
TYPE Original Research

PUBLISHED 28 July 2023

DOI 10.3389/fpubh.2023.1188732

OPEN ACCESS

EDITED BY

Chun Yin,

East China Normal University, China

REVIEWED BY

Maxim A. Dulebenets,

Florida Agricultural and Mechanical University,

United States

Shuqi Xue,

Xi’an University of Posts and

Telecommunications, China

Shaoqing Dai,

University of Twente, Netherlands

*CORRESPONDENCE

Dramane Sam Idris Kanté

dramanesamidris.kante@edu.uca.ma

RECEIVED 17 March 2023

ACCEPTED 11 July 2023

PUBLISHED 28 July 2023

CITATION

Kanté DSI, Jebrane A, Hakim A and Boukamel A

(2023) Characterization of superspreaders

movement in a bidirectional corridor using a

social force model.

Front. Public Health 11:1188732.

doi: 10.3389/fpubh.2023.1188732

COPYRIGHT

© 2023 Kanté, Jebrane, Hakim and Boukamel.

This is an open-access article distributed under

the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Characterization of
superspreaders movement in a
bidirectional corridor using a
social force model

Dramane Sam Idris Kanté1,2*, Aissam Jebrane2, Abdelilah Hakim1

and Adnane Boukamel2

1LAMAI, Department of Mathematics, Faculty of Sciences and Technologies, Cadi Ayyad University,

Marrakesh, Morocco, 2Centrale Casablanca, Complex Systems and Interactions Research Center, Ville

Verte, Bouskoura, Morocco

During infectious disease outbreaks, some infected individuals may spread

the disease widely and amplify risks in the community. People whose daily

activities bring them in close proximity to many others can unknowingly become

superspreaders. The use of contact tracking based on social networks, GPS, or

mobile tracking data can help to identify superspreaders and break the chain of

transmission. We propose a model that aims at providing insight into risk factors

of superspreading events. Here, we use a social force model to estimate the

superspreading potential of individuals walking in a bidirectional corridor. First,

we applied the model to identify parameters that favor exposure to an infectious

person in scattered crowds. We find that low walking speed and high body mass

both increase the expected number of close exposures. Panic events exacerbate

the risks while social distancing reduces both the number and duration of close

encounters. Further, in dense crowds, pedestrians interact more and cannot easily

maintain the social distance between them. The number of exposures increases

with the density of person in the corridor. The study of movements reveals

that individuals walking toward the center of the corridor tend to rotate and

zigzag more than those walking along the edges, and thus have higher risks of

superspreading. The corridor model can be applied to designing risk reduction

measures for specific high volume venues, including transit stations, stadiums, and

schools.

KEYWORDS

superspreading events, pedestrian dynamics, contact patterns, social distancing,
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1. Introduction

Superspreaders are infectious individuals who transmit a contagious disease to a

larger number of others. Superspreading Events (SSEs) are gatherings where many

people are infected at once. They were documented in various infectious diseases

such as measles, rubella, monkeypox, smallpox, Ebola hemorrhagic fever, the Severe

Acute Respiratory Syndrome (SARS-CoV-1) and COVID-19 (1–5). The definition of

a superspreader depends on the pathogen and is often debated even for a single

pathogen (6, 7). SSEs largely contribute to the growth of cases, and to counteract

this growth public health strategies are adopted. The effectiveness of these strategies

depends on people’s risk perception and readiness to participate (8–10). This leads to a

reduction of production performances and supply chain disruption (11–13). Closure of
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schools resulted in a learning deficit (14). Closure of services

and transition to remote work deteriorated health in certain

communities (15–19).

Identifying characteristics, behaviors, and situations that

lead to superspreading is critical to slowing transmission and

mitigating risks during emerging outbreaks (20–23). Researchers

have searched for risk factors using contact tracing and viral

genomic data (24). Their analysis have determined a specific viral

bottleneck for SARS-CoV-2 transmission, above which individuals

can be superspreaders. Some studies suggest high viral loads and

high emission of aerosol particles as superspreading factors (25–

27). Edwards et al. (28) showed that exhaled virus concentrations

tend to increase with COVID-19 infection progression, advanced

age, and higher body mass. For diseases that are transmissible via

airborne particles or via fomites like SARS-CoV-1 and COVID-19,

other factors include virus persistence in the environment due to

humidity and temperature, and poor ventilation indoors (29–32).

Mathematical models have also provided insights into the

sociological drivers of superspreading. An agent-based model of

MERS-CoV transmission (33) conducted a wide monte carlo study

and determined the infectiousness of individuals and the number of

their contacts as the most critical factors that increase their chances

of being a superspreader. Another study devised a susceptible-

infectious-recovered (SIR) with spatial structure to elucidate the

spatial effects of superspreaders during an epidemic (34). Their

analysis suggest that superspreaders are people with many social

connections. Another agent-based modeling study suggested that

even limiting contacts among people who rarely meet can reduce

risks of supersreading (35).

Contact tracing algorithms are extensively used to track

the chain of transmission. Kojaku et al. (36) simulations on

backward contact tracing on social networks suggest the prevention

of a substantial growth in transmissions. Serafino et al. (37)

implemented a digital contact tracing over a large Global

Positioning System (GPS) data to find the quarantine strategy that

breaks the chain with minimal disruption to communities. Mobile

phone apps also allow to collect mobility data, however they fail to

register contact in some situations (38).

In some cases, we can identify individuals who are likely to

have many contacts while they are infectious. For example, children

who attend school, adults who have high-contact occupations, or

individuals living in congregate housing may have more frequent

close encounters than others. In other cases, individuals may

become superspreaders through seemingly ordinary daily activities.

Researchers have developed accurate simulations of individual

pedestrian dynamics that consider the walker’s age, speed, and

body weight. Some of these models use cellular automata (CA)

to capture the self-organizing patterns that arises within groups

of walkers (39, 40). Helbing and Molnar introduced social force

models, an alternative framework that uses solid mechanics to

describe the movement of pedestrians (41). The movement of

each pedestrian is dictated by social and psychological forces. The

approach can accurately describe the movement of pedestrians

in crowded settings (42–44) and in evacuation situations (45–

47). Previous models are not well suited to situations where

agents move in different directions and their paths cross or are

opposite (48, 49). Smith et al. (50), proposed some modifications

where a pedestrian is represented as three overlapping circles. The

model allows to simulate avoidance of pedestrians inside concert

halls and stadiums. According to Lee et al. (49), lane formation

and conflicting pedestrians walking in opposite directions can

be modeled using the following effect and the evasive effect.

Jiang et al. (51) proposed a dynamic navigation field to describe

agent desired direction in bidirectional pedestrian movement.

Heliövaara et al. (48) implemented a counterflow model where

the area in front of each agent is divided into three overlapping

sectors. The counterflow model is formulated as an optimization

problem, where each agent lying within a sector either increases

or decreases the score of the sector depending on its location

and moving velocity. Authors stated that these types of models

produce unrealistic trajectories in sparse crowds due to the

short range inside which pedestrians react to each other (48).

Pedestrians cannot avoid multiple pedestrians simultaneously with

these methods especially in dense crowds (52). Wang (53) modified

the repulsive forces to account for agents’ personal spaces and

long-range interactions. Pècol et al. (54–56) have developed a

discrete approach to simulate multiple simultaneous collisions.

This approach uses pseudo-potentials of dissipation to model

local interactions between pedestrians. It was implemented to

study congestion (57) and crowd density (44). We will use the

framework in Wang (53) and the discrete multiple collision model

to simulate movements in sparse crowds, dense crowds, and

panic situations. Recently, social force models were applied to

estimate infection risks while walking (58) or traveling in an

airplane (59), as well as to design optimal mitigation queues

(60). We have previously used pedestrian simulation to study the

impact of various non-phamarceutical interventions on COVID-19

transmission dynamics in different countries (61–63).

In this work, we use a modified social force model that is

calibrated to study the superspreading potential of individuals

walking in a bidirectional corridor like those found in transit

stations, schools, shopping centers, and office buildings. It is

important to note that our work concerns only the case of

person-to-person transmission via direct contact. Hence, it is not

certain that our findings necessarily apply to infectious diseases

transmitted by other routes, such as airborne transmission. We

run large numbers of numerical simulations to estimate the

distributions of contacts that occur for a pedestrian across a

range of conditions, from very low density (social distancing)

to very high density (panic). We identify crowding conditions

and locations within a corridor that promote superspreading and

discuss strategies for mitigating these risks.

2. Materials and methods

2.1. Movement model in the absence of
collisions

In the absence of contacts, regular movement of pedestrians

can be described using a social force model (53). The presented

microscopic pedestrian movement model has already been

introduced in details in previous works (54–56). We use a

framework that bring some modifications to the traditional
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FIGURE 1

Schematic representation of the model parameters defining the interactions between two pedestrians described as blue disks. Each individual has a

center xi and a radius ri. The distance separating the two individuals i and j is described by dij, while we denote the distance separating an individual

from a wall w by diw . The desired velocity of each individual is vd,i and φij is the angle between the direction of the desired velocity of i and the

distance between the individual i and j.

expressions of repulsive forces in Helbing and Molnár (41). It

introduces some parameters that make the model consistent, from

a psychological point of view, with effects such as time-related stress

and interpersonal stress: while moving in public areas, pedestrians

tend to keep a certain distance between them. We represent each

individual using a disk of center xi and radius ri. The used notations

for model description are graphically represented in Figure 1. We

describe the motion of the i-th individual using the following

equation:

mi
dvi

dt
= f

self
i + fsoci + fobsi , (1)

where mi is the mass of the individual, vi is their velocity, f
self
i

the self-driven force, that describes the adaptation of the pedestrian

movement speed to a desired velocity (vd,i). It is given as follows:

f
self
i = mi

vd,i − vi

τi
. (2)

vd,i = vd,i ed,i (3)

The desired velocity vd,i is sampled from a normal distribution

of mean vd given in Tables 1, 2, ed,i is the desired direction, τi is

the needed time for the pedestrian velocity to adapt to the desired

speed. Next, we introduce the social psychological force exerted by

pedestrians toward others:

fsoci =

∑

fsocij , (4)

where fsocij is the social psychological force between the i-th and

j-th individuals, given as follows:

fsocij =

{

Asoc exp
(

dij−dsoc
βsoc

) (

γ + (1− γ )
1+cosφij

2

)

eij, ifdij < dsoc

0, elsewhere
.

(5)

Here Asoc represents the magnitude of the social psychological

force, dij is the distance between the two pedestrians i and j, dsoc
describes the distance that individuals tend to keep between them,

βsoc is the falloff length of the social psychological force, while φij

represents the angle between the desired velocity and the actual one.

After that, we model the interactions between individuals and walls

using the force fobsi , given as follows:

fobsi =

∑

w

fwi , (6)

where fwi is the interaction between the i-th individual and the

wall w described as follows:

fwi =

{

Aobs exp
(

diw−dobs
βobs

)

n, if diw < dobs

0, elsewhere
. (7)

Here Aobs represents the magnitude of the psychological force

between the individual and the wall, diw is the distance that

separates the individual from the wall, dobs is the desired distance

that each individual aims to keep between from the wall, βobs is the

falloff length of the psychological force between a person and a wall,

and n is a normal vector pointing from the wall to pedestrian i. We

have summarized the parameters used by the model in Table 1.

2.2. Collison modeling using a non-smooth
microscopic approach

We use a non-smooth approach to describe the behavior

of individuals during collisions. Let us consider a system of N

pedestrians represented by circular disks moving in a horizontal

plane each defined by a mass mi an inertia moment Ii, a radius ri,

a center of gravity xi, whose position with respect to a reference

system with axes x − y and origin O, is described by the vector
tqi(t) =

(

qxi (t), q
y
i (t)

)

∈ R
2 and a velocity denoted by tvi(t) =

(

vxi (t), v
y
i (t)

)

. For sake of simplicity, the rotation along the z-axis has

been omitted. The dynamics equations for the set of all pedestrians

can be written as follows:

M
(

v+ − v−
)

= −pint + pext (8)

whereM is the 2N×2N inertial matrix of the set of individuals;

v− and v+ are the pedestrian’s velocities before and after the

collision. When a contact is detected, the velocities of colliding
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TABLE 1 A summary of the parameters used in the social force model and

the used notations to describe them.

Parameter Definition

vi The real velocity

vd,i The desired velocity, sampled from a normal distribution

vd The mean of the desired velocity

τi The needed time to adapt the real velocity to the desired one

diw The distance between an pedestrian i and the wall i

dij The distance between the two agents i and j

dobs Desired distance an individual aim to keep between them

and wall

dsoc Mutual desired distance between agents

Aobs The magnitude of the psychological force between a person

and a wall

Asoc The magnitude of the social psychological force

βobs Falloff length of the psychological force between a person

and a wall

βsoc Falloff length of the social psychological force

γ 0 < γ < 1, grows with the effect of interactions behind an

individual

φij Angle between the desired velocity vd,i and the vector eij

pedestrians become discontinuous. Therefore, Eq. 8, where the

interior and exterior percussions
(

pint and pext respectively) are

introduced, is used to calculate the velocity after the collision. By

definition, percussions have the dimension of a linear momentum:

a force multiplied by time
(

kg m s−1
)

. The pint percussions are

unknown; they take into account the dissipative interactions

between the colliding agents (dissipative percussions pd ) and

the reaction forces that permit the avoidance of overlapping

among pedestrians (reactive percussions preac ), and hence pint =

pd + preac . Frémond (68, 69) defined the deformation velocity
1v++1v−

2 in duality with pint according to the work of internal

forces, where 1v represents the vector containing all the velocities

of deformation of individuals in contact. He then introduced a

pseudopotential of dissipation 8, which allows to express pint as:

pint ∈ ∂8

(

1v+ + 1v−

2

)

where the symbol ∂ denotes the sub differential of the

functional in the sense of convex analysis, which generalizes the

derivative for convex functions. We recall that a pseudo-potential,

in the definition by Moreau, is a non-negative convex function,

which is zero for zero dissipation.

2.3. Calibration of the model parameters

Several methods were used to identify the values of physical

parameters involved in social force models (70–72). For example,

some previous works (70, 71) used fundamental diagram to identify

these parameters. This diagram assumes a relation between the

TABLE 2 Numerical values of model parameters in scattered crowds in

absence of panic.

Parameter Value Distribution References

vd,i N(1.34, 0.26) (m/s) Normal (41, 64, 65)

ri [0.15, 0.3] (m) Uniform (53, 64)

τi [0.15, 0.5] (s) Uniform (53, 64)

dobs 1.8 (m) – (53, 66, 67)

dsoc 1.8 (m) – (53, 66, 67)

Aobs 10 (N) – (53, 66, 67)

Asoc 10 (N) – (53, 66, 67)

βobs 0.8 (m) - - (53, 66, 67)

βsoc 0.8 (m) – (53, 66, 67)

γ (0, 1) – (53, 66, 67)

average walking speed and the density of the crowd. Analytical

methods were also used for the determination of parameters. In

these methods, parameters were fitted such that the movement

characteristics of agents approximate those of pedestrians in

organized pedestrian experiments (72) or in real situations (73).

The social force model was calibrated to reproduce pedestrian

behaviors in normal situations. Johansson et al. (74) estimated

model parameters to analyze displacements in urban settings.

Wang (53) tuned the parameters to simulate scattered crowds in

normal situations. Guo et al. (75) modified the model to simulate

pedestrian twice crossing behavior. Heliövaara et al. (48) used

the model to study pedestrian counterflow. In this study we use

the parameters estimated in Wang (53), Wang and Wang (66),

and Trivedi and Pandey (67) to simulate pedestrians in scattered

crowds. Values of the parameters are summarized in Table 2. Panic

situations also have been extensively studied (53, 76–78). In this

study, we use the parameter values determined in a previous study

by comparing simulated crowd densities to the ones observed in

real settings (44, 57). Panic situations are described through an

elevation in the mean desired velocity and the tuning of other

parameters, as reported in previous studies (79, 80). The values in

Table 2 will be replaced with the estimate in (53, 76–78) to study the

impact of panic.

2.4. Simulation settings

We consider a domain corresponding to a corridor of 50 m ×

10 m. This corridor has two exits which also serve as entrances

for pedestrians. At the beginning of the simulation, pedestrians are

placed at random locations of the computational domain, and we

set their initial velocity to the mean desired velocity. We consider

that half of the individuals move from left to right, while the

other half move in the opposite direction. A representation of

the computational domain is provided in Figure 2. In this figure,

red pedestrians move from left to right (ei = (1, 0)), while blue

ones walk in the opposite direction (ei = (−1, 0)). We consider

that simulations last for 10 minutes and 30 seconds. We apply

periodic boundary conditions at the two exits to keep the same
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number of pedestrians during the course of simulations: whenever

a pedestrian crosses one of the two exits, they are replaced by

another one that has the same mass and speed at a random

location on the opposite entrance. We begin our investigation by

considering a scattered crowd consisting of 30 individuals, such

that the density is equal to 0.06 p/m2. Then, we increase the number

of individuals to study the movement of pedestrians in crowded

settings. We estimate the characteristics of individuals belonging to

two groups: those with a high number of interactions, defined as

pedestrians who are responsible for making more contacts than 80

% of the maximal contact number per individual, and those with

a low number of interactions, corresponding to pedestrians with a

number of contacts lower than 20% of themaximal contact number

per individual in the population.

3. Results

3.1. Dynamics of potential superspreaders
in scattered crowds

In this section, we study the characteristics of individuals with

a higher number of contacts who can be potential superspreaders.

We consider a small population consisting of 30 pedestrians

and investigate the effect compliance to social-distance and

walking during panic situations on the prevalence of potential

superspreaders.

3.1.1. Potential superspreaders have a high body
mass and a lower average walking speed

We begin by applying the model to determine the

characteristics of potential superspreaders in a heterogeneous

population. To achieve this, we consider a population of

pedestrians with randomly sampled weights and means of the

desired velocity. We sample the mean of the desired speed for each

pedestrian in the range [0.5, 2.3] m/s using a uniform distribution.

This situation corresponds to a crowd where some individuals are

in a hurry while others walk slower than the average.

We study the relationship between body mass and the chances

of being a superspreader. We estimate the body mass of each

pedestrian from their radius using the formula mi = ωπ(ri)
2,

where ω = 500 kg/m2 (57). The pedestrian radi are sampled

from a uniform distribution such that the body mass of individuals

falls between 35.3 and 141.4 kg. Data analysis shows that potential

superspreaders have an average body mass of 86 kg, which is 21 %

higher than the average body mass of the population (71 kg).

The analysis of the obtained data shows that potential

superspreaders have a lower desired velocity on average (1.18 m/s).

In comparison, individuals with fewer contacts tend to have a

higher desired walking velocity (average vd is 1.48 m/s).

3.1.2. High compliance with physical distancing
prevents superspreading

We vary the amplitude of the physical psychological force (Asoc)

to describe the compliance of individuals to physical distancing.

If the value of this amplitude is high, then the individuals tend

to keep the desired social distance (dsoc) between them. We track

the contacts between individuals and calculate the total number of

contacts for each individual. We set the average desired velocity for

all pedestrians to its normal value vd = 1.34 m/s. We conduct

systemic numerical simulations for different values of Asoc, and

we evaluate the distribution of the total number of contacts for

each value (Figure 3A). To minimize the effect of stochastic noises,

we consider the average results of 30 simulations of each Asoc.

The obtained data show a bimodal distribution with two peaks

when compliance to physical distancing is very low, with the first

peak in zero and the other between 12 and 14 contacts. As we

slightly increase compliance with physical distancing, we obtain a

unimodal distribution whose peak decreases as we keep increasing

the value of Asoc. These dynamics suggest that a significant portion

of the population could be potential superspreaders if physical

distancing is not fully adopted. When adherence to physical

distancing is high, most pedestrians would have a low number

of contacts. These findings suggest that strong compliance with

physical distancing is necessary to prevent superspreading in

scattered crowds. Table 3 summarizes the range of contacts made

by the highest number of individuals for different values of Asoc.

It shows that this range decreases from [12, 14] for Asoc =

10 N to [0, 2] for Asoc = 340 N. These results demonstrate

the important of compliance to physical distancing in not only

preventing superspreading, but also reducing the overall risk of

disease spread.

Next, we evaluate the impact of compliance to physical

distancing on the contact patterns in the population. Figure 3B

shows that both the total and the average numbers of contacts

significantly drop when the compliance with physical distancing

increases. These findings suggest that the overall risk of disease

transmission greatly diminishes when pedestrians abide by physical

distancing. To further analyze the effect of Asoc on the distribution

of the total number of contacts, we fit the obtained distributions

for contacts with the 101 probabilistic distributions available in the

stats module of the python library Scipy (81). The best distribution

that fits the distribution for low compliance to physical distancing

(Asoc = 80 N) is the von Mises one (Figure 3C), while it is possible

to fit data for high compliance level using a Pearson distribution

(Figure 3D).

3.1.3. Panic situations increase the relative
prevalence of potential superspreaders

Next, we investigate the impact of panic situations on the

contact dynamics of the crowds. Panic situations increase the mean

desired velocity of pedestrians as shown in a previous work (79).

Furthermore, they also change the behavior of pedestrians while

walking. To account for these effects, we modify the values of the

model as it was done in a previous study (79). In particular, we set

the value of Asoc to 2000 N and we vary the mean of the desired

velocity for all pedestrians in the range of [0.5 m/s, 2.3 m/s].

Other changes introduced to the parameter values are described

in Table 4. Changes in the parameter values were introduced to

simulate the tendency of individuals to avoid others while walking

under panic.

As before, we track the contacts between pedestrians and

analyze the contact distribution in the population. Figure 4A shows

the distribution of contacts among pedestrians for different values

of the desired velocity. These distributions show that the prevalence
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FIGURE 2

A representation of the domain where numerical simulations are taking place. It corresponds to a bidirectional corridor with two entrances/exits. Red

disks represent individuals moving from the left to the right, while blue ones correspond to pedestrians walking from the right to the left. The size of

each disk is proportional to the mass of the corresponding individual.

FIGURE 3

(A) Impact of compliance to physical distancing on the distribution of contacts among the pedestrians. The results correspond to the average of 30

numerical simulations for each value. (B) The total and average numbers of contacts for di�erent values of Asoc. (C) Contact distribution for

Asoc = 80 N, fitted to a von Mises distribution. (D) Contact distribution for high compliance to social-distancing (Asoc = 340 N) fitted with a Pearson

distribution.

TABLE 3 For each value of Asoc, we display the interval in which most individuals’ number of contacts falls and the corresponding number of individuals.

Asoc(N) 10 40 80 120 160 200 280 340

Range of contacts with highest frequency [12, 14] [10, 12] [4, 6] [6, 8] [2, 4] [4, 6] [0, 2] [0, 2]

Average number of individuals in the range 12.6 14.05 14.85 17.75 18.7 19.7 26.7 30.35

This range decreases from [12, 14] for Asoc = 10 N to [0, 2] for Asoc = 340 N.
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of individuals who make a higher number of contacts tend to

increase when the mean desired velocity of pedestrians grows. In

Figure 4B, we provide the average and the total contact numbers

as a function of vd. The obtained results not only confirm that

panic situations increase the prevalence of potential supereaders

but also elevates the individual risk of getting infected. To further

investigate this last point, we determine the ranges of contact that

have the highest frequency for different desired velocity means and

the corresponding average number of individuals (Table 5). The

obtained results show that panic situations increase this range from

[2, 8] to [8, 10].

3.1.4. Physical distancing reduces the contact
duration with superspreaders while panic
situations increase it

Another aspect that can be explored using our model is the

variations in the duration of contacts. Contact duration increases

the chances of disease transmission. We study the average contact

duration of two population subtypes: individuals who have a

TABLE 4 Numerical values of the parameters used to simulate pedestrian

movement under panic and in dense crowds.

Parameter Value Distribution References

ri [0.15, 0.3] (m) Uniform (44, 53, 64)

τi [0.15, 0.5] (s) Uniform (44, 53, 64)

dobs 1.8 (m) – (53, 67)

dsoc 1.8 (m) – (53, 67)

Aobs 2, 000 (N) – (44, 53, 77)

Asoc 2, 000 (N) – (44, 53, 77)

βobs 0.08 (m) – (44, 53, 77)

βsoc 0.08 (m) – (44, 53, 77)

γ (0, 1) – (53, 57)

high contact frequency, corresponding to those who have more

interactions than 80 % of the maximal contact number per

individual, and individuals with a low contact frequency, i.e., those

whose contact number is below 20 % of the maximal value.

Our analysis reveals that individuals with a higher number of

contacts tend to interact with other pedestrians for a shorter time,

regardless of their compliance level to physical distancing or the

mean desired velocity (Figure 5). The only exception to this rule

is when the compliance to physical distancing is very low (Asoc ≤

40 N). In this case, pedestrians with a higher contact rate tend

to stay in touch with others for a longer time. Another important

finding is that compliance to physical distancing not only reduces

the relative prevalence of potential superspreaders, but also their

average contact duration. In contrast, panic situations increase both

their prevalence and their average contact duration.

3.2. Movement characteristics of potential
superspreaders in dense areas

After studying the dynamics of superspreading in scattered

crowds, we investigate their characteristics in dense populations.

Pedestrians interact more in dense crowds and cannot easily

maintain the social distance between them.We quantify the impact

of crowd density on the interactions between individuals by varying

the number of pedestrians in simulations such that we consider four

density values: 0.8 p/m2, 1.386 p/m2, 1.82 p/m2, and 2.72 p/m2.

Results of numerical simulations suggest that when density grows,

the average number of contacts increases, as shown in Figure 6A.

3.2.1. The density of potential superspreaders
increases toward the center of the corridor in
dense crowds

We continue our investigation by looking at the locations of

potential superspreaders. To achieve this, we calculate the average

y-coordinate for individuals with a high number of interactions.

FIGURE 4

(A) Impact of changes in the desired velocity induced by panic situations on the distribution of contacts. (B) The total and the average contact

numbers in the population for di�erent values of the mean desired velocity (vd).
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TABLE 5 For each value of vd, we display the interval in which most individuals’ number of contacts falls and the corresponding number of individuals.

vd(m/s) 0.5 0.8 1 1.30 1.65 1.90 2.10 2.30

Range of contacts with highest frequency [6, 8] [2, 4] [2, 4] [4, 6] [2, 4] [6, 8] [6, 8] [8, 10]

Number of individuals in the range 12.35 18.25 17.80 18.05 18.35 20.55 19.7 19.95

Panic situations increase this range from [2, 8] to [8, 10].

FIGURE 5

Comparison of the duration of contacts of a pedestrian with a high number of contacts and a pedestrian with a low number of contacts. (A) The

average duration of contacts as a function of the compliance level to physical distancing. (B) The average duration of contacts as a function of the

mean desired velocity.

As before, we define potential superspreaders as pedestrians with

more contacts than 80 % of the highest contact numbers, while

we refer to individuals with low contact numbers as those whose

contact number is lower than 20 % of the maximal contact number.

The analysis of results from numerical simulations reveals that

the concentration of superspreaders increase toward the center

of the corridor (Figure 6B), while pedestrians with a low number

of contacts can be encountered near the walls (Figure 6C). The

frequency of the average y-coordinate of superspreaders can be

approximated using a normal distribution as shown in Figure 6B.

These results suggest that walking near the corridor walls would

minimize the overall risk of infection when crowd density is high.

3.2.2. Superspreaders tend to rotate more while
walking in crowds

The trajectories of pedestrians is another feature that can

be analyzed using our modeling framework. We compare the

movement patterns of potential superspreaders and individuals

who have a low number of contacts. A qualitative comparison

of the movement trajectories shows that while individuals with a

lower contact number walk in a more straight line, those who have

a high number of contacts tend to rotate more frequently while

walking in crowded areas (Figure 7). These findings apply both in

scattered and dense crowds. Thus, potential superspreaders usually

walk in zigzag patterns and change the direction of their movement

more often. The trajectories of individuals can be used as training

data for a classification algorithm that aims to detect potential

superspreaders in crowds from real-time images.

4. Discussion

Superspreaders play a critical role in promoting and sustaining

the spread of infectious diseases (82, 83). As a result, the isolation

of superspreaders and the prevention of superspreading can

significantly curb the spread of infectious diseases (84). In this

work, we have devised a social force model to study the movement

characteristics of superspreaders in a bidirectional corridor. One

feature of superspreaders is that they tend to have more contacts

than average (23, 33, 35). We have focused our present study

on these individuals who make a higher number of contacts to

be able to interpret the results. Indeed, our findings are more

appropriate for diseases that transmit through direct contact with

infectious individuals and may not necessarily apply to pathogens

that transmit through other routes such as airborne transmission.

To study this latter case, we have recently extended the social

force framework to include a transmission model that describes the

spatial aerosol concentration and the individual risk of infection

(85).

The data obtained with our simulations show that potential

superspreaders have high body mass and low desired velocities.

Since there exist a correlation between advanced age and slower

walking speed (86), our results suggest that older people are more
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FIGURE 6

(A) A comparison between the average number of contacts for di�erent crowd densities. We also investigate potential superspreaders position in the

corridor where the y-coordinate varies from 0 to 10m and the x-coordinate varies from 0 to 50m. (B) The distribution of the average y-coordinate of

potential superspreaders in crowded settings. (C) The distribution of the average y-coordinate of pedestrians with a lower number of contacts in a

dense crowd.

prone to be superspreaders. Another previously published study

showed an association between severe COVID-19 outcomes and

slower walking speed (87). One possible explanation for that is that

slower walking people tend to accumulate a higher viral inoculum

by getting in contact with more than one infectious individual (88).

A prior study identified both advanced age and a higher body mass

as risk factors for superspreading, and attributed the finding to

elevated concentrations of aerosalized virus in these groups (28).

Our analysis suggests an alternative explanation, as both of these

characteristics are significantly correlated with elevated contact

rates while walking. The social force model can be used to explain

this by stating that as mass increases, the magnitude of the repulsive

force (or socio-psychological force) weakens and agents are no

longer able to maintain a suitable social distance from one another.

For COVID-19 and several other viruses, these also happen to

be risk factors for severe outcomes (35). During periods of high

transmission, precautionarymeasures such as face masks and social

distancing may protect these individuals as well as those around

them. We also found that the risk of infection and transmission

may correlate with where an individual walks within a corridor.

In sparse crowds, superspreaders are distributed evenly across the

width of the corridor. In dense crowds, however, they tend to

occupy the center of the corridor.

Most of the parameters in social force model have an intuitive

physical explanation, which allows us to model sociological

phenomena like social distancing and panic events. We find that

compliance with physical distancing recommendations reduces

both the number and duration of close encounters while walking.

This is consistent with prior contact tracing studies (89, 90) and

highlights the importance of clear and compelling communication

when such measures are warranted, including signage, directional

markers, and barriers. Panic events exacerbate risks, increasing

the rate of contacts and prevalence of potential superspreaders.

Panic may arise during alarming events, in the absence of effective
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FIGURE 7

Comparison of trajectories in both dense and scattered crowds. (A)

Examples of the trajectory of individuals with a high number of

contacts. (B) Examples of the trajectory of individuals with a low

number of contacts.

communications and organization. For example, the threat of

natural disasters can lead to panic buying, where individuals to rush

to stores and form dense crowds in the corridors (91).

We propose an idea to gain insight into superspreading risk

factors in a corridor which can be found in transit stations,

schools, shopping malls etc. The perspectives of this study are the

followings:

• The social force model can be readily calibrated to measure

and mitigate superspreading risks in particular crowded

settings, such as residences, workplaces, schools, and other

public areas.

• The model allowed us to simulate pedestrian movements

and interactions, however there are variations of the social

force model that account for waiting pedestrians (92) as

seen in train stations, and group behavior (93, 94). Other

variations could also be used to estimate the risk of

infection and study superspreading in specific evacuation

scenarios (94).

• Moreover, this method can also be used to estimate

contact patterns in different social contexts. It

allows to estimate the effect of social distancing,

which is lacking in traditional contact matrix

estimation methods.

5. Conclusion

Based on the social force model, this article proposes a new

method for preventing superspreading events and applies the

method to study the different factors favoring these events in

a corridor. The results show that characteristics such as low

walking speed and high body mass increase an individual’s risk

of exposure. In addition, situations like panic and dense crowds

favor superspreading events. The analysis of the movements in

the corridor show that the risk of superspreading is much greater

in the center of the corridor than along the edges. Finally, we

note several limitations of the analysis. Although social force

model accurately captures pedestrian movement in dense crowds,

it has not yet been validated for crowds across multiple parameter

spaces for movement characteristics. The validation of social force

models is usually done through comparison with specific settings,

where the movement speed and social psychological force are pre-

determined. Further, one study suggests that social force models

may be unrealistic for some pedestrians when crowd density is

varied (95). Another issue is that people do not always behave

according to the assumptions of social force models (96). For

example, some individuals tend to be unsure about their movement

trajectories while others seem to be in a rush. However, we

sought to roughly estimate risks of superspreading and identify

potential risk factors rather than accurately predict the movement

of individual pedestrians. The presented framework can help

prevent superspreading during high mass gatherings in different

social contexts.
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