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Background: Observational studies have suggested an association between

obesity and iron deficiency anemia, but such studies are susceptible to reverse

causation and residual confounding. Here we used Mendelian randomization to

assess whether the association might be causal.

Methods: Data on single-nucleotide polymorphisms that might be associated

with various anthropometric indicators of obesity were extracted as instrumental

variables from genome-wide association studies in the UK Biobank. Data on

genetic variants in iron deficiency anemia were extracted from a genome-wide

association study dataset within the Biobank. Heterogeneity in the data was

assessed using inverse variance-weighted regression, Mendelian randomization

Egger regression, and Cochran’s Q statistic. Potential causality was assessed

using inverse variance-weighted, Mendelian randomization Egger, weighted

median, maximum likelihood and penalized weighted median methods. Outlier

SNPs were identified using Mendelian randomization PRESSO analysis and

“leave-one-out” analysis.

Results: Inverse variance-weighted regression associated iron deficiency anemia

with body mass index, waist circumference, trunk fat mass, body fat mass, trunk

fat percentage, and body fat percentage (all odds ratios 1.003–1.004, P ≤ 0.001).

Heterogeneity was minimal and no evidence of horizontal pleiotropy was found.

Conclusion: Our Mendelian randomization analysis suggests that obesity can

cause iron deficiency anemia.

KEYWORDS

obesity, iron deficiency anemia, Mendelian randomization, causal relationship, two-

sample

Introduction

Obesity is an energy metabolism disorder that results in excessive fat storage and that

can lead to physical and psychological problems (1). The World Health Organization calls

obesity a chronic disease and a major threat to public health, in part because it increases the

risk of cardiovascular disease (2), diabetes mellitus, and cancer (3).
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Obesity has been linked to another global public health

problem, iron deficiency anemia (4, 5). In low- and middle-

income countries, iron deficiency anemia is one of the five most

frequent causes of chronic disability (6). Observational studies have

provided strong evidence of an association between obesity and

iron deficiency anemia in Israel (7), Turkey (8), Taiwan (9, 10),

Bangladesh (11) and the US (12, 13). A study on the interaction

between body mass index and iron deficiency anemia showed

that overweight and obese women had a 10.11 (95%CI: 1.267–

80.797) times greater risk of iron deficiency anemia (9). Another

study conducted in 525 women of reproductive age showed that

the prevalence with iron deficiency anemia was 43.0% (11). On

the other hand, some observational studies have reported no

significant association (14–16), while an observational study in

Colombia suggested that overweight and obesity were associated

with lower risk of iron deficiency anemia than normal-weight

women (17). And another study also indicated that no correlation

was found between body mass index and iron deficiency anemia,

which showed that only 13.4% of obese women and 17.1% of

normal-weight women had iron deficiency anemia (OR = 0.75;

95% CI:0.39–1.49, P > 0.05) (14). This discrepancy in the literature,

combined with the vulnerability of observational studies to reverse

causation and residual confounding (18), led us to seek a more

rigorous approach to assessing whether obesity might cause iron

deficiency anemia.

We turned to Mendelian randomization (MR) as a more robust

method for inferring causality than conventional observational

studies. The greater robustness is thought to arise from the fact

that genotypes are defined at conception and are generally not

associated with conventional confounders in observational studies

(18, 19). MR involves testing for a causal relationship between

exposure (in our case, obesity) and outcome (iron deficiency

anemia) using genetic markers (single-nucleotide polymorphisms,

SNPs) associated with the exposure (20). We therefore applied

two-sample MR to data from large-scale genome-wide association

studies that explored links between anthropometric traits of obesity

and iron deficiency anemia.

Methods

Data sources and selection of instrumental
variables

We extracted data on SNPs and the following seven obesity-

linked anthropometric traits from the UK Biobank, a prospective

cohort study involving more than half a million people in the

UK aged 40–69 years (21): body mass index, waist circumference,

hip circumference, trunk fat mass, whole-body fat mass, trunk fat

percentage, and body fat percentage (22, 23) (Table 1). We included

data from 361,194 individuals diagnosed with iron deficiency

anemia in the present study.

Data on obesity-linked anthropometric traits and SNPs in

individuals were obtained from genome-wide association studies

within the UK Biobank as described in Supplementary Table 1.

Publicly available summary data on body mass index and 2,336,260

SNPs were obtained from 681,275 individuals of European ancestry

in the “Genetic investigation of anthropometric traits” consortium

(24). Data were extracted, from genome-wide association studies

in the MRC-IEU consortium (Table 2), for waist circumference

from 462,166 individuals; hip circumference, 462,117 individuals;

trunk fat mass, 454,588 individuals; whole-body fat mass, 454,137

individuals; trunk fat percentage, 454,613 individuals; and body fat

percentage, 454,633 individuals.

The abovementioned seven anthropometric traits were selected

because they were the only ones for which the associated

SNPs showed genome-wide significance (P < 5 × 10−8). Only

data from SNPs showing r2 < 0.001 for a window size =

10,000 kb were extracted in order to ensure absence of linkage

disequilibrium, as shown in Supplementary Figure 4. It was worth

to emphasize that when performing MR analysis using genetic

variants as instrumental variables, MR analysis needs to based

on three principle assumptions (21): (1) genetic variants should

be associated with the exposure; (2) genetic variants should be

associated with the outcome exclusively through the exposure; and

(3) genetic variants should be independent of any measured and

unmeasured confounders.

The present study was considered exempt from ethics approval

because it relied entirely on data from public databases that had

been collected after the responsible institutions had received ethics

approval and participants had given consent.

Two-sample MR and sensitivity analyses

Effect alleles were harmonized across the genome-wide

association studies, and primary MR analysis was conducted using

inverse variance-weighted regression. A fixed-effect regression

model was used unless heterogeneity was significant (P < 0.05)

based on Cochran’s Q statistic from inverse variance-weighted

and MR-Egger regression analyses, in which case a random-effects

regression model was used.

Since inverse variance-weighted regression is sensitive to

invalid instrumental variables and pleiotropy (25), secondary MR

analyses were performed based on MR-Egger analysis, which

can detect, and correct for, possible pleiotropy (26); weighted

median analysis (27); as well as maximum likelihood and penalized

weighted median methods (28). The weighted median method

can produce consistent causal estimates, assuming that more

than half of instrumental variables reflect valid SNPs (27).

Maximum likelihood and penalized weighted median methods

were used to assess the robustness of MR results (28). MR

analyses were performed using “TwoSampleMR” (version 0.5.6;

https://mrcieu.github.io/TwoSampleMR/) in R software (version

4.0.5; www.r-project.org).

Heterogeneity was assessed in terms of Cochran’s Q statistic

from inverse variance-weighted and MR-Egger regression

analyses. Potential horizontal pleiotropy in regression results

was assessed using MR-Egger and “MR-PRESSO” (version 1.0,

https://github.com/rondolab/MR-PRESSO) analyses (29) in R,

with the distribution number set to 1,000. MR-PRESSO has three

components: (1) detection of horizontal pleiotropy; (2) correction

for horizontal pleiotropy through removal of outliers; and (3)
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TABLE 1 Characteristics of the eight genome-wide association studies used in the present work.

Variable n no. SNPs Consortium∗ Source

Exposure variables: anthropometric traits

Body mass index 681,275 2,336,260 GIANT PubMed ID: 30124842

Waist circumference 462,166 9,851,867 MRC-IEU IEU OpenGWAS project (ukb-b-9405)

Hip circumference 462,117 9,851,867 MRC-IEU IEU OpenGWAS project (ukb-b-15590)

Trunk fat mass 454,588 9,851,867 MRC-IEU IEU OpenGWAS project (ukb-b-20044)

Whole-body fat mass 454,137 9,851,867 MRC-IEU IEU OpenGWAS project (ukb-b-19393)

Trunk fat percentage 454,613 9,851,867 MRC-IEU IEU OpenGWAS project (ukb-b-16407)

Body fat percentage 454,633 9,851,867 MRC-IEU IEU OpenGWAS project (ukb-b-8909)

Outcome variable

Iron deficiency anemia 3,222 cases, 357,972 controls 11,553,874 Not applicable IEU OpenGWAS project (ukb-d-D50)

SNP, single-nucleotide polymorphism. ∗The samples in all consortia were from Europe, so predominantly Caucasian.

testing of significant differences in causal estimates before and

after outlier removal. Outlier SNPs that might be confounding

results were identified through analysis of individual SNPs and

“leave-one-out” analyses. Variance (R2) in MR refers to the

proportion of total variation in the exposure that is explained by

the genetic instruments. R2 for each trait was derived from the

original genome-wide association studies. We verified that the

F-statistic, defined as mean β2/σ2 across all SNPs, was at least 10 for

all the anthropometric traits in our analysis in order to minimize

bias from weak genetic instruments (30) (Supplementary Table 9).

Results

The MR process in the present study is summarized

in Figure 1. The genetic instruments initially identified

to explore causal relationships between obesity-associated

anthropometric traits and iron deficiency anemia are summarized

in Supplementary Tables 1, 2, and the results after harmonization

are shown in Supplementary Table 3. After removal of

SNPs for which the allele or DNA strand was ambiguous

(Supplementary Table 4), we searched for causal effects of

individual obesity-associated anthropometric traits on iron

deficiency anemia. The results of sensitivity analysis are shown in

Supplementary Tables 6–8, and there was no horizontal pleiotropy

in any of these results.

Based on 492 SNPs related to body mass index, we found

a causal effect of this index on risk of iron deficiency anemia

in primary and secondary MR analyses (IVW: OR = 1.003,

95% CI: 1.001–1.004, P < 0.001; MR-Egger: OR = 1.002, 95%

CI: 0.997–1.006, P = 0.447; weighted median: OR = 1.003,

95% CI: 1.000–1.006, P = 0.029; maximum likelihood: OR

= 1.003, 95% CI: 1.001–1.004, P < 0.001; penalized weighted

median: OR = 1.003, 95% CI: 1.000–1.006, P = 0.023; Table 2;

Supplementary Table 5). The F-statistic for SNPs related to body

mass index was approximately 29.742 (Supplementary Table 9).

The P values of Q statistics for inverse variance-weighted and

MR-Egger analyses suggested the existence of heterogeneity

(MR-Egger: Q statistic = 564.382, P = 0.011; IVW: Q statistic

= 564.867, P = 0.012), so random-effects regression model

was used (Supplementary Table 6). The MR-Egger intercept test

suggested horizontal pleiotropy (intercept = 2.249×10−5, P =

0.517, Supplementary Table 7), and removal of three outliers

(rs380857, rs7903146 and rs818524) in MR-PRESSO analysis did

not substantially alter the original results (Supplementary Table 8).

The scatter plot showed a significant positive correlation between

body mass index and iron deficiency anemia, and MR intercepts

were close to zero, indicating minimal horizontal pleiotropy

(Figure 2A). The causal association was robust to leave-one-out

sensitivity analysis (Supplementary Figure 2A) and the funnel plot

was symmetrical (Figure 3A), indicating no pleiotropy. Forest plots

showed the causal effect estimates between body mass index and

iron deficiency anemia, and the combination of the effect estimates

based on inverse variance-weighted and MR-Egger regression

(Supplementary Figure 3A).

Based on 360 SNPs related to waist circumference, we found

a causal effect of this parameter on risk of iron deficiency

anemia in primary MR analysis with a fixed-effect regression

model and in secondary MR analysis (IVW: OR = 1.003,

95% CI: 1.002–1.005, P < 0.001; MR-Egger: OR = 1.004, 95%

CI: 0.998–1.009, P = 0.179; weighted median: OR = 1.003,

95% CI: 1.000–1.006, P = 0.063; maximum likelihood: OR

= 1.003, 95% CI: 1.002–1.005, P < 0.001; penalized weighted

median: OR = 1.003, 95% CI; 1.000–1.006, P = 0.077; Table 2;

Supplementary Table 5). SNPs identified in iron deficiency

anemia and waist circumference were found to be a available

instruments, with F-statistics = 24.765 (Supplementary Table 9).

We found no evidence of heterogeneity or pleiotropy

based on MR-Egger analysis (Supplementary Tables 6, 7)

and no evidence of outlier SNPs in MR-PRESSO analysis

(Supplementary Table 8). The results were robust to leave-one-out

analysis (Supplementary Figure 2B), and scatter, funnel and forest

plots were similar to those for body mass index (Figures 2B, 3B;

Supplementary Figure 3B).

Based on 404 SNPs for trunk fat mass, a causal effect of

this parameter on iron deficiency anemia was found in inverse
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TABLE 2 Mendelian randomization analysis of casual associations between obesity-related anthropometric traits and iron deficiency anemia.

Trait no. SNPs Inverse variance-weighted analysis MR-Egger analysis

OR (95%CI) P Q statistic P OR (95%CI) P Q statistic P Intercept P

Body mass index 492 1.003 (1.001–1.005) <0.001 564.867 0.012 1.002 (0.997–1.006) 0.447 564.382 0.011 2.249× 10−5 0.517

Waist circumference 360 1.003 (1.002–1.005) <0.001 365.481 0.395 1.004 (0.998–1.009) 0.197 365.470 0.381 4.233× 10−6 0.919

Hip circumference 405 1.001 (1.000–1.003) 0.088 490.861 0.002 1.000 (0.995–1.004) 0.874 490.004 0.002 3.481× 10−5 0.402

Trunk fat mass 404 1.003 (1.002–1.005) <0.001 452.489 0.045 1.001 (0.997–1.006) 0.525 451.735 0.044 3.350× 10−5 0.413

Whole-body fat mass 419 1.003 (1.001–1.005) <0.001 469.997 0.040 1.003 (0.998–1.007) 0.196 469.992 0.037 2.564× 10−6 0.949

Trunk fat percentage 374 1.003 (1.001–1.005) <0.001 407.007 0.109 1.002 (0.996–1.008) 0.442 406.942 0.103 1.170× 10−5 0.807

Body fat percentage 382 1.004 (1.002–1.006) <0.001 382.256 0.458 1.006 (1.000–1.013) 0.057 382.256 0.458 3.100× 10−5 0.496

Weighted median analysis Maximum likelihood analysis Penalized weighted median analysis

OR (95%CI) P OR (95%CI) P OR (95%CI) P

Body mass index 492 1.003 (1.000–1.005) 0.029 1.003 (1.001–1.004) <0.001 1.003 (1.000–1.006) 0.023

Waist circumference 360 1.003 (1.000–1.006) 0.063 1.003 (1.002–1.005) <0.001 1.003 (1.000–1.006) 0.077

Hip circumference 405 1.002 (1.000–1.005) 0.081 1.001 (1.000–1.003) 0.060 1.002 (1.000–1.005) 0.076

Trunk fat mass 404 1.003 (1.001–1.006) 0.007 1.003 (1.002–1.005) <0.001 1.003 (1.001–1.006) 0.008

Whole-body fat mass 419 1.003 (1.001–1.006) 0.013 1.003 (1.002–1.005) <0.001 1.003 (1.005–1.006) 0.017

Trunk fat percentage 374 1.003 (1.001–1.006) 0.006 1.003 (1.001–1.005) <0.001 1.003 (1.002–1.007) 0.002

Body fat percentage 382 1.005 (1.002–1.008) 0.004 1.004 (1.002–1.006) <0.001 1.004 (1.001–1.008) 0.003

CI, confidence interval; MR, Mendelian randomization; OR, odds ratio; SNP, single-nucleotide polymorphism.
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FIGURE 1

Schematic showing how Mendelian randomization was used to evaluate a causal association between obesity-related traits and iron deficiency

anemia in this study.

variance-weighted regression (IVW: OR = 1.003, 95% CI: 1.002–

1.005, P < 0.001; MR-Egger: OR = 1.001, 95% CI: 0.997–

1.006, P = 0.525; weighted median: OR = 1.003, 95% CI:

1.001–1.006, P = 0.007; maximum likelihood: OR = 1.003,

95% CI: 1.002–1.005, P < 0.001; penalized weighted median:

OR = 1.003, 95% CI; 1.001–1.006, P = 0.008; F = 30.390;

Table 2; Supplementary Tables 5, 9), which was conducted using

a random-effects model because MR-Egger and inverse variance-

weighted analyses indicated heterogeneity (MR-Egger: Q statistics

= 451.735, P = 0.044; IVW: Q statistics = 452.489, P = 0.045;

Supplementary Tables 5, 6). In addition, MR-PRESSO analysis did

not detect significant outliers (Supplementary Table 8).

Based on 419 SNPs for whole-body fat mass, which explained

2% of its variance (Supplementary Table 9), a causal effect of this

parameter on iron deficiency anemia was found in regression

(IVW: OR = 1.003, 95% CI: 1.001–1.005, P < 0.001; F =

31.144), which was conducted using a random-effects model

because the P-value of the Q statistic was <0.05 in MR-Egger

and inverse variance-weighted analyses (MR-Egger: Q statistics

= 469.992, P = 0.037; IVW: Q statistics = 469.997, P =

0.040; Table 2; Supplementary Table 5). MR-Egger regression did

not detect horizontal pleiotropy (intercept = 2.564×10−6, P =

0.949), and MR-PRESSO did not detect outliers (Supplementary

Tables 6–8).

Based on 374 SNPs for trunk fat percentage, a causal effect of

this parameter on iron deficiency anemia was found (IVW: OR

= 1.003, 95% CI: 1.001–1.005, P = 0.001; F = 25.704; Table 2;

Supplementary Tables 5, 9), and there was no heterogeneity in

MR-Egger and inverse variance-weighted analyses (MR-Egger: Q

statistics = 406.942, P = 0.103; IVW: Q statistics = 407.007, P =

0.109). MR-Egger regression did not detect horizontal pleiotropy

(intercept: = 1.170 × 10−5, P = 0.807), and MR-PRESSO did not

detect outliers (Supplementary Tables 6–8).

Based on 382 SNPs for body fat percentage, a causal

effect of this parameter on iron deficiency anemia was found

(IVW: OR = 1.004, 95% CI: 1.002-1.006, P < 0.001; F

= 26.946; Table 2; Supplementary Tables 5, 9). No evidence

of heterogeneity, horizontal pleiotropy or outliers was found

(Supplementary Tables 6–8). The scatter, funnel and forest plots

for trunk fat mass, whole-body fat mass, trunk fat percentage and

body fat percentage were also similar to those for body mass index

(Figures 2C–F, 3C–F; Supplementary Figures 3C–F).

In contrast to the other six anthropometric traits, no causal

effect of hip circumference on iron deficiency anemia was detected

based on 405 SNPs (IVW: OR = 1.001, 95% CI: 1.000–1.003,

P = 0.088; F = 24.765; Table 2; Supplementary Tables 5, 9).

These results did not reflect heterogeneity, horizontal

pleiotropy or outliers (intercept = 3.480 × 10−5, P = 0.402;

Supplementary Tables 6–8).

Discussion

Using a genetic approach, this study provides evidence that

obesity can cause iron deficiency anemia, based on causal

relationships between this type of anemia and six well-established

anthropometric traits related to obesity: body mass index (IVW:

OR = 1.003, 95% CI: 1.001–1.004, P < 0.001), waist circumference

(IVW: OR = 1.003, 95% CI: 1.002–1.005, P < 0.001), trunk fat

mass (IVW: OR = 1.003, 95% CI: 1.002–1.005, P < 0.001), body

fat mass (IVW: OR= 1.003, 95% CI: 1.001–1.005, P < 0.001), trunk

fat percentage (IVW: OR= 1.003, 95% CI: 1.001–1.005, P = 0.001)

and body fat percentage (IVW: OR = 1.004, 95% CI: 1.002–1.006,

P < 0.001). These results were obtained in the absence of horizontal

pleiotropy and outliers.

Our findings are consistent with numerous observational

studies in various countries that reported associations between

obesity and iron deficiency anemia (7–13). However, some studies

have reported no significant association (14, 15), while at least

one study has linked obesity with lower risk of iron deficiency

anemia (17). We suggest that our finding of a causal link

may be more reliable than findings from observational studies

because MR analysis is less vulnerable to confounding or reverse

causation. In addition, we were careful to correct for horizontal

pleiotropy, in which the SNPs in the analysis might affect risk

of iron deficiency anemia via pathways unrelated to obesity
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FIGURE 2

Scatter plots to assess causal associations between iron deficiency anemia and each of the following six obesity-related anthropometric traits: (A)

body mass index, (B) waist circumference, (C) trunk fat mass, (D) whole-body fat mass, (E) trunk fat percentage, and (F) body fat percentage.

(31, 32). The consistency of our estimates from different analytical

methods provides strong support for obesity as a cause of iron

deficiency anemia.

Our study justifies future research to clarify how obesity

may trigger this condition (17). One possibility is that the

greater blood volume in obese individuals increases their iron
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FIGURE 3

Funnel plots to assess the pleiotropy of observed causal associations between iron deficiency anemia and each of the following six obesity-related

anthropometric traits: (A) body mass index, (B) waist circumference, (C) trunk fat mass, (D) whole-body fat mass, (E) trunk fat percentage, and (F)

body fat percentage.
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requirement (33), which cannot be met because the diet is

inadequate (7), less iron is bound to myoglobin in muscles

due to low physical activity (34), genetic risk factors exist (12),

and hypermetabolic medications as well as chronic inflammation

reduce the level of iron available to the blood. Obesity does

not appear to cause iron deficiency anemia by impairing

gastrointestinal absorption (13). In fact, obese mice in one study

absorbed and retained approximately twice as much iron as lean

mice (33), which may indicate an adaptive response to the increase

in blood volume.

Adipose tissue releases various proinflammatory cytokines

called adipokines, which have been linked to obesity-related

comorbidities (35). Obesity is characterized by mild chronic

inflammation, which leads to the release of proinflammatory

cytokines such as interleukin-6 and tumor necrosis factor-α.

About a third of the circulating IL-6 is released from fat

tissue (36), which stimulates the production of hepcidin through

STAT3 (37). The adipokine hepcidin reduces iron output from

macrophages, hepatocytes, and intestinal cells (38, 39), leading

to iron sequestration within macrophages in the spleen and

liver and reducing iron uptake by other cells and tissues. High

levels of hepcidin have been found in obese individuals who are

deficient in iron, which suggests that the iron deficiency observed

in obese people may be related to mechanisms associated with

hepcidin (40, 41).

Limitations

Our findings should be interpreted with caution in light of

several limitations. First, nearly all our data came from European

populations, reflecting the Caucasian bias in genomic research

on obesity and iron deficiency anemia. Our results should be

verified and extended in other populations. Second, we cannot

exclude that our analyses were confounded by intermediation

effects. Third, we did not perform subgroup analyses according to

sex or geographic area. These and other potential effect modifiers

should be considered in future work.

Conclusions

This two-sample MR study provides evidence of a potential

causal association between obesity and iron deficiency

anemia, which was robust to different analyses and rigorous

pleiotropy testing. Among these anthropometric traits of

obesity, people with a high body fat percentage may have

a greater probability of developing iron deficiency anemia.

This study can guide people to carry out scientific health

management by reducing body fat percentage. Since dieting

without exercise only loses muscle, not fat, people should

lose weight through diet and exercise. In addition, increasing

iron-rich foods is beneficial for people with iron deficiency

anemia, regardless of weight. Further research should identify the

molecules and pathways through which obesity can trigger iron

deficiency anemia.
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