of the enamel organic matrix during 
amelogenesis (69).

Along these lines, maternal exposure to MeHg also leads to 
changes in the mechanical properties of the mineralization functional 
patterns in offspring. An association was observed with the metal 
administered and a decrease in the resistance and microhardness of 
the enamel surface. This may be  associated with changes in the 
mineral, structural, and physicochemical properties of the enamel, as 
previously observed. Indentation studies on dental enamel have 
provided insights into dental enamel materials properties and 
behavior under mechanical loading (70). Defects in the quality and 
quantity of tooth enamel caused by disturbance during the 
developmental phase, as well as the extent and duration of the insult, 
are usually expressed by tooth opacity, hypoplasia, hypomineralization, 
and hypomaturation (71).

Our data demonstrate that mechanical properties reside in 
complex levels of structural organization that, in turn, are the result 

of a highly coordinated and mediated matrix mineralization process 
that requires organic and inorganic components. Our results revealed 
changes in the physicochemical properties of offspring’s enamel, and 
that these changes may be preceded by molecular disturbances of the 
secretory stage EOECM. Thus, alterations were observed in hardness 
and ultrastructure, leading us to conclude that, during amelogenesis, 
the enamel of the offspring is more susceptible to the effects of 
maternal exposure to MeHg during pregnancy and breastfeeding. 
Moreover, from a translational perspective, the findings show that 
early exposure to MeHg can be a modulator of dental integrity in 
populations vulnerable to MeHg, pointing to the need for 
investigation in human populations of the possible association 
between early mercury exposure and higher prevalence of 
dental damage.
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FIGURE 9

Effects of maternal MeHg exposure (40 μg/kg/day) and transfer to the offspring during the pre- and postnatal periods on hardness in the enamel of the 
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hardness (KHN). Results are expressed as mean ± standard error. *Student’s t-test, p < 0.05.
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