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Introduction: The COVID-19 pandemic has had a significant impact on public

health and social systems worldwide. This study aims to evaluate the e�cacy of

various policies and restrictions implemented by di�erent countries to control the

spread of the virus.

Methods: To achieve this objective, a compartmentalmodel is used to quantify the

“social permeability” of a population, which reflects the inability of individuals to

remain in confinement and continue social mixing allowing the spread of the virus.

Themodel is calibrated to fit and recreate the dynamics of the epidemic spreading

of 42 countries, mainly taking into account reported deaths and mobility across

the populations.

Results: The results indicate that low-income countries have a harder time

slowing the advance of the pandemic, even if the virus did not initially propagate

as fast as in wealthier countries, showing the disparities between countries in

their ability to mitigate the spread of the disease and its impact on vulnerable

populations.

Discussion: This research contributes to a better understanding of the

socioeconomic and environmental factors that a�ect the spread of the virus and

the need for equitable policy measures to address the disparities in the global

response to the pandemic.

KEYWORDS

COVID-19, epidemic modeling, Bayesian inference, compartmental models, non-

pharmaceutical containment policies

1. Introduction

The COVID-19 disease, caused by the novel coronavirus SARS-CoV-2, is a highly

contagious respiratory illness that was first reported in Wuhan, China in December 2019

(1). It was declared a pandemic by the World Health Organization on March 11th 2020

and by that time, the disease had spread globally, resulting in an international public health

crisis that impacted all aspects of life for those affected. As it continued to spread, countries

worldwide implemented a range of strict measures to contain the virus with varying degrees

of success, including lockdowns, travel restrictions, and social distancing measures (2). Since

the early stages of the pandemic, experts have studied the uneven spatial spread of the virus,

which is associated with socioeconomic and environmental factors (3, 4). These studies

revealed that minorities, low-income areas, and vulnerable populations (5, 6) have been

disproportionately affected by the situation, exacerbating existing inequalities.

Numerous studies have examined the factors that contribute to the reproduction number

or the speed at which a disease propagates in a population (7). Most of these studies

have found positive correlations between the transmissibility of a pathogen and factors

such as population density, income inequality, urban areas, and household size, among

others (8–11). At the onset of the COVID-19 pandemic, an important metric that also
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showed a positive correlation with the reproduction number

of SARS-CoV-2 was the Gross Domestic Product (GDP) per

capita (12–14). This suggests that the virus spread more rapidly

in affluent countries due to a large percentage of the population

living in densely populated cities and the significant inflow of

air traffic facilitating the initial importation of a large number of

cases. However, the data on this correlation was inconclusive in the

subsequent phases of the COVID-19 pandemic.

Despite the implementation of measures to mitigate the

spread of the virus, there are significant disparities between

countries in their ability to contain the pandemic. While wealthier

countries have been able to enforce stay-at-home policies by taking

the appropriate measures and ensuring the safety of the most

vulnerable populations, lower income countries are unable to

prevent the loss of income and jobs, leading to food insecurity

and reduced access to healthcare. As a result, even with mobility

restrictions in place, people in these countries are still exposed to

the risk of the pandemic due to the need to work and maintain

their income.

The goal of this study is to highlight the connection between

the different efficacy of lockdown policies observed across countries

and their socioeconomic features. To this aim, we will attempt to

measure the social permeability of these nations, which accounts

for the inability of the population to remain in confinement and

thus continuing social mixing that allows the disease to spread.

The study of this variable allow us to distinguish unique scenarios

that appear for each studied country and contribute to the already

existing efforts (7) to show the varied relationships between the

spread of epidemics and economic indicators.

2. Methods

2.1. Modeling

2.1.1. Discrete time compartmental model
The main core of this study is the development of a

compartmental model to capture COVID-19 epidemic trajectories

and how they were impacted by non-pharmaceutical interventions

implemented in various countries. To this aim, the model should

be sufficiently complex to provide an accurate representation of

the epidemic process and the primary mechanisms behind virus

transmission, yet simple and adaptable enough to be applied to

different countries.

The proposed compartmental framework is an extended

version of the Susceptible-Exposed-Infected-Recovered (SEIR)

model (15), which allows for monitoring both the number

of deaths over time for each country and the effects of non-

pharmaceutical interventions. Our framework is a discrete-time

model, being each time step a day. The model consists of

six compartments: Susceptible (S), Exposed (E), Infectious (I),

Recovered (R), Pre-deceased (Pd), and Deceased (D). The flows

diagram connecting these compartments is represented in

Figure 1. This diagram depicts the following sequence of events:

In the absence of interventions, Susceptible individuals (S)

have a likelihood of contracting the virus (β) for each contact

with an infected person, leading them to move to the Exposed

compartment (E), meaning that they are carriers of the virus but

not yet contagious. Once in compartment E, individuals can move

to the Infectious compartment (I) with a probability η, where they

can infect Susceptible individuals. Infectious individuals leave their

compartment with probability µ, either recovering and entering

the Recovered compartment (R) with a probability of 1 − ϒ , or

dying due to the disease with a probability of ϒ . In the latter case,

they enter in the Pre-deceased compartment (Pd) and, eventually,

move to the Deceased compartment (D) with probability ξ .

Following the previous assumptions for the compartmental

model, we can propose the dynamical equations driving the

evolution of the individuals. In particular, the evolution from the

Infectious stage can be straightforwardly derived, yielding:

I(t + 1) = ηE(t)+ (1− µ)I(t) , (1)

R(t + 1) = µ(1− ϒ)I(t)+ R(t) , (2)

Pd(t + 1) = µϒI(t)+ (1− ξ )Pd(t) , (3)

D(t + 1) = ξPd(t)+ D(t) . (4)

The remaining equations of the model account for the contagion

of the Susceptible individuals and are shaped by the non-

pharmaceutical interventions, which manifest in a reduction in

mobility and the formation of social bubbles throughout the

populations. The impact of non-pharmaceutical interventions will

be encapsulated in a fraction of the Susceptible population gathering

the number of individuals staying at their households, not being

reachable by their infectious counterparts. To model the evolution

of this confined population, we assume that mobility is governed

by a time-dependent parameter pact(t). In particular, for each

day, a fraction pact(t) of the Susceptible compartment remains

active (Sactive) while the rest, a fraction (1 − pact(t)) of the pool

of Susceptibles, reduce their mobility and social interactions. Of

these individuals, a fraction (1 − φ) stays at home and forms

a social bubble with the rest of the members of the household

(Sconfined). The rest of the individuals that became inactive but

did not successfully isolate themselves completely (Sinactive) mix

with members of other households due to their social permeability.

These three fractions of the Susceptible compartment can be

represented as:

Sactive(t) = S(t)pact(t) (5)

Sinactive(t) = S(t)(1− pact(t))φ (6)

Sconfined(t) = S(t)(1− pact(t))(1− φ) (7)

Taking into account the aforementioned policies and every group

in the Susceptible population, the equation governing the time

evolution of the occupation of the Exposed compartment reads:

E(t + 1) = Sactive(t)Pactive(t)+ Sinactive(t)Pinactive(t)

+Sconfined(t)Pconfined(t)+ (1− η)E(t) , (8)

where Pactive(t), Pinactive(t) and Pconfined(t) account for the

probability that Susceptible individuals belonging to each of these

groups contract the disease at time t. We assume that the number

of contacts made by each group (kactive(t) and kinactive(t)) depends

on the mobility levels in their respective settings, yielding:

kactive(t) = 〈kactive〉pact(t) , (9)

kinactive(t) = 〈kinactive〉pres(t) , (10)
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FIGURE 1

Scheme of the compartmental model here proposed. The model comprises six compartments: Susceptible S, Exposed E, Infectious I, Recovered R,

Pre-deceased Pd and Deceased D. Note that, as a result of the non-pharmaceutical interventions, the Susceptible compartment is divided into three

sub-compartments: Sactive, Sinactive, and Sconfined representing a fraction p(t), (1− p(t))φ and (1− p(t))(1− φ) of the total number of Susceptible

individuals, respectively. A detailed explanation of the flows connecting these compartments can be found in the Section 2.

where pact(t) represents the observed mobility of the people that

travel to their daily destinations and pres(t) is the mobility of

those who remain inactive in their residential areas. Likewise,

〈kactive〉 corresponds to all contacts made by individuals in the

baseline scenario whereas 〈kinactive〉 constitutes their interactions

at home. Both can be estimated from social data existing in the

literature (16).

Assuming a well-mixed population, the probabilities of

contracting the disease can be calculated as:

Pactive(t) = 1−

(

1− β
I(t)

N

)kactive(t)

, (11)

Pinactive(t) = 1−

(

1− β
I(t)

N

)kinactive(t)

, (12)

for the active and inactive population. In addition, there is a chance

that confined individuals contract the disease from other infectious

members of their social bubble. These agents make kinactive contacts

with others in their own household. The probability of getting

infected for this group of individuals depends on the number of

infected people in their households as:

Pconfined(t) = 1−

σ−1
∑

i=0

p(i)

(

1− β
i

σ − 1

)kinactive(t)

, (13)

where σ is the number of people in each household (meaning that

a susceptible member is able to make contacts with the other σ − 1

residents) and the probability of finding i infected individuals in a

household is

p(i) =

(

σ − 1

i

)(

I(t)

N

)i (

1−
I(t)

N

)σ−1−i

. (14)

To round off, we assume a closed population so that the occupation

of the S compartment changes with:

S(t+1) = N−E(t+1)−I(t+1)−R(t+1)−Pd(t+1)−D(t+1) . (15)

2.2. Data sources

2.2.1. COVID-19 deaths
To calibrate our model, we rely on data regarding the daily

number of fatalities in each country. As consistency across

populations is crucial, the number of detected cases is not a

suitable metric due to surveillance issues that affect countries

differently (17, 18). There are several contributing factors to

the possible discrepancies on the reported cases. Firstly, testing

strategies can vary across populations, with some focusing on

high-risk groups or areas, while not accounting for asymptomatic

cases. Additionally, limited testing capacity can lead to an

underestimation of the true number of infections, particularly in

areas with high community transmission. Furthermore, differences

in the definition and reporting of cases, as well as demographic

variations such as age, gender, and underlying health conditions,

can make it challenging to compare trends between different

countries or regions.

The accuracy of reported deaths is also not guaranteed for

similar reasons, including possible changes in definition and

reporting delays. To address these reporting issues, we specifically

choose countries with continuous and consistent records of this

information, which are listed in Table 1. The selection of the

countries was performed according to two criteria: there must be

a peak of at least 10 deaths, and the daily mobility and number of

deaths have to be available and consistent for this entire duration.
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TABLE 1 Average contacts of active, 〈kactive〉, and inactive, 〈kinactive〉, average household size σ , GDP per capita and minimum level of mobility during

lockdown for each country.

Country Country code 〈kactive〉 〈kinactive〉 σ GDP per capita (US$) pmin

Argentina AR 14.12 3.84 2.95 8475.73 0.15

Austria AT 12.48 3.13 2.27 48105.63 0.17

Bangladesh BD 16.34 3.55 4.26 2000.64 0.25

Belgium BE 11.38 2.88 2.36 45028.32 0.21

Bolivia (Plurinational State of) BO 17.04 3.03 3.53 3133.1 0.12

Bulgaria BG 12.73 4.06 2.34 10058.08 0.35

Canada CA 12.57 3.1 2.45 43559.71 0.43

Chile CL 13.71 3.66 3.04 13231.71 0.31

Colombia CO 15.26 3.6 3.53 5332.77 0.18

Egypt EG 15.67 3.64 4.13 3608.84 0.38

France FR 11.78 3.1 2.22 38958.6 0.12

Germany DE 6.86 1.79 2.05 45908.72 0.38

Greece GR 11.79 3.18 2.44 18117.07 0.21

Guatemala GT 18.98 4.08 4.81 4331.69 0.31

Honduras HN 18.27 4.23 3.87 2405.73 0.17

Hungary HU 12.07 3.46 2.6 16128.65 0.39

Indonesia ID 15.26 3.14 3.86 3869.59 0.54

Iraq IQ 20.64 4.35 6.35 4145.86 0.33

Ireland IE 12.47 3.43 2.83 86250.99 0.15

Israel IL 13.6 3.84 3.14 47033.59 0.14

Italy IT 14.37 2.94 2.4 31238.05 0.11

Kuwait KW 16.42 4.16 5.8 24809.04 0.12

Luxembourg LU 16.37 3.46 2.41 117181.7 0.17

Malaysia MY 15.4 3.59 4.56 10401.79 0.2

Mexico MX 15.42 4.04 3.75 8325.57 0.4

Morocco MA 14.3 3.72 4.58 3108.18 0.18

Nigeria NG 20.47 4.16 4.66 2085.47 0.44

Pakistan PK 18.65 4.18 6.8 1167.22 0.31

Panama PA 14.62 3.45 3.64 12269.05 0.14

Philippines PH 17.04 3.72 4.23 3298.83 0.17

Poland PL 13.93 4.42 2.81 15764.11 0.32

Portugal PT 11.88 3.03 2.66 22413.04 0.23

Romania RO 11.97 3.41 2.88 12928.58 0.27

Russian Federation RU 12.88 3.42 2.58 10165.51 0.45

Saudi Arabia SA 15.64 4.1 5.6 20110.32 0.27

South Africa ZA 15.92 3.94 3.36 5094.38 0.24

Spain ES 12.02 3.19 2.69 27408.63 0.08

Switzerland CH 13.14 3.11 2.21 86918.65 0.19

Turkiye TR 13.72 3.72 4.07 8538.13 0.27

Ukraine UA 12.65 3.48 2.53 3557.48 0.47

The United Kingdom GB 9.48 2.25 2.27 40718.22 0.22

United States of America US 12.6 3.24 2.49 63122.59 0.54
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The data used in this study is extracted from the official daily counts

of COVID-19 deaths reported for countries by the World Health

Organization and smoothed using a 7-day rolling average.

2.2.2. Mobility reduction data
We extract the level of mobility inside each country at a certain

time, pact(t) and pres(t), from the Google COVID-19 Community

Mobility Reports. Among the different types of movements

included in this study, we focus on the Retail and Recreation

category for the active individuals and the Residential category for

the inactive ones. For each day, the level of mobility is computed

by comparing the amount of flows recorded for this day with

their median values measured in a pre-pandemic baseline scenario,

spanning 5 weeks from January 3 to February 6, 2020. To reduce

data noise, we smooth the curves using a 7-day rolling average.

2.2.3. Socioeconomic data
A key component of the epidemiological model is the average

number of people an individual encounters (contacts) throughout

their day, which varies from one country to another and has

been measured in a certain number of them taking into account

the heterogeneities in the populations. The dataset used for the

simulation comes from a study (16) where the authors extrapolate

the known data to 152 countries and provide contact matrices

representing the number of contacts a person of each age group

has with the others in different settings. For each country, we obtain

the average number of contacts from an active individual 〈kactive〉 as

the weighted average of the total number of contacts made by each

individual of each group in all the settings, taking into account the

population age pyramid of this country (19). To compute the same

quantity for inactive (controlled) individuals 〈kinactive〉, we repeat

the same process by just accounting for the contacts made at home.

The average number of residents in a single home is also

an important parameter of the model, and was reported by the

United Nations (20) formost countries in the world. The household

size σ is available at https://www.un.org/development/desa/pd/

data/household-size-and-composition, and in the model has been

rounded to the nearest integer in order to follow the equations.

Lastly, the Gross Domestic Product (GDP) per capita is taking

into account to find a relation between the wealth of different

populations and the success of their confinement policies. It is

available at www.worldbank.org.

These country-dependent parameters (〈kactive〉, 〈kinactive〉 and

the GDP per capita) are summarized in Table 1.

2.2.4. Epidemiological parameters
Some of the parameters in relation to the compartmental model

have already been determined and are fixed based on the literature:

• η: Probability of leaving the E compartment. It is related to the

average duration of the incubation period. We fix its value to

η = 1.0/5.2 (21).

• µ: Probability of leaving the I compartment. It is related to the

average duration of the infectious windows after contracting

and incubating the virus. We fix its value to µ = 1.0/4.2 (21).

• ϒ : Infection fatality rate which, as reported in (22) and (23), is

estimated to be ϒ = 0.01.

2.3. Model calibration

2.3.1. Approximate Bayesian Computation (ABC)
The Approximate Bayesian Computation (ABC) method, as

described in (24) and (25), provides a solution to Bayesian inference

problems where computing the likelihood function and its further

exploration becomes cumbersome. ABC works by generating

synthetic trajectories using a set of parameters and then accepting

or rejecting those parameters based on how well the synthetic

trajectories match real data. This approach allows the construction

of approximate posterior distributions.

There are several ways of exploring the posterior distribution

of the parameters, one of the simplest being the ABC rejection

algorithm (26), which is used in our case. To quantify the goodness

of a given trajectory generated by a set of parameters Eθ , we use a

logarithmic distance function ρ(Eθ) defined as:

ρ(Eθ) ≡
∑

t

log
[

|Dobs(t)− DEθ (t)| + 1
]

, (16)

where Dobs(t) represents the observed daily fatalities at time t and

DEθ (t) its value predicted by the synthetic trajectory. Note that,

among all possible choices for this goodness function, we have

chosen a logarithmic function not to under-represent the initial

stage of the epidemics, where there are fewer deaths.

The ABC rejection algorithm builds the posterior distribution

for the model parameters by sampling them from the trajectories

fulfilling that ρ(Eθ) < ǫ, where ǫ is a tolerance threshold. In

our case, we run two rounds of the ABC rejection algorithm. In

the first round, we draw 20 · 106 random samples of variables

from the prior distributions and compute the distance between the

synthetic trajectories and the real data by taking into account the

period between February 20 and May 20, 2020. We set a dynamical

threshold ǫi to accept those 1, 000 trajectories providing the best fits

for the data in each country. We construct the prior distributions

for the second from the accepted trajectories in the first one and

the process is repeated. This second iteration allows the algorithm

to give more accurate results for each country due to the intrinsic

variability of the parameters across countries.

2.3.2. Model free parameters
The numerical iteration of Equation (1) allows one to obtain

synthetic trajectories capturing the evolution of individuals in each

of the compartments. The parameters of the model that are not

fixed from the literature will be left for calibration via the ABC

method. These parameters are:

• β : This parameter represents the probability of infection,

which varies from one country to another due to factors such

as population density, urbanization, and use of masks. The

prior distribution of this parameter is β ∼ U(0.01, 0.3).

• φ: The permeability of the confinement, which is the main

objective of the study to fit. A low permeability means a high
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effectiveness of the non-pharmaceutical policies due to a good

compliance from the population. The prior distribution of this

parameter is φ ∼ U(0, 1).

• ξ : The probability of leaving the Pd compartment to die

because of the disease. The prior distribution of this parameter

is ξ ∼ U(1/18, 1/6).

• T: The estimated number of days that have elapsed since the

first case of the disease in the country and the day chosen

as the starting point for comparison with observed deaths,

which for all countries corresponds to 2020-02-20. The prior

distribution of this parameter reads T ∼ U(0, 100).

• δ: The delay in death notification. The prior distribution of this

parameter is set at δ ∼ U(2, 20).

Note that δ is not a strictly needed parameter to run the model

but becomes essential to make synthetic trajectories compatible

with real data (27). In all the cases, the prior distributions

chosen are broad enough to avoid biasing the inference of the

posterior distributions.

2.4. Relationship between GDP per capita
and countries permeability

In this section, we explain howwe link the inferred permeability

distributions of individual countries with certain economic

indicators, such as GDP per capita. To obtain a meaningful

association, we should exclude countries for which the model

does not provide a reasonable fit, as well as those where mobility

limitations did not substantially impact the control of the epidemic.

On the one hand, to determine which countries have been

correctly modeled, we calculate the relative area between the

estimated curve and the real data using the following equation:

ε(Eθ) =

∑

t |Dobs(t)− DEθ (t)|
∑

t Dobs(t)
. (17)

For the subsequent analysis, we discard those countries for which

min(ε(Eθ)) > 0.4 as the model does not fit well the epidemic

trajectories there.

Once these countries are discarded, we quantify the relationship

between permeability and GDP per capita by performing a non-

linear regression fitting the permeability to the following function:

φ(x) = ax−b (18)

where x is the GDP per capita. As our information about

permeability comes from posterior distributions, we conduct 1, 000

independent fits by sampling diverse sets of permeability values

from these distributions. The confidence interval of the regression

curve is calculated as the percentile 2.5 to the percentile 97.5 of the

individuals fits obtained.

3. Results

We calibrate our model to real data using the Approximate

Bayesian Computation (ABC) scheme described in the Methods

section. The results of the calibration for each considered country

can be found in Supplementary Figure 1. One important finding is

that, despite its simplicity, our simple model accurately captures

the time evolution of reported deaths for most countries and

confirms the assumption that the mobility reduction has a direct

effect on the number of daily contagions, which decreases as

stricter policies are put in place. Figure 2 illustrates this by showing

the real and simulated epidemic trajectories for Spain, Colombia,

and Ukraine. The selected countries represent three distinct types

of behavior observed in our study. While Spain and Colombia

implemented similar lockdown policies resulting in comparable

reductions in averagemobility, their outcomes were vastly different:

Spain managed to stop the spread and bend the curve, whereas

Colombia experienced a steady growth in casualties. This pattern

of steady increase is also observed in Ukraine, which had a milder

reduction in mobility compared to Spain and Colombia.

The unequal impact of mobility reduction on epidemic

containment can be captured by the social permeability

φ parameter in our model, which modulates the effective

reproductive number of the circulating virus, as explained in (28).

Namely, low permeability values significantly reduce the pool

of susceptible individuals exposed to the virus due to the lower

household mixing, whereas high permeability values means that all

the individuals remain vulnerable to the virus but with a reduced

exposure due to their hampered social activity.

In Figure 3, we present the posterior distributions obtained

of social permeability for each country analyzed in this study.

Focusing on the specific case of Colombia and Spain, we confirm

that lower efficiency of mobility reductions in Colombia translates

to higher permeability values compared to those inferred for

Spain. While not the focus of our manuscript, other model

parameters also provide insightful information about the impact of

the first COVID-19 epidemic wave and the associated contention

measures across countries. For instance, the inferred values of

parameter T enable to reconstruct the time of onset of the

outbreak in each country, whereas parameter δ accounts for the

heterogeneous delay in reporting deaths. Nonetheless, conclusions

on these parameters should be drawn with caution because of the

correlations between their posterior distributions, as illustrated in

Supplementary Figures 2–4 for the case of Spain, Colombia and

Ukraine, respectively.

To round off, we check whether we can connect the

heterogeneous permeability values inferred for each country with

their corresponding socioeconomic features. In order to establish

a meaningful link, we narrow our focus to countries where

the model accurately predicts the course of the disease. We

determine this accuracy by calculating the normalized distance

ε(Eθ) between the data and the model trajectories, which enables

us to establish a threshold and exclude countries where the model

does not perform well. This procedure is described in more

detail in the Section 2 and the distribution of the minimum

normalized distances εmin observed across countries is represented

in Supplementary Figure 5.

Figure 4 represents the posterior distribution of the social

permeability against the gross domestic product (GDP) per capita

of the selected countries. The tendency showcased in the figure

indicates that there is in fact a negative statistically significant

correlation between the wealth of a country and the ability of its

inhabitants to properly follow the restrictions and stay in lockdown.
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FIGURE 2

Daily evolution of the number of deaths in Spain (A), Colombia (B), and Ukraine (C). In all the panels, dots represent real reported data whereas the

blue shadowed region corresponds to the 95% prediction interval of the accepted trajectories after calibrating the model. The blue solid line

represents the median trajectory whereas the orange line corresponds to the time variation of mobility compared with a baseline pre-pandemic

scenario spanning from January 3 to February 6, 2020.

This negative correlation between the permeability and GDP per

capita is further supported by the non-linear regression of the data

described in the Section 2.

For the sake of completeness, we study the influence of possible

confounding factors on this correlation such as mobility reduction

and deaths caused by the disease. Supplementary Figure 6 shows

that the permeability values have no correlation with the minimum

observed mobility for each one of them, meaning the model can

separate the level of mobility reduction and the effectiveness of the

confinement without one depending on the other. Regarding the

relationship between permeability and death toll per capita in each

country, we observe in Supplementary Figure 7 low permeability

values for those countries with higher number of fatalities but

a large variability without any clear relationship in those less

severely affected.

4. Discussion

The COVID-19 pandemic has had an undeniable impact

on the world and has exposed the existing social and economic

inequalities within many countries (29, 30). To address this

issue, various countries have implemented policies and non-

pharmaceutical interventions to control the virus’s spread and

reduce the number of casualties. However, the pandemic’s

impact has not been evenly distributed across society, with

certain groups suffering more severe consequences than

others (31, 32). This inequality is not limited to individual

countries, but also occurs across nations due to various challenges

that low income countries face in implementing measures

to prevent transmission. Low income countries encounter

numerous obstacles, such as inadequate infrastructure, a lack

of public trust, and a high percentage of individuals working

in the informal sector, who cannot work remotely from home

and lose their source of income (33–35). These factors have

resulted in significant challenges in controlling the virus

in many low income countries, underscoring the pressing

need for a global effort to address the pandemic equitably

and effectively.

The focus of our research has been to explore the impact

of socioeconomic determinants on the efficacy of stay-at-home

measures in controlling the spread of COVID-19. By using the

change in mobility as a metric for the strictness of the restrictions,

without the assumption that they are an accurate quantitative

representation of the real level of confinement that the population

went through, we have been able to replicate the epidemic trajectory

in 42 countries. Our findings indicate that a reduction in mobility is

strongly associated with a decrease in virus transmission. However,

we recognize that this metric may not always be an accurate

representation of the true level of confinement experienced by the

population. To address this, we introduced the concept of social

permeability, which was estimated using Approximate Bayesian

Computation. Our results suggest that low-income countries tend

to have a higher permeability, indicating that restrictions were less

effective in achieving an efficient population confinement.

Finally, the framework here proposed constitutes a minimal

approach to capture the evolution of COVID-19 pandemic under

mobility restrictions and presents different limitations. First, the

model assumes a well-mixed population inside each country,

neglecting possible spatial heterogeneities existing among its

different regions and resulting in the aggregated values for the

variables not representing a fair indicator of the evolution of the

pandemic. In this case, the aggregated values for these variables

do not represent a fair indicator of the evolution of the pandemic.
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FIGURE 3

Posterior distribution for each of the free parameters of our model (φ,β, ξ ,T, δ) obtained after calibrating the model in each of the countries here

analyzed. For each parameter, dots denote the median value of the distribution whereas the solid line represents the IQR of each distribution.

In addition, our model overlooks those policies which might

play an important role in bending the epidemic curves while

not entailing a significant reduction in the mobility levels of

the population. Some examples might be social distancing of the

population, prophylaxismeasures such as hands hygiene or wearing

masks or ban of massive gatherings of individuals. Furthermore,

mobility reduction levels were obtained from the Google COVID-

19 mobility dataset, which relies on the mobility patterns estimated

from smartphone users that have opted in to Google’s Location

History feature, which is off by default. Because of this, the results

are based on the assumption that these users represent the behavior

of the entire population in their respective countries. Despite

all these limitations, we hope that our model paves the way to

the elaboration of more sophisticated frameworks addressing the

relevance of the interplay socioeconomic features and mobility

reductions during epidemic outbreaks.
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FIGURE 4

Posterior distribution obtained for the permeability parameter φ as a function of the GDP per capita of the country in which the model is calibrated.

The shadowed region of the fit shows the 95% prediction interval of the trajectories obtained via non-linear regression φ(x) = ax−b, where x stands

for GDP per capita and the parameters result in a = 16± 4.12, b = 0.39± 0.03. The solid line represents the average value of the fitted trajectories for

each x. The Spearman correlation coe�cient ρS between both variables is ρS = −0.590 with p < 10−4.
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