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Possible adaptation measures for 
climate change in preventing 
heatstroke among older adults in 
Japan
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Kyoto University School of Public Health, Kyoto, Japan

Introduction: Heatstroke mortality is highest among older adults aged 65  years 
and older, and the risk is even doubled among those aged 75  years and older. 
The incidence of heatstroke is expected to increase in the future with elevated 
temperatures owing to climate change. In the context of a super-aged society, 
we  examined possible adaptation measures in Japan that could prevent 
heatstroke among older people using an epidemiological survey combined with 
mathematical modeling.

Methods: To identify possible interventions, we  conducted a cross-sectional 
survey, collecting information on heatstroke episodes from 2018 to 2019 among 
people aged 75  years and older. Responses were analyzed from 576 participants, 
and propensity score matching was used to adjust for measurable confounders 
and used to estimate the effect sizes associated with variables that constitute 
possible interventions. Subsequently, a weather-driven statistical model was used 
to predict heatstroke-related ambulance transports. We projected the incidence 
of heatstroke-related transports until the year 2100, with and without adaptation 
measures.

Results: The risk factor with the greatest odds ratio (OR) of heatstroke among older 
adults was living alone (OR 2.5, 95% confidence interval: 1.2–5.4). Other possible 
risk factors included an inability to drink water independently and the absence of 
air conditioning. Using three climate change scenarios, a more than 30% increase 
in the incidence of heatstroke-related ambulance transports was anticipated for 
representative concentration pathways (RCP) 4.5 and 8.5, as compared with a 
carbon-neutral scenario. Given 30% reduction in single living, a 15% reduction in 
the incidence of heatstroke is expected. Given 70% improvement in all three risk 
factors, a 40% reduction in the incidence can be expected.

Conclusion: Possible adaptation measures include providing support for older 
adults living alone, for those who have an inability to drink water and for those 
without air conditioning. To be comparable to carbon neutrality, future climate 
change under RCP  2.6 requires achieving a 30% relative reduction in all three 
identified risks at least from 2060; under RCP 4.5, a 70% reduction from 2050 
at the latest is needed. In the case of RCP  8.5, the goal of heatstroke-related 
transports approaching RCP 1.9 cannot be achieved.
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1. Introduction

Heatstroke is an environmentally induced condition caused by 
exposure to a very warm environment and an inability to lower 
elevated body temperature (1). Depending on the mechanism of 
development, heatstroke is divided into classic heatstroke, caused 
purely owing to environmental conditions, and exertional heatstroke, 
induced by physical exercise (2). People who have difficulty adapting 
to a warm environment, including older adults and those people with 
chronic illnesses, are more likely to develop heatstroke (3–6). 
Morbidity of heatstroke is elevated with a transient increase in 
temperature such as heatwaves (7, 8). To reduce mortality, preventing 
heatstroke is more effective than treatment, involving simple yet 
realistic countermeasures to reduce heatstroke incidence (9). 
Published preventive measures of heatstroke include the installation 
of air-conditioners (10) and enhancement of public support for older 
adults (11).

The incidence of heatstroke is expected to increase in the future 
with rising temperatures owing to climate change. The 
Intergovernmental Panel on Climate Change has set a goal of limiting 
the increase in the global average temperature to 1.5°C by the end of 
the 21st century, as a mitigation measure (12). Among health problems 
associated with climate change, heatstroke is a disease for which 
measures to reduce risk are required worldwide (13). Health-related 
risk assessment of climate change has taken place under various 
scenarios of temperature increase across the world (13–20), and 
possible risk reduction via adaptation measures to climate change has 
been explored in recent years (21, 22). Population aging is also 
reported to increase the burden of heat-related health risks under 
climate change (23, 24), and heatstroke mortality is known to 
be highest among people aged 65 years and older, and the risk is even 
doubled among those aged 75 years and older.

In Japan, the government Ministry of the Environment (MOE) 
has taken the initiative to inform the public regarding the risk of 
heatstroke, using the wet bulb globe temperature (WBGT) as a 
standard indicator (25). The WBGT is classified into five discrete 
categories: less than 21°C, 21°C–25°C, 25°C–28°C, 28°C–31°C, and 
31°C or higher (26). When the temperature exceeds 28°C, warnings 
are issued by the government via mass media. Despite various 
countermeasures, approximately 1000 annual deaths owing to 
heatstroke have been reported in Japan in recent years, and more than 
80% of heatstroke deaths are among people over 65 years of age [(27); 
Supplementary material 1]. To consider prevention strategies of 
heatstroke-related deaths in Japan, a super-aged society, studies have 
been conducted using various statistical models (28, 29). We proposed 
a forecasting model using the maximum daily WBGT under several 
climate change scenarios (30). However, intervention studies have 
been limited to date.

The purpose of the present study was to identify possible 
adaptation measures among older adults in Japan in the context of a 
super-aged society and to estimate their effectiveness in preventing 
heatstroke. Identifying possible adaptation measures can help assist 
various stakeholders, including local governments, community 
caregivers and so on to consider future preparedness plans to mitigate 
the risk of heatstroke even under changing climate. Such contingency 
plan may decrease the disease burden and mortality of heatstroke. In 
this study, we first conducted a cross-sectional epidemiological survey 

to identify possible risk factors via survey and then modeled what is 
the potential that decrease in these risk factors could have in the future 
in preventing heatstroke. We also used a climate-driven prediction 
model to predict heatstroke-related ambulance transports under 
various climate change scenarios.

2. Materials and methods

2.1. Identification of risk factors

2.1.1. Cross-sectional survey
We carried out a cross-sectional epidemiological online survey 

among Japanese residents with family members or other relatives aged 
75 years or older. We  focused on this group, because the risk of 
heatstroke among people aged 75 years or older is known to be twice 
as high as that among people aged 65 years or older [(27); 
Supplementary material 1]. Participants were selected non-randomly 
from a list of registered users of a Japanese internet research company 
called Mellinks Ltd. Respondents did not receive remunerations, but 
upon completion of survey, they received local “points” that could 
be exchanged for valuable goods via the company. The internet-based 
survey was carried out from September 14 to 24, 2021, by navigating 
respondents to visit the website with questionnaire. The questionnaire 
was designed based on published studies (3–6), and we focused on 
heatstroke episodes from 2018 to 2019. Heatstroke episode was 
defined in our survey based on criteria adapted from the ‘Heatstroke 
Treatment Guidelines 2015’ (31) and a reference (1) which are known 
to have been comprehensive even among non-medical experts. A 
more detailed description is provided in Supplementary material 2. 
We specifically surveyed 2018–2019, because of retrospective nature 
of our study, and also to avoid the potential impact of the coronavirus 
disease 2019 (COVID-19) pandemic on the results of the 
questionnaire. Moreover, socioeconomic level and comorbidities were 
also surveyed in indirect manners. Not only exploring the presence of 
air conditioner, the survey questions included gender and the number 
of household occupants that are known to influence socioeconomic 
levels of life among older people (32). As for comorbidities, 
we investigated whether there were any pre-existing comorbidities 
that are associated with the risk of heatstroke, including depression, 
heart failure, hypertension, kidney diseases, and Parkinson’s disease. 
A version of our questionnaire translated into English is available in 
Supplementary material 2.

2.1.2 Statistical analyses
The dichotomous (2-category) outcome was an episode of 

heatstroke from 2018 to 2019, and we  investigated univariate and 
multivariate associations of explanatory variables with the occurrence 
of heatstroke episodes. First, we investigated the univariate statistical 
association between heatstroke and explanatory variables, estimating 
the odds ratio (OR) as the effect size measure. For the calculation of 
OR, we used a univariate logistic regression. Subsequently, among 
variables that were significantly associated with heatstroke in the 
univariate analysis, we selected variables into which we can intervene. 
To adjust for potential confounders among measured variables, 
one-to-one propensity score matching was carried out for each factor 
into which we expected to intervene (33). A logistic regression model 
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was used to estimate propensity scores, involving four measured 
variables (i.e., age, sex, underlying comorbidities, and inability to 
move to a cooler place during hot weather). Using a caliper width with 
a propensity score standard deviation of 0.2, matching was performed 
using nearest-neighbor matching and non-replacement methods. The 
balance of baseline variables between the two propensity-matched 
groups was examined using standardized differences, and more than 
10% was considered unbalanced, following the convention of 
matching procedure (34). Using the same propensity score, 
we conducted a sensitivity analysis with the inverse probability of 
treatment weighting (IPTW) method.

2.2. Future prediction scenario of 
heatstroke

2.2.1. Data source for prediction model
Three pieces of data in Tokyo were used: (i) the number of 

heatstroke patients transported by ambulance (35), (ii) daily 
maximum WBGT (25), and (iii) weather data from observatories (36). 
Data on the number of daily transported patients aged 65 years and 
older are routinely collected by the Fire and Disaster Management 
Agency (FDMA) from May to September each year. The FDMA data 
only shows a dichotomous age group indicating whether heatstroke 
patient is 65 years and older, not in the form of individual age of 
heatstroke patient. Two other datasets were obtained using publicly 
available data from the referenced source and collected during the 
FDMA collection period. To calibrate our model, all these datasets 
were prepared for the period of 5 years from 2015 to 2019. 
Climatological variables including WBGT from weather station data 
were used to predict the number of heatstroke-related ambulance 
transports. WBGT values were dealt with in the same manner as the 
unit of temperature, i.e., °C. WBGT values during the abovementioned 
5 years represent direct measurements in Tokyo.

In this study, future climatological variables were obtained from 
climate change scenarios based on the Coupled Model Intercomparison 
Project Phase 6 published by the National Institute for Environmental 
Studies (NIES) (37). Three scenarios were extracted from NIES: (i) 
Model for Interdisciplinary Research on Climate version 6 (MIROC6), 
(ii) Meteorological Research Institute Earth System Model version 2.0 
(MRI-ESM-2.0), (iii) the Institute Pierre-Simon Laplace climate mode 
(IPSL-CM6A-LR). We  specifically examined these three scenarios 
because the carbon-neutral scenario is available as part of the 
representative concentration pathways (RCP). Future meteorological 
data were collected at RCP  1.9, 2.6, 4.5, and 8.5 by specifying the 
latitude and longitude of the weather stations in Tokyo, among which 
RCP 1.9 corresponds to a carbon-neutral scenario. Future WBGT by 
the year 2100 was calculated using meteorological data with an 
estimator developed by Ono et  al. (38). To calculate the risk at 
population level, past demographic data were obtained from the 2015 
census (39), and data in the future were extracted from the Climate 
Change Adaptation Information Platform (40).

2.2.2. Projection model
In our previous study (30), projections were made using a 

forecasting model that uses daily maximum WBGT. Letting Td be the 
daily maximum WBGT on day d, the expected number of heatstroke-
related transports was modeled as:
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where Tw is the WBGT threshold (e.g., 28°C) above which the 
dose–response increase in heatstroke is seen, β is the constant risk at 
WBGT below Tw, and r is the rate of risk increase as a function of 
WBGT. We demonstrated the usefulness of WBGT in projection, but 
projection using a simplistic model was unable to capture observed 
heatstroke counts when the temperature was greatly elevated for 
several consecutive days.

We thus attempted to improve the equation in the present study, 
additionally accounting for weather data related to heat (i.e., global 
solar radiation and a sequence of hot days) in the prediction. 
Because our earlier model was unable to capture the heatstroke 
count during heatwaves that continued for several days, heat 
acclimation was also considered (i.e., before and after natural 
adaptation was taken into account), which is in line with a published 
study (41). Dealing with global solar radiation (sd) (kW/m2), and 
similarly dealing with WBGT on d (ud) as dichotomous (whether 
the daily maximum WBGT exceeded 31°C for 2 or 3 consecutive 
days), we  modeled the daily number of heatstroke-related 
ambulance transports as
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(2)

where parameters β and r, as well as the threshold value of 
WBGT Tw, were assumed to be  varying via heat acclimation 
(subscript 0 denotes before adaptation and 1 denotes after 
adaptation) and γ1,i and γ2,i are coefficients for sd and ud, 
respectively, before (i = 0) and after (i = 1) natural adaptation 
representing the average daily temperature (°C) reached the 
highest value of the season. This particular model was identified 
as most reasonably capturing observed heatstroke-related 
ambulance transports (Fujimoto et al., under review). Assuming 
that the number of ambulance transports owing to heatstroke 
follows a Poisson distribution, maximum likelihood estimation 
was performed to obtain optimal parameter values. The Akaike 
information criterion (AIC) was computed and the model with the 
best fit was selected.

The best fit model was used for projection using weather data 
of RCP 1.9, 2.6, 4.5, and 8.5 in three climate change scenarios to 
yield the predicted number of heatstroke-related transports from 
2020 to 2100. The number of heatstroke cases was calculated per 
100,000 people.

Because the heatstroke incidence is greatly affected by 
temperature variations in each year, a 5-year arithmetic average was 
taken for each 5-year period. Relative risk per year was computed, 
comparing projections against the empirically observed 5-year 
median from 2015 to 2019 and the carbon-neutral scenario in the 
same year (RCP 1.9).

https://doi.org/10.3389/fpubh.2023.1184963
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Fujimoto et al. 10.3389/fpubh.2023.1184963

Frontiers in Public Health 04 frontiersin.org

2.3. Intervention effectiveness

The per capita probability of heatstroke from May to September 
in Tokyo was empirically estimated as ranging from 0.12 to 0.08%; 
thus, we judged the incidence of heat stroke to be rare, and we adopted 
odds ratios as an approximation of risk ratio. To calculate the effect of 
intervention measures in reducing the incidence of heatstroke, 
we used the adjusted OR of factor v, qv and the proportion of older 
adults having the risk factor v in year t, pv,t. Among the population at 
risk with factor v, we observed qvpv,t as the risk of heatstroke; among 
the remainder without factor v, the population at risk is 1− pv t, . 
Normalizing these, the fraction of heatstroke that occurs among 
people with factor v would be q p q p pv v t v v t v t, , ,/ + −( )( )1 . Similarly, 
the fraction of heatstroke among people without risk factor v would 
be  1 1−( ) + −( )( )p q p pv t v v t v t, , ,/ . Of these, in the presence of 
interventions, only the q pv v t,  part of the numerator would be reduced 
by intervening the risk factor v for a fraction iv,t in year t. That is, at the 
population level, the relative risk reduction by intervening factor v by 
iv,t is:

 
k

q p i p
q p pv

v v t v t v t

v v t v t
=

−( ) + −( )
+ −( )
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1 1

1  
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where kv is the relative decrease in the number of heatstroke 
patients attained by intervention into risk factor v. Because we handled 
multiple risk factors, we calculated the projected number of heatstroke-
related ambulance transports under interventions, ′( )n Td  as
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That is, the expected number of heatstroke-related transports 
per 100,000 population estimated for the period from May to 
September was obtained by multiplying the obtained preventive 
effect kv for all examined risk factors. Computation was carried out, 
assuming that adaptation measures are implemented from 2030 and 
that it would take 5 years from 2030 to reach the plateaued level 
of intervention.

To calculate the future proportion of people with 
pre-determined risk factors among people aged 65 years and older 
(i.e., to calculate pv t, ), the following analyses were conducted. Due 
to data limitation of the FMDA’s heatstroke transport data, which 
only specifies whether patients were 65 years and older, 
we calculated age-specific risk based on this age grouping. First, the 
projected rate of older adults living alone by 2040 was retrieved 
from the National Institute of Population and Social Security 
Research in Tokyo (42), and the estimate was used as empirical data 
for additional future projections. Because the size of the entire 
population of Japan will decrease (with deaths of the baby boomer 
generation), with a substantial decrease in the demand for older 
adult care, a quadratic equation was fitted to capture the 
forthcoming decline in the proportion of older people living alone 
and was fitted to the abovementioned data to 2040. Alternatively, in 
the case of a scenario in which the proportion of the older 
population living alone remains constant, a cubic exponential 
formula was used. As for the proportion of people who are unable 

to drink water independently, the proxy value was the percentage 
of those certified as having care need level 3 or more (i.e., a 
condition that requires total assistance in the activities of daily 
living) (43), retrieved from the Tokyo Metropolitan Government 
(44). Information on certification rates by sex and age group for 
care need levels 3, 4, and 5 for the years 2015–2020 were used; it was 
assumed that the care need level was determined by age and will not 
change after 2020. The age-dependent proportion of older adults 
with care levels 3–5 in 2020 was used to project the proportion of 
people who are unable to drink water independently through 2100 
(40). Lastly, the percentage of households without air-conditioning 
was estimated using the observed percentage from 2011 to 2022 
from the National Survey of Living Conditions (45) in Japan 
conducted by the Ministry of Health, Labour, and Welfare.

All calculations were performed using JMP statistical software, 
version 16.0 (SAS Institute Inc., Cary, NC, United  States) and R 
software version 4.2.0 (The R Project for Statistical Computing, 
Vienna, Austria).

3. Results

3.1. Explanatory variables of heatstroke risk

The cross-sectional survey involved 576 participants, including 
166 older adults with a history of heatstroke and 410 without a 
heatstroke history. Participants’ characteristics and the results of 
univariate analysis are summarized in Table 1. Among explanatory 
variables of heatstroke episodes, (i) male sex, (ii) having an underlying 
medical condition, and (iii) living alone were significant. The OR and 
95% confidence interval (CI) of these variables was 1.7 (95% CI: 1.2, 
2.4), 2.5 (95% CI: 1.6, 3.8), and 2.1 (95% CI: 1.2, 3.5), respectively. 
Although not significant, the ORs of inability to drink water 
independently and absence of air-conditioning were 1.5 (95% CI: 1.0, 
2.3) and 1.6 (95% CI: 0.9, 2.6), respectively.

Then, factors into which interventions could be made were 
further examined. Based on the results from univariate analysis, 
three intervention-related factors were (i) people living alone, (ii) 
being unable to drink water independently, and (iii) not having an 
air-conditioner. After propensity score matching and IPTW 
calculations, Table 2 shows the adjusted ORs for these factors: 2.5 
(95% CI: 1.2, 5.4), 1.2 (95% CI: 0.7, 2.1), and 1.6 (95% CI: 0.8, 3.2), 
respectively. Although the 95% CIs from propensity score 
matching were widened compared with the results univariate 
analysis, IPTW analysis yielded significant results for all three 
variables (Table  2). Accordingly, we  examined the effects of 
intervention for all three factors in a subsequent analysis. 
Supplementary Tables S1–S3 show the results of propensity 
score matching.

3.2. Future prediction scenario of 
heatstroke

In analyzing multiple models describing heatstroke-related 
ambulance transports from 2015 to 2019, Supplementary Table S4 
shows the summary of model comparisons (including AIC values and 
mean squared error). The best fit model was identified as:
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Compared with equation (2), it should be noted that γ1 and γ2 in 
equation (5) do not change before and after natural adaptation owing 
to the average daily temperature reaching the highest value of the 
season. The variable ud indicates whether there were 3 consecutive 
days with the daily maximum WBGT exceeding 31°C. Maximum 
likelihood estimates of the parameter were estimated at Tw,0 = 22.1, 
Tw,1  = 19.3, r0  = 0.31, r1  = 0.34, β0  = 0.87, β1  = 0.22, γ1  = 0.04, and 
γ2 = 0.58, respectively. Using these parameters, projection scenarios of 
heatstroke were produced by the year 2100 for each RCP using three 
climate change scenarios, MIROC6, MRI-ESM-2.0, and IPSL-
CM6A-LR. The predicted results are shown in Figure 1. Compared 
with the 5-year median number of heatstroke-related ambulance 
transports from 2015, even RCP 1.9 (i.e., carbon-neutral scenario) was 
projected to involve increased heatstroke-related transports under 
MIROC6 and MRI-ESM-2.0. Specifically, the MIROC6 model 

projected a maximum increase of 40%, while the MRI-ESM-2.0 model 
projected a maximum increase of 30% in heatstroke-related transports. 
Although there were differences depending on climate change 
scenarios, RCP 4.5 and RCP 8.5 showed increments in the number of 
heatstroke-related ambulance transports among people aged over 
65 years compared with projections from RCP 1.9.

The results of relative risk calculations are shown in Table  3. 
Taking the baseline as the 5-year median from 2015 for the period 
from May to September, the number of heatstroke-related ambulance 
transports were increased for RCP 2.6, 4.5, and 8.5. Depending on the 
year, the number of heatstroke-related transports will increase by 
approximately 20% with RCP 2.6, 30% with RCP 4.5, and 50% with 
RCP 8.5. In particular, we found that after 2060, the relative increase 
compared with the baseline period will continue to exceed 50% with 
RCP 8.5. Using RCP 1.9 as a baseline, RCP 2.6 yielded an approximate 
5–20% increase after 2060. In MIROC6, compared with the RCP 1.9 
scenario, RCP4.5 climate scenario was expected to increase the 
number of heatstroke-related ambulance transport by more than 30% 
compared to RCP1.9, and RCP8.5 scenario more than 50%, in the 
second half of the 21st century.

3.3. Future prediction of intervention 
effectiveness

For the intervention scenarios, we calculated heatstroke-related 
ambulance transports, assuming a relative decrease in risk groups of 
30% (i.e., 30% relative decrease in the number of older adults living 
alone) and similarly, relative decreases of 30, 50, 70, 90, and 100% for 
all three risk factors. Figure 2 shows the expected baseline number of 
heatstroke-related ambulance transports with two different future 
outcomes for the proportion of older people living alone (i.e., 
declining or remaining constant), along with results of the 
abovementioned interventions (i.e., adaptation policies). Figure  2 
shows the results using MRI-ESM-2.0; the results with the two other 
climate change scenarios are shown in Supplementary Figures S2, S3 
(Supplementary material 3).

Under a scenario in which the proportion of older people living 
alone declines over time in the future, a 30% relative reduction in the 

TABLE 1 Characteristics of participants with crude odds ratio, confidence intervals, and p-values for heatstroke.

Characteristic Participants with 
heatstroke episode(s), 

N =  1661

Non-heatstroke 
participants, N  =  4101

Odds ratio (95% 
confidence interval)

p-value

Age (years) 84.4 (7.8) 86.7 (6.9) 0.95 (0.9, 1.0) <0.01

Gender (Male) 92/166 (55%) 174/410 (42%) 1.7 (1.2, 2.4) <0.01

Underlying medical condition 53/166 (32%) 65/410 (16%) 2.5 (1.6, 3.8) <0.01

Require nursing care 134/166 (81%) 301/410 (73%) 1.5 (1.0, 2.4) 0.08

Inability to move 55/166 (33%) 151/410 (37%) 0.9 (0.6, 1.2) 0.46

Living alone 28/166 (17%) 37/410 (9.0%) 2.1 (1.2, 3.5) 0.01

Inability to drink water 38/166 (23%) 68/410 (17%) 1.5 (1.0, 2.3) 0.10

Absence of air-conditioner 27/166 (16%) 45/410 (11%) 1.6 (0.9, 2.6) 0.11

1Mean (standard deviation); n/N (%).
Underlying medical conditions included four diseases (depression, heart failure, kidney disease, and Parkinson’s disease) as these potentially lead to the inability to move if exacerbated. 
Requiring nursing care refers to the need for help in activities of daily living (e.g., eating and dressing). The inability to move describes whether an older adult is able to move to a cooler place 
in elevated temperatures. Inability to drink water indicates that the person is unable to drink water independently.

TABLE 2 Odds ratio of developing heatstroke.

Risk factors Crude OR1) 
(95% CI2)

Adjusted OR1 (95% CI)

PS3-matched IPTW4

Living alone 2.1 (1.2, 3.5) 2.5 (1.2, 5.4) 2.1 (1.6, 2.7)

Inability to drink 

water

1.5 (1.0, 2.3) 1.2 (0.7, 2.1) 2.0 (1.5, 2.7)

Absence of air-

conditioner

1.6 (0.9, 2.6) 1.6 (0.8, 3.2) 1.6 (1.2, 2.0)

OR1, odds ratio; CI2, confidence interval; PS3, propensity score; IPTW4, inverse probability of 
treatment weighting.
Directed acyclic graphs and confirmed variables are presented in Supplementary Figure S1. 
A logistic regression model with six baseline independent variables (age, sex, underlying 
disease, inability to move, and two other factors) was used to estimate the propensity score.
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number of older adults living alone would result in an up to 15% 
decrease in the number of heatstroke-related transports. Similarly, 
concerted interventions (i.e., averting all three risks) would result in a 
20% decrease in heatstroke by decreasing the proportions with risk 
factors at 30%. These findings were similar in another scenario where 
the future proportion of older adults living alone was maintained 
constant (Figure 2). In RCP 8.5, even with 100% relative reduction in 
all identified risks, the frequency of heatstroke could still not 
be  lowered in comparison with the carbon-neutral scenario in 
some years.

4. Discussion

Using daily maximum WBGT values, additional meteorological 
information, and accounting for probable heat acclimatization during 
consecutive hot days in the summer season, we estimated the number 
of heatstroke-related ambulance transports in the future under various 
climate change scenarios. The proposed model can provide better fit 
to observed data than our earlier model (30), yielding a long-term 
prediction in Tokyo until the year 2100. We showed that to reduce the 
future burden of heatstroke below historical levels, heatstroke 
adaptation measures are vital, even with a carbon-neutral scenario. To 
be comparable to carbon neutrality, with future climate change under 
RCP 2.6, a 30% relative reduction in all three identified risks from 
2060 is required, and under RCP 4.5, a 70% relative reduction from 
2050 is needed. In the case of RCP 8.5, even a 100% reduction is not 
comparable to RCP  1.9  in some years, calling for serious 
mitigation measures.

To the best of our knowledge, our study is the first to combine an 
epidemiological survey and future projection of heatstroke in the 
context of adaptation measures. Although a few excellent machine 
learning-based predictions of heatstroke-related ambulance transports 
in Japan have been conducted (28, 29) and epidemiological studies of 
admitted patients with heatstroke have been reported (44, 45), no 
studies have examined risk factors of the onset of heatstroke, aiming 

to reduce this risk. Although our survey was cross-sectional, the 
snapshot survey of heatstroke history among older adults enabled us 
to cover the risk of broad-spectrum heatstroke (including mild cases), 
allowing for the calculation of ORs. Intervenable factors of heatstroke 
were found to be  (i) living alone, (ii) inability to drink water 
independently, and (iii) the absence of air-conditioning. The adjusted 
OR allowed us to examine possible future scenarios under which the 
above risk factors were partially improved via social support (as part 
of a future adaptation policy). With an elevated risk of heatstroke in 
the future, intervenable factors (i)–(iii) above could alleviate the 
heatstroke risk in the future such that the number of cases can 
be maintained to a number comparable to a carbon-neutral scenario.

For the calculation of future interventions, obtaining adjusted 
ORs is key. Although the present study was cross-sectional, propensity 
score matching allowed us to adjust for observed measurable 
confounders. Among examined variables that can be intervened into, 
living alone yielded the highest OR value. Among all examined 
variables, having an underlying medical condition yielded the highest 
risk estimate (followed by living alone), but having a medical condition 
is not intervenable. Thus, not merely adjusting for confounders but 
also using the matching method was useful to adjust for known strong 
predictors. Considering that older adults tend to have difficulty in 
recognizing and objectively judging heat levels (5, 6), having peer or 
professional support, especially for people living alone, is deemed a 
reasonable option.

Classically, potential interventions among older adults have been 
restricted to the use of air-conditioning and frequent drinking of 
water to prevent dehydration (1, 3, 48), which is important, as 
dehydration can frequently develop into heatstroke. However, the 
effect sizes of lack of air-conditioning and an inability to drink water 
were smaller than that of living alone. The greater importance of living 
alone poses a challenge for adaptation measures because living with 
others cannot be  achieved via peer support only and calls for 
concerted action by local governments. Japanese older adults generally 
have lower incomes than working-age adults, with the main income 
from pensions, and single-person households are expected to have 

FIGURE 1

Projected number of heatstroke-related ambulance transports among older adults in Tokyo from 2015 to 2100 using three climate change scenarios 
(MIROC6, MRI-ESM-2.0, and IPSL-CM6A-LR). The vertical axis is the number of heatstroke-related ambulance transports per 100,000 population, and 
the horizontal axis represents the year. The dots are the 5-year average number of heatstroke-related transports per 100,000 population per year; the 
line represents the smoothed line. Smoothing was done using the LOESS method, with a span of 0.5. The colors of the dots and lines are the same for 
each RCP. The black dotted line at the bottom of the image shows the 5-year median since 2015 for the number of people transported by ambulance 
owing to heatstroke.
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lower incomes than multiple-person households (32). These 
difficulties often lead to older adults having multiple risk factors, 
including a lack of air-conditioning, especially older adults who 
live alone.

There are four limitations of the present study. First, we cannot 
exclude the possibility of unadjusted confounders during propensity 
score matching and IPTW. We systematically searched for published 

studies and drew directed acyclic graphs, but using the selected survey 
and modeling method, we cannot exclude the presence of unmeasured 
confounders. Second, the sample size might have been small to 
sufficiently identify risk factors via propensity score matching. To 
ensure the representativeness, we checked the correlation of (i) the 
proportion of older adults aged 75 years and older and (ii) the 
participants per population size across prefectures, and the resulting 

TABLE 3 Relative risk of the increase in heatstroke-related ambulance transports relative to 5-year median from 2015 to 2019 and carbon-neutral 
scenario.

Relative risk of increase in heatstroke-related ambulance transports

Scenario Baseline 2030s 2040s 2050s 2060s 2070s 2080s 2090s 2100

MIROC6

2015–19 RCP2.6
31.7 (19.4, 

39.1)

20.1 (0, 

29.1)

19.6 (0, 

22.0)
1.8 (0, 27.6) 6 (0, 21.7)

14.8 (0.4, 

30.3)

31.9 (0, 

39.7)
0

RCP4.5
25.3 (15.0, 

38.2)
5.3 (0, 26.7)

24.6 (5.4, 

38.4)

20.8 (4, 

31.7)

32.5 (21.2, 

36.5)

31.3 (27.6, 

48.8)

45.6 (36.3, 

55.9)
48.7

RCP8.5
24.3 (5.0, 

34.7)
5.4 (0, 19.2)

36.3 (14.3, 

40.8)

48.6 (28, 

54.6)

57.2 (48.5, 

60.6)

60.9 (50.8, 

63.5)

63.3 (60.5, 

71.8)
72.4

RCP1.9 RCP2.6 6.2 (0, 26.8) 5.0 (0, 19.8) 2.8 (0, 22.5) 6.9 (0, 41.9) 3.5 (0, 35.1)
10.3 (0, 

20.5)
3.7 (0, 16) 0

RCP4.5 1.4 (0, 23.7) 0 (0, 10.3) 6.8 (0, 31.5)
26.1 (0, 

45.2)

25.1 (1.9, 

47.9)

25.7 (9.6, 

39.7)

15.6 (0, 

44.7)
13.7

RCP8.5 0 (0, 18.3) 0 (0, 5.5)
14.0 (3.4, 

40.5)

53.0 (21.3, 

62.4)

54.2 (43.6, 

61.3)

54.2 (47, 

63.8)

48.6 (39.5, 

54.1)
53.5

MRI-ESM-2.0

2015–19 RCP2.6
29.2 (1.8, 

39.5)
4.1 (0, 29.5)

24.3 (17.4, 

28.7)

26.3 (13.6, 

37.1)

23.7 (9.8, 

42.2)

34.1 (23.1, 

42.2)

14.2 (5.1, 

40.0)
2.1

RCP4.5
16.2 (10.0, 

27.0)

15.5 (3.2, 

27.7)

22.9 (11.4, 

30.5)

36.6 (27.3, 

42.4)

38.2 (22.6, 

51.7)

41.8 (28.1, 

51.3)

48.5 (38.6, 

57.7)
42.7

RCP8.5
35.7 (22.7, 

43.5)

21.6 (0, 

38.4)

27.3 (19.6, 

31.0)

48.7 (36.5, 

57.3)

42.7 (38.1, 

47.6)

53.1 (44.7, 

61.6)

63.1 (52.7, 

66.9)
63.1

RCP1.9 RCP2.6 6.8 (0, 15.3) 0 (0, 23.8)
7.7 (3.7, 

17.6)

14.1 (0, 

27.7)
4.4 (0, 34.5)

19.5 (11.1, 

33.7)
0.9 (0, 17.0) 0

RCP4.5 0 (0, 3.8) 0 (0, 13.4) 7.9 (0, 22.1)
25.4 (9.2, 

37.0)

13.3 (0, 

43.3)

31.5 (23.8, 

42.2)

38.5 (18.1, 

53.6)
34.3

RCP8.5
11.6 (0, 

24.6)
0 (0, 16.1)

11.9 (3.6, 

19.6)

40.0 (22.7, 

53.4)

24.1 (16.7, 

40.6)

44.6 (38.9, 

54)

54.9 (37.5, 

65)
57.7

IPSL-CM6-LR

2015–19 RCP2.6 7.4 (0, 22.9) 0 (0, 19.7) 0 (0, 23.9) 3.3 (0, 20.0)
22.2 (12.4, 

32.2)

14.3 (8.3, 

22.2)

24.0 (1.9, 

33.6)
20.1

RCP4.5
15.5 (0, 

28.2)
5.8 (0, 15.6) 4.7 (0, 13.9)

23.6 (19.4, 

30)

29.4 (20.7, 

46.3)

49.6 (41.7, 

57.7)

46.0 (38.1, 

49.9)
45

RCP8.5 0 (0, 26.6)
23.4 (10.9, 

34.9)

22.3 (0.1, 

51.9)

54.7 (43.3, 

59.9)

54.2 (51.7, 

61.3)

67.2 (56.6, 

72)

74.9 (73.6, 

76.2)
70.2

RCP1.9 RCP2.6 3.9 (0, 21.1) 8.0 (0, 20) 2.1 (0, 31.9)
23.6 (0, 

40.3)
9.0 (0, 22)

29.0 (19.3, 

41.5)

22.3 (0, 

40.7)
16.1

RCP4.5 8.3 (0, 28.6) 4.1 (0, 31.9)
11.6 (0, 

27.3)

38.0 (2.2, 

47.2)

18.8 (7.9, 

38.2)

57.5 (40, 

70.5)

44.8 (40.2, 

56)
42.3

RCP8.5 0 (0, 8.4)
24.1 (9.3, 

41.1)

35.0 (20.8, 

44.3)

61.8 (31.0, 

71.7)

46.4 (44.2, 

55.5)

73.8 (55.3, 

80.8)

75.0 (71.9, 

77.9)
68.7

RCP, representative concentration pathways.
Numbers in the table are 10-year median and range (minimum to maximum). There is no range for 2100 (there is a predicted number only for this particular year). RCP 1.9 is the climate 
scenario in which carbon neutrality is achieved; higher values after RCP are considered to result in greater temperature increases. The 5-year average of the number of heatstroke transports per 
100,000 population for each year with RCP 2.6, RCP 4.5, and RCP 8.5 was calculated. The difference compared with the baseline for each year was then calculated, and the ratio of each year in 
the number of changes was calculated. As practiced in excess risk evaluation, the difference was taken over the course of the year for the data point at which the predicted value exceeded the 
baseline value. The units are percentages.
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R2 being 0.94 reflects the fact that older people were geographically 
balanced in their sampling frequency. A larger sample size with 
additional variables is needed in future studies. Third, estimated ORs 
were retrieved from the survey of people aged 75 years and older; the 
actual population-based estimate for people aged 65 years and older 
may be smaller than our calculation. Thus, discussions over more 
precise policy-related goals require similar surveys addressing this 
point. Fourth, some parameters were retrieved for all of Japan whereas 
the proposed model was restricted to Tokyo. This model specifically 
captures the situation in Tokyo, which, despite having one of the 
lowest proportions of older adult people in Japan, still records one of 
the highest numbers of heatstroke incidents per year. Japan, with its 
elongated geography from north to south, has diverse summer 
temperature environments across its regions. However, it’s well known 
that a dose–response relationship exists between the daily maximum 
WBGT and the number of heatstroke cases in Japan all prefectures 
(49). Given the availability of similar data like this study, it could 
be possible to apply this model to other regions of Japan. Nevertheless, 
differences in regional factors such as the urban heat island effect and 
population characteristics demand caution when generalizing these 
findings. Further studies are needed to identify risk factors for all of 

Japan and to develop a representative prediction model using different 
geographic and temporal settings.

Despite these limitations, we successfully estimated the future 
number of heatstroke-related ambulance transports using climate 
change scenarios in Japan. We found that even with a 70% relative 
reduction in all identified risk factors under RCP 2.6, 4.5, and 8.5, the 
resulting relative decrease in heatstroke would be approximately 40%. 
Even if carbon neutrality were achieved, we estimated that the number 
of ambulance transports owing to heatstroke would exceed the 5-year 
median in 2015. Aiming to achieve carbon neutrality as the temporary 
goal, it is advisable to implement adaptation measures to reduce the 
risk of heatstroke among older adults.

5. Conclusion

The number of heatstroke-related ambulance transports among 
people aged 65 years and older in Tokyo was projected through 2100 
under various climate change scenarios. In a cross-sectional survey, 
intervenable factors for heatstroke were shown to be (i) living alone, 
(ii) inability to drink water independently, and (iii) absence of 

FIGURE 2

Projected effectiveness of interventions against heatstroke in Tokyo this figure shows the predicted results for heatstroke-related ambulance transports 
without and with intervention (adaptive policy) for each RCP, using MRI-ESM-2.0 in Tokyo. The dots represent the 5-year average number of 
heatstroke-related transports among older adults transported in each year, and the lines represent smoothing lines. LOESS was used as the smoothing 
method, with a span of 0.5. We assumed that the target will be achieved over a 5-year period starting in 2030. The top three panels show the effects of 
adaptation measures per RCP for a scenario in which the future proportion of older adults living alone declines along with the population from 2040. 
The bottom three panels show the effects of adaptation measures per RCP for a scenario in which the future proportion of older adults living alone is 
maintained constant. Combined effort means all three risk factors were assumed to be intervened into (i.e., living alone, inability to drink water 
independently, and absence of air conditioning).
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air-conditioning, and we estimated their effect sizes. To reduce the 
future burden of heatstroke below historical levels, heatstroke 
adaptation measures are vital, even in a carbon-neutral scenario. To 
be  comparable to carbon neutrality, future climate change under 
RCP 2.6 would require a 30% relative reduction in all three identified 
risks from 2060, and RCP 4.5 would require a relative reduction of 
70% or more from 2050. In the case of RCP 8.5, even a 100% reduction 
would not be comparable to RCP 1.9, calling for serious mitigation 
measures. If aiming to achieve carbon neutrality as the temporary 
goal, it is advisable to implement adaptation measures to reduce the 
risk of heatstroke among older adults. Based on our findings, a variety 
of stakeholders can smoothly consider future preparedness plans. For 
instance, local government could help establish a system that identifies 
a household at high risk of heatstroke in older people, prioritizing 
tailor-made interventions for those at risk as part of mitigation 
strategy (50). Furthermore, these insights could also assist community 
caregivers and senior citizens themselves to properly understand the 
forthcoming risk and potentially mitigate future heatstroke risks.
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