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Motivation: Augmented reality head-up display (AR-HUD) interface design takes 
on critical significance in enhancing driving safety and user experience among 
professional drivers. However, optimizing the above-mentioned interfaces poses 
challenges, innovative methods are urgently required to enhance performance 
and reduce cognitive load.

Description: A novel method was proposed, combining the IVPM method with a GA 
to optimize AR-HUD interfaces. Leveraging machine learning, the IVPM-GA method 
was adopted to predict cognitive load and iteratively optimize the interface design.

Results: Experimental results confirmed the superiority of IVPM-GA over the 
conventional BP-GA method. Optimized AR-HUD interfaces using IVPM-
GA significantly enhanced the driving performance, and user experience was 
enhanced since 80% of participants rated the IVPM-GA interface as visually 
comfortable and less distracting.

Conclusion: In this study, an innovative method was presented to optimize AR-
HUD interfaces by integrating IVPM with a GA. IVPM-GA effectively reduced 
cognitive load, enhanced driving performance, and improved user experience 
for professional drivers. The above-described findings stress the significance of 
using machine learning and optimization techniques in AR-HUD interface design, 
with the aim of enhancing driver safety and occupational health. The study 
confirmed the practical implications of machine learning optimization algorithms 
for designing AR-HUD interfaces with reduced cognitive load and improved 
occupational safety and health (OSH) for professional drivers.
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1. Introduction

1.1. Background and significance

AR-HUD technology has become increasingly popular in the transportation industry over 
the past few years as an advanced driver assistance technology that is capable of improving OSH 
for professional drivers (1). AR-HUD technology is promising in providing drivers with critical 
information while minimizing visual distraction, improving safety and reducing cognitive load, 
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which are recognized as vital factors for OSH (2). AR-HUD 
technology offers several advantages for professional drivers, which 
covers real-time information that takes on critical significance in 
drivers to perform their jobs safely and efficiently (e.g., speed, fuel 
levels, and engine temperature for commercial truck drivers) (3). 
Furthermore, AR-HUD technology shortens the time that drivers 
have to take their eyes off the road, such that OSH can be improved 
by minimizing visual distractions (4). Moreover, AR-HUD technology 
can help reduce cognitive load by providing drivers with only the 
necessary information, such that they are enabled to focus on their 
primary task of driving (5).

However, existing AR-HUD designs may not be  optimal for 
professional drivers who are dependent on more specialized and 
customized information to perform their jobs effectively (6). 
Consequently, OSH risks may be  posed since the information 
presented on the display may not be easily customizable, making it 
difficult for professional drivers to receive the specialized information 
they require (7–9). Furthermore, the display is likely to increase 
cognitive load, particularly for drivers not accustomed to using 
AR-HUD technology, such that fatigue and other OSH issues can 
be triggered (10–12). Accordingly, designing AR-HUD interfaces that 
are tailored to the specific needs of professional drivers takes on 
critical significance in improving OSH.

The significance of this study to occupational health and safety 
(OHS) is indicated in its potential in strengthening safety measures 
and improving professional drivers’ quality of life. The study 
leverages machine learning and optimization techniques to design 
Augmented Reality Heads-Up Displays (AR-HUDs), which can 
present more insights into improving driving tasks’ ergonomic 
aspects, such that accident risks can be mitigated, and driver well-
being can be elevated. Notably, the optimization of AR-HUDs with 
the IVPM-GA method is conducive to reducing cognitive load, 
which when excessive, can lead to driver fatigue and higher 
accident rates. Furthermore, the IVPM method’s prowess 
in localizing eye-tracking hotspots and predicting extreme points 
on graphs is capable of enhancing AR-HUDs’ visual ergonomics, 
minimizing eye strain, and preventing health issues (e.g., 
headaches or vision issues). Additionally, a well-optimized 
AR-HUD interface can enhance the overall user experience, 
reducing stress and discomfort during extended operation periods, 
which contributes to mental health benefits. The study’s findings 
can guide subsequent OHS policies and training programs, such 
that an evidence-based method can be provided to interface design 
that can be incorporated into professional drivers’ training. The 
optimized AR-HUD interface is promising in integrating with 
existing driver assistance systems, such that timely and relevant 
information can be presented, and cognitive load reduction and 
overall driving safety enhancement can be facilitated.

1.2. Research items

The item of this study refers to optimizing AR-HUD visual 
interaction for professional drivers using machine learning techniques 
to reduce visual fatigue and cognitive load. To be specific, this study 
aimed at developing an optimized AR-HUD interface design using a 
genetic algorithm based on an Image Viewpoint Prediction Model 
(IVPM), comparing the effectiveness of the IVPM method and the 

conventional Backpropagation Genetic Algorithm (BP-GA) method 
in optimizing AR-HUD interface design, assessing the implications of 
optimized AR-HUD interfaces for the occupational health and safety 
(OHS) of professional drivers, employing machine learning to predict 
cognitive load in AR-HUD design and assess its impact on driving 
performance and user experience, and laying a solid basis for future 
Occupational Safety and Health (OSH) policies and training programs 
following the findings of this study. The above-mentioned research 
items can guide the exploration of AR-HUD interface design 
optimization, the comparison of different optimization methods, and 
the implications of the above-described methods for OHS in 
professional driving.

The rest of this study is organized as follows. In Section 2, a 
comprehensive review of related research on AR-HUD interfaces, 
cognitive load, and optimization methods is presented. In Section 
3, the methodology applied in this study is introduced, including 
the IVPM method and the GA optimization algorithm. In Section 
4, the experimental setup, data collection, and the assessment of 
the proposed IVPM-GA method are presented, compared with 
the conventional BP-GA method. In Section 5, the interpretation 
of the results and the implications of the findings are discussed, 
and the limitations of the study are acknowledged. Lastly, in 
Section 6, the research findings are summarized, the innovation 
of the IVPM-GA method is emphasized, and future research 
directions in the field of AR-HUD technology and interface 
optimization are proposed.

2. Literature review

2.1. AR-HUD technology in assisted driving

The research on cognitive load of drivers using an AR-HUD in 
assisted driving refers to a multidisciplinary field dedicated to 
designing and assessing interactive systems to enhance the driver 
experience while improving occupational safety and health (6). 
AR-HUD technologies have aroused significant attention in the HCI 
field over the past few years. AR refers to a technology that 
superimposes computer-generated virtual objects onto the real world, 
creating a mixed reality environment where the virtual and physical 
worlds coexist HUD (12). Besides, it is a display technology that 
projects information onto a transparent screen or a windshield, such 
that users are enbaled to view information without looking away from 
the road or the task at hand (13). AR-HUD technology combines the 
benefits of both AR and HUD to provide a more intuitive and 
immersive user experience. It has been extensively employed in a wide 
variety of domains (e.g., automotive, aviation, and military) for tasks 
(e.g., navigation, communication, and training) (14) nEVERTHELESS, 
designing effective AR-HUD interfaces remains a challenge due to the 
complexity of the technology and the need to balance the visual and 
cognitive demands of the user (15).

The design of AR-HUD interfaces poses several challenges for 
HCI (Human-Computer Interaction) designers: the design should 
consider the user’s cognitive load, as too much information presented 
on the display can overwhelm the user and lead to decreased 
performance and safety issues (16). Furthermore, the interface should 
be  developed to maximize the user’s attention and minimize 
distraction while providing relevant and timely information (17).
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2.2. Machine learning in AR-HUD design to 
improve OSH of drivers

Machine learning (ML) and deep learning (DL) have been 
confirmed as subfields of artificial intelligence that are highly 
promising in facilitating the design and assessment of interactive 
systems in HCI. ML refers to a method of teaching computers to learn 
patterns from data without being explicitly programmed (18). DL 
refers to a subset of ML that uses artificial neural networks to learn 
complex patterns from large datasets (19).

In the research of AR-HUD human-computer interaction, ML 
and DL have been employed for tasks (e.g., user modeling, gesture 
recognition, emotion detection, as well as speech recognition) (20). 
Besides, they have been adopted to optimize the design of interfaces 
by predicting user behavior and preferences, reducing cognitive load, 
and improving usability (21).

The research on the optimization of AR-HUD interface design 
using machine learning in recent years is presented in the following: 
Optimization of AR-HUD interface design by machine learning. 
Conati et al. (22) using machine learning research methods, the use of 
interaction data was explored in this study as an alternative source to 
predict cognitive abilities during visualization processing when 
eye-tracking data was not available, and the accuracy of user models 
was assessed based on different data sources and modalities. Results 
indicated the potential for using interaction data to enable adaptation 
for interactive visualizations, and the value of combining multiple 
modalities for predicting cognitive abilities. Besides, the effect of noise 
in gaze data on prediction accuracy was also examined. In Oppelt 
et  al.’s study, (23), machine learning algorithms were trained and 
assessed using single and multimodal inputs to distinguish cognitive 
load levels. The model behavior was carefully assessed, and feature 
importance was investigated. A novel cognitive load test was 
introduced, and a cognitive load database was generated. Variations 
were validated using statistical tests, and novel classification and 
regression tasks were introduced for machine learning (12). Becerra-
Sánchez et al. (24) uses n-back task as an auxiliary task to induce the 
cognitive load of the main task (i.e., driving) in three different driving 
simulation scenarios. Multi-modal machine learning method is used 
to classify drivers’ cognitive load. Multi-component signals, i.e., 
physiological measurement and vehicle characteristics, are used to 
overcome the noise and mixed factors in physiological measurement. 
Feature selection algorithm is used to identify the optimal feature set, 
and random forest algorithm shows better performance than other 
algorithms. It is found that using multi-component feature classifier 
can classify better than using features from a single source. In the 
research of Jacobé de Naurois et al. (25) by analyzing physiological and 
behavioral indicators (e.g., heart rate, blink duration and driving 
behavior), machine learning method was employed to detect and 
predict drivers’ drowsiness. AS indicated by the result, increasing 
information (e.g., driving time and participant information) can 
increase the accuracy of drowsiness detection and prediction. The 
optimal performance was achieved through the combination of 
behavioral indicators and additional information. The developed 
model is capable of detecting the drowsiness level with a mean square 
error of 0.22, and carrying out prediction when it will reach a given 
drowsiness level with a mean square error of 4.18 min.

The following is the research on the optimization of AR-HUD 
interface design using deep learning over the past few years. Kang 

et al. (26) proposed a novel deep learning-based hand interface for 
immersive virtual reality, providing realistic interactions and a 
gesture-to-action interface without the need for a graphical user 
interface. An application was developed to compare the proposed 
interface with existing GUIs, and a survey experiment assessed its 
positive effects on user satisfaction and sense of presence. Zhou (27) 
investigated the technical challenges in applying AR-HUD systems in 
practical driving scenarios. A lightweight deep learning-based object 
detection algorithm was proposed, while a system calibration method 
and a wide variety of image distortion correction techniques were 
developed. The methods were integrated into a multi-eye AR control 
module for the AR-HUD system, which was assessed through road 
experiments. The results confirmed the effectiveness of the proposed 
methods in enhancing driving safety and user experience. Rahman 
et al. (28) employed deep learning to develop a vision-based method, 
with the aim of classifying a driver’s cognitive load to improve road 
safety. In the study, non-contact solutions were investigated through 
image processing, with a focus on eye movements. Five machine 
learning models and three deep learning architectures were developed 
and tested, achieving up to 92% classification accuracy. This 
non-contact technology is promising in contributing to advanced 
driver assistive systems. Methuku (29) proposed the use of a deep 
learning system based on Convolutional Neural Network (CNN) to 
classify in-car driver responses and create an alert system to mitigate 
vehicle accidents. The system was developed using transfer learning 
with ResNet50 and achieved an accuracy of 89.71%. The study 
provided key conclusions and discussed the significance of the 
research in practical applications.

2.3. Genetic algorithm in AR-HUD design 
to improve OSH of drivers

Optimization techniques (e.g., genetic algorithms (GA), particle 
swarm optimization (PSO), and simulated annealing (SA)) have been 
extensively employed in HCI to optimize the design and assessment 
of interactive systems. The above-mentioned techniques were adopted 
to find the optimal solution from a large set of possible solutions by 
iteratively assessing and modifying the design variables (30). GA is a 
search algorithm that mimics the process of natural selection to find 
the optimal solution to a problem. It starts with a set of random 
solutions and iteratively improves them by applying genetic operations 
such as selection, crossover, and mutation (31). PSO is a swarm-based 
optimization technique simulating the social behavior of a group of 
individuals to determine the optimal solution (32). SA refers to a 
probabilistic optimization technique simulating the process of cooling 
a material to determine the minimum energy state (33). Goli et al. (34) 
developed a complex model for cell formation in a manufacturing 
system using automated guided vehicles (AGVs). It introduced a 
hybrid genetic algorithm and a whale optimization algorithm to 
address the problem. As revealed by the results, the above-described 
algorithms outperform existing solutions in efficiency and accuracy, 
with the whale optimization algorithm proving to be  optimal. 
Tirkolaee and Aydin (35) introduced a fuzzy bi-level Decision Support 
System (DSS) for optimizing a sustainable supply chain for perishable 
products. It employs a hybrid solution technique based on possibilistic 
linear programming and Fuzzy Weighted Goal Programming (FWGP) 
to cope with uncertainty and ensure sustainability. The proposed 
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methodology outperforms existing methods, solving a problem with 
over 2.2 million variables and 1.3 million constraints in under 20 min. 
The above-mentioned studies highlight the effectiveness of 
optimization techniques in solving complex issues. The use of hybrid 
algorithms and the application of the above-described techniques to 
practical issues underscore their practical relevance. In this study, the 
above-mentioned findings suggest that similar methods could 
enhance the effectiveness of our IVPM-GA method for AR-HUD 
interface design, potentially leading to significant improvements in 
Occupational Safety and Health (OSH) for professional drivers.

As revealed by the literature review, the backpropagation genetic 
algorithm (BP-GA) has been extensively employed to predict cognitive 
load based on eye-tracking data, such that AR-HUD and OSH of 
professional drivers can be better optimized (36, 37). The significance 
of BP-GA lies in its ability to optimize the AR-HUD interface design 
while considering user cognitive load (36), such that the OSH of 
professional drivers can be  ultimately enhanced. By optimizing 
interface design, BP-GA reduces cognitive load, improves user 
experience, and ultimately lowers the risk of accidents caused by 
distraction. However, a potential drawback of BP-GA is that it is likely 
to converge to local optima instead of global optima (38). To address 
the above-mentioned issue, the IVPM-GA method was introduced in 
this study, employing the lightweight deep learning image viewpoint 
prediction model (IVPM) algorithm to predict cognitive load, as well 
as a vision-based cognitive load prediction method based on machine 
learning. This method is capable of overcoming the limitations of 
existing research that relied solely on eye-tracking data, which may 
not fully encompass cognitive abilities. The IVPM-GA method 
provides more comprehensive and accurate predictions of cognitive 
load and can be  adopted to optimize AR-HUD interface design 
in depth.

The main novelties of this study lie in the application of advanced 
machine learning techniques, specifically the Image Viewpoint 
Prediction Model (IVPM) and the Backpropagation Genetic 
Algorithm (BP-GA), to optimize the design of Augmented Reality 
Head-Up Display (AR-HUD) interfaces for professional drivers. This 
study is unique in its method to reducing visual fatigue and cognitive 
load, key factors that can impact the occupational health and safety 
(OHS) of professional drivers. By leveraging machine learning to 
predict cognitive load in AR-HUD design, this study offers a novel 
way to enhance driving performance and user experience.

This study represents a contribution to the field of human-
computer interaction, demonstrating how advanced technologies such 
as AR-HUD can be effectively adopted to enhance driver safety and 
occupational health. Thus, this study advocates for the development 
of safer and more ergonomic professional driving environments, a 
requisite consideration in the modern fast-paced world, substantiating 
its relevance to OSH.

3. Materials and methods

3.1. Experiment and dataset collection

3.1.1. Experimental environment and equipment
In the experiment, a self-designed integrated helmet with eye 

tracking and AR function was adopted to provide 360 immersive 
driving simulation and eye tracking experiments. The operating 

equipment refers to a high-performance desktop computer, and the 
steering wheel, pedals, and gears were connected to the notebook 
computer through relevant ports. To enable the test subjects to acquire 
prominent real driving experience and interactive experience, 
Unity3D engine was employed in the experiment to design and build 
a driving assistance test system on AR platform. The system compiled 
the logic codes of vehicle actions (e.g., vehicle acceleration, maximum 
speed, and deceleration when braking). Moreover, Tobii Pro adaptive 
eye movement analysis function was loaded in Unity3D environment. 
The eye movement analysis SDK exhibited the capability of providing 
eye movement data stream signals (e.g., the gaze time of left and right 
eyes as the original data), displaying the gaze origin (3D eye 
coordinates), gaze point and space comfort distance L(GazeData), and 
synchronizing the external TTL event signals of the input port, with 
the aim of synchronizing eye movement data and other biometric data 
streams. Figure 1 illustrates the system architecture.

The participants were a group of 40 professional drivers with 
normal or corrected vision. The group had a mean age of 31.36 years 
(standard deviation = 4.97). At the time of testing, the participants 
were in good mental condition and none of them experienced VR 
simulation sickness. They all held a driver’s license and had an average 
driving experience of over 5 years.

The simulation platform was illustrated in Figure 2, comprised of 
a mock car cockpit, large screen, audio-visual components, and an 
AR-HUD helmet with eye-tracking capabilities. Unity3D software 
provides panoramic modeling of road conditions and real-time data 
recording. The helmet, integral to this study, houses an Eye Tracking 
Module sensor and Eye Tobii VR lens on the forehead, capturing eye 
movements during AR-HUD display. The above-described signals are 
wirelessly transmitted to Tobii Pro Lab software for analysis.

3.1.2. Experimental interface design of AR-HUD 
display

According to the design principles of AR-HUD and the visual 
characteristics of the human eye, AR-HUD is located in the lower left 
corner of the windshield, which is also the driver’s central visual area, 
as shown in Figure 3A. For vehicles at a speed less than 75 km/h, the 
visual information of AR-HUD fell into 85° of binocular vision. For 
vehicles at a speed between 75 and 100 km/h, the information was less 
than 65% of binocular vision. For vehicles at a speed exceeding 
100 km/h, the information fell into 40° of binocular vision. As 
depicted in Figure 3B, the AR-HUD interface fell into six areas as 
follows: A: driving status information and gear status; B: navigation 
information, including navigation instructions and other driving 
prompts; C: speed information; D: warning information area, 
including pedestrian warning, frontal collision warning, side collision 
warning, driver abnormality warning, road speed limit warning, and 
lane departure warning; E: default display of speed information, and 
the driver can customize other display information; F: basic driving 
information area, displaying time and date information. To explore 
the relationship between the interface design of AR-HUD design 
elements, the layout of the A-F components and the design of the 
subcomponents will be presented in subsequent experiments.

3.1.3. Experimental method
This study delineates AR-HUD information design patterns and 

tests varied visual colors, layouts, and components. Each driver 
executes 6 tasks involving random layout and component designs, 

https://doi.org/10.3389/fpubh.2023.1195961
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Teng et al. 10.3389/fpubh.2023.1195961

Frontiers in Public Health 05 frontiersin.org

with a 10-min rest between tasks. This process produces 240 samples 
for deep learning prediction. Each driving scenario lasts 60 s, with eye 
movement parameters extracted in 30-s intervals.

Figure  4 illustrates the procedure, where a wide variety of 
AR-HUD visual schemes were covered, randomly presented to 
measure users’ visual cognitive load. The test involved driving at 50 
kilometers per hour, maintaining a minimum 50-meter distance from 
a preceding car, as well as locating and stating information displayed 
on the AR-HUD. Data were collected on driving behavior and eye 
movement after the respective task.

The experiment was performed on city roads under good weather 
and moderate traffic conditions. A 15-min training familiarized 
participants with simulator operation, visual search, target warnings, 
and driving modes. After the respective task, participants employed 
the NASA-TLX form to assess their subjective cognitive load regarding 
AR-HUD use. (39–42).

3.2. Experimental results and analysis

Eye-tracking data segments were taken before and after visual 
search for 30 s. According to the Shapiro-Wilke test, the differences in 

the four groups of experimental data were normally distributed 
(p < 0.05), meeting the assumption of parametric testing. Accordingly, 
using a paired t-test, eye-tracking variations in drivers were tested 
through visual search and target discovery. The descriptive statistics 
and matched t-test results for visual search are shown in Table 1. 
Significant variations in eye-tracking indicators with different visual 
layouts of the flat display show that visual search for targets can 
effectively bring the driver’s attention back to the control loop and 
make them aware of potential dangers.

As indicated by the results, HUD interface layout design can 
be adjusted to assist cognitive judgment and decision-making and 
optimize the capture and processing of attention to driving task 
information. The unreasonable AR-HUD visual design will exceed the 
visual capacity limit of the driver while increasing the risk of driving 
accidents. The experimental results suggested that as the perception 
task involved in AR-HUD visual search tasks was increased, 
participants’ attention to the driving scene in front declined, the visual 
search range was narrowed, and the scanning path length was 
shortened. In a limited time, participants should fully focus on the 
information of the entire driving scene. The scanning path length was 
significantly different from that of non-driving tasks, probably due to 
the different positions and distributions of environmental elements 
that attract participants’ visual attention, which may reduce the 
effectiveness of scanning paths (43–47). In other words, the layout of 
AR-HUD visual elements may affect visual scanning strategies, such 
that drivers’ cognitive load can be affected.

3.3. Implementation of BP-GA

3.3.1. An algorithm for integrating genetic 
algorithm and BP neural network

Recent research has employed a fitness function developed by 
a BP neural network and genetic algorithm to optimize the 
interface design of AR-HUD interactive systems based on driver’s 
visual distribution characteristics, yielding effective results (48). 
In this study, a combination of machine learning and deep 
learning was adopted to compare optimization effects. The BP 
neural network model, using AR-HUD visual interaction element 
coding and visual cognitive load index as input and output layers, 
was incorporated into a genetic algorithm to determine the 
optimal AR-HUD design (49). Figure  5 illustrates the 
relevant process.

FIGURE 1

Structure of virtual reality driving assistant test system.

FIGURE 2

Experimental environment and equipment.

https://doi.org/10.3389/fpubh.2023.1195961
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Teng et al. 10.3389/fpubh.2023.1195961

Frontiers in Public Health 06 frontiersin.org

3.3.2. Topological structure of BP neural network
According to practical issues, the topological structure of neural 

network is determined, including three layers: 1 input layer, 3 hidden 
layer and 1 output layer. The number of neurons in the input layer is 
26 and the number of neurons in the output layer is 1. In the hidden 
layer, the optimal number of neurons is determined by heuristic 
method (50, 51), and the optimal number of neurons is determined to 
be 15 after operation. Lastly, based on the BP neural network between 
the visual arrangement coding of the head-up display and NASA-TLX, 

its topological structure is determined, as shown in Figure 6. The 
meaning of a[1]

(x) represents the activation function of the hidden layer 
in the backpropagation (BP) neural network. A[0] represents the input 
layer, and A[1]-A[3] represent the hidden layers. A[4] represents the 
output layer. X represents the input variable, and Y represents the 
output variable.

3.3.3. Performance of BP neural network method
The activation function of neurons refers to an integral part of BP 

neural networks, which should be differentiable, and its derivative should 
be continuous (48, 52). Thus, the log-sigmoid activation function {logsig} 
was selected as the activation function for the hidden layer and output 
layer neurons of the BP neural network. The {Levenberg–Marquardt} BP 
algorithm training function {trainlm} was used in the training process of 
the BP network modeling. The maximum iteration number of the neural 
network was 1000 times, the training target error was set to 10, the 
learning rate was 0.1, and the status was displayed every five training 
cycles. Unmodified parameters served as the default values of the system 
(53, 54). The neural network fitting toolbox ran in Matlab software. After 
repeated training and weight adjustment, the optimal validation 
performance index was 0.349 at epoch 6.

3.3.4. Chromosome coding of visual cognitive 
load model

As depicted in Table  2, this study’s AR-HUD visual model 
comprised nine discrete variables, i.e., GM, GL, GF, GA, GB, GC, GD, 
GE, and GF, which had been encoded as 26-bit binary strings in the 
previous neural network model construction. For instance, the 26-bit 
binary string of the design scheme in Figure  6 corresponds to 
1000010000011001010100110, in which the respective binary 
character represents a gene. Among the above-mentioned variables, 
GM, GL, GF, and GA served as 4-bit binary variables, whereas the 
acted as are 2-bit binary variables. In the integrated operation of 
neural network and genetic algorithm, the chromosome input in 
binary coding form was first converted to floating-point type, and 
then the floating-point value was converted back to the identical 
binary form as the input after the calculation of the adaptive function. 
The code conversion rules are presented as follows: a 4-bit binary code 

A

B

FIGURE 3

AR-HUD design scheme: (A) AR-HUD interface design; (B) AR-HUD 
interface layout.

FIGURE 4

Experimental process.
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TABLE 1 Statistical results of measurement indexes of eye movement experiment.

Num Gaze/ms Glance/ms Reaction/ms NASA-TLX P 95% confidence interval

1 0.44 0.46 2.28 12.10 0.03 (0.92, 1.33)

2 0.58 0.65 2.38 12.60 0.02 (0.89, 1.17)

3 0.38 0.23 1.04 5.52 0.00 (0.21, 0.69)

4 0.71 0.56 0.75 4.25 0.02 (1.18, 3.50)

5 0.86 0.59 1.30 6.93 0.01 (0.95, 1.50)

6 0.81 0.58 1.83 9.71 0.05 (0.89, 1.14)

7 0.54 0.53 2.15 11.42 0.03 (0.21, 1.69)

8 0.99 0.99 2.08 11.14 0.05 (0.98, 4.50)

9 0.56 0.94 1.72 9.16 0.04 (0.95, 2.50)

10 0.21 0.37 2.47 13.12 0.81 (0.82, 1.17)

11 0.35 0.38 1.72 9.13 1.05 (0.71, 0.69)

12 0.41 0.47 2.13 11.33 0.33 (1.98, 4.50)

13 0.40 0.45 2.64 14.32 0.23 (0.95, 1.50)

14 0.54 1.05 1.28 6.82 0.05 (0.49, 1.11)

15 0.37 0.25 1.04 5.52 0.48 (0.31, 0.59)

16 0.46 0.84 1.53 8.13 0.71 (0.86,1.13)

17 0.11 0.27 2.28 12.13 0.95 (0.23, 1.39)

18 0.22 0.28 1.53 8.12 0.23 (0.94, 3.50)

19 0.31 0.37 1.94 10.32 0.13 (0.92, 1.50)

20 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

21 0.52 0.57 1.72 9.05 0.03 (0.78, 1.21)

22 0.62 0.78 2.28 12.25 0.03 (1.12, 2.08)

23 0.72 0.89 2.47 13.35 0.03 (1.32, 2.56)

24 0.38 0.35 2.13 11.32 0.05 (0.85, 1.46)

25 0.55 0.62 1.94 10.28 0.04 (0.92, 1.35)

26 0.47 0.43 2.08 11.18 0.04 (1.05, 2.02)

27 0.66 0.79 1.53 8.11 0.02 (1.22, 2.17)

28 0.42 0.38 1.72 9.05 0.02 (0.98, 1.32)

29 0.59 0.66 1.28 6.81 0.02 (1.12, 2.09)

30 0.43 0.41 1.53 8.15 0.03 (0.89, 1.25)

31 0.57 0.61 1.94 10.25 0.04 (1.08, 2.18)

32 0.48 0.46 2.28 12.19 0.04 (0.96, 1.35)

33 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

34 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

35 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

36 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

37 0.58 0.64 1.53 8.09 0.03 (1.15, 2.06)

38 0.53 0.58 1.72 9.01 0.04 (1.08, 2.11)

39 0.61 0.74 2.28 12.17 0.05 (1.01, 2.28)

40 0.49 0.47 2.47 13.38 0.04 (0.94, 1.42)

41 0.65 0.81 2.13 11.28 0.04 (1.05, 2.12)

42 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

43 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

44 0.62 0.77 1.72 9.03 0.04 (1.18, 2.09)

(Continued)
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TABLE 1 (Continued)

Num Gaze/ms Glance/ms Reaction/ms NASA-TLX P 95% confidence interval

45 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

46 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

47 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

48 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

49 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

50 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

51 0.62 0.78 2.28 12.25 0.03 (1.12, 2.08)

52 0.72 0.89 2.47 13.35 0.03 (1.32, 2.56)

53 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

54 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

55 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

56 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

57 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

58 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

59 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

60 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

61 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

62 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

63 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

64 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

65 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

66 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

67 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

68 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

69 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

70 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

71 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

72 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

73 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

74 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

75 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

76 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

77 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

78 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

79 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

80 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

81 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

82 0.55 0.61 2.28 12.19 0.04 (1.02, 2.32)

83 0.67 0.83 2.13 11.23 0.04 (1.10, 2.16)

84 0.48 0.46 1.94 10.32 0.05 (0.96, 1.38)

85 0.62 0.77 1.72 9.05 0.04 (1.18, 2.09)

86 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

87 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

88 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

(Continued)
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TABLE 1 (Continued)

Num Gaze/ms Glance/ms Reaction/ms NASA-TLX P 95% confidence interval

89 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

90 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

91 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

92 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

93 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

94 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

95 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

96 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

97 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

98 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

99 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

100 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

101 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

102 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

103 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

104 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

105 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

106 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

107 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

108 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

109 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

110 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

111 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

112 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

113 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

114 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

115 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

116 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

117 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

118 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

119 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

120 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

121 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

122 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

123 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

124 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

125 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

126 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

127 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

128 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

129 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

130 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

131 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

(Continued)
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TABLE 1 (Continued)

Num Gaze/ms Glance/ms Reaction/ms NASA-TLX P 95% confidence interval

132 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

133 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

134 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

135 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

136 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

137 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

138 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

139 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

140 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

141 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

142 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

143 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

144 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

145 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

146 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

147 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

148 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

149 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

150 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

151 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

152 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

153 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

154 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

155 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

156 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

157 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

158 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

159 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

160 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

161 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

162 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

163 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

164 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

165 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

166 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

167 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

168 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

169 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

170 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

171 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

172 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

173 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

174 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

175 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)
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TABLE 1 (Continued)

Num Gaze/ms Glance/ms Reaction/ms NASA-TLX P 95% confidence interval

176 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

177 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

178 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

179 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

180 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

181 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

182 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

183 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

184 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

185 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

186 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

187 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

188 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

189 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

190 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

191 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

192 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

193 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

194 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

195 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

196 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

197 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

198 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

199 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

200 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

201 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

202 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

203 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

204 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

205 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

206 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

207 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

208 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

209 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

210 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

211 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

212 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

213 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

214 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

215 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

216 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

217 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

218 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

219 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)
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FIGURE 5

Calculation process of AR-HUD visual cognitive load prediction model.

TABLE 1 (Continued)

Num Gaze/ms Glance/ms Reaction/ms NASA-TLX P 95% confidence interval

220 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

221 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

222 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

223 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

224 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

225 0.64 0.80 2.28 12.15 0.04 (1.05, 2.28)

226 0.47 0.44 1.53 8.10 0.05 (1.12, 2.25)

227 0.61 0.74 1.72 9.03 0.04 (1.18, 2.09)

228 0.56 0.63 1.94 10.30 0.04 (0.99, 1.33)

229 0.41 0.39 2.08 11.15 0.04 (0.94, 1.32)

230 0.58 0.57 1.72 9.05 0.03 (0.78, 1.21)

231 0.51 0.54 2.47 13.41 0.05 (1.05, 2.32)

232 0.69 0.85 2.13 11.29 0.03 (1.12, 2.08)

233 0.45 0.42 1.94 10.31 0.04 (0.98, 1.29)

234 0.63 0.76 1.72 9.03 0.04 (1.21, 2.09)

235 0.54 0.59 2.47 13.39 0.04 (1.02, 2.22)

236 0.68 0.84 2.13 11.26 0.04 (1.08, 2.16)

237 0.49 0.48 1.94 10.33 0.05 (0.95, 1.37)

238 0.59 0.68 1.53 8.07 0.05 (1.16, 2.19)

239 0.55 0.61 1.72 9.01 0.04 (1.12, 2.11)

240 0.33 0.35 2.45 13.12 0.05 (0.85, 1.07)
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was converted to a floating-point number that continuously ranges 
from 0 to 4. For continuous variables with values of [0,1], [1,2], [2,3], 
and [3,4], the corresponding binary codes turned out to be 1000, 0100, 
0010, and 0001, respectively. A two-bit binary code was converted to 
a floating-point number in the range of [0,2]. For continuous variables 
with values of [0,1] and [1,2], the corresponding binary codes reached 
10 and 01 (55), respectively. The approximate optimal solution can 
only be explained after decoding.

To establish a neural network prediction model, this study 
constructed a training sample set. The input is chromosome coding of 
AR-HUD visual model, and the output is the average NASA-TLX of 
the 240 AR-HUD prototypes rated by the user in the experiment. 
After organizing the data, the input and output data of the neural 
network model were determined, as shown in Table 3.

3.3.5. Parameters of IVPM-GA
The initial population size was the total number of samples in the 

AR-HUD dataset 240. The mutation rates range of GA algorithm in 
this study was from 0.01 (1%) to 0.1 (10%). The crossover rate of GA 
reached 0.8 (80%). Roulette wheel selection method was adopted to 
select individuals from the population for reproduction (12).

3.4. Implementation of IVPM-GA

A deep learning-powered image view point prediction model 
(IVPM) was introduced in this study to improve AR-HUDs 
(Augmented Reality Head-Up Displays) design with a strong focus on 
occupational safety and health (OSH). Based on Bylinskii et al.’s work 
(50), the IVPM, trained with human visual attention data, can 
be conducive to optimizing retargeting and thumbnails design. The 
model was further integrated into a design tool providing real-time 
feedback. Its application in AR-HUD design aimed at lessening 
cognitive load and enhancing driver safety, emphasizing the effective 
communication of critical information, such that its significance in 
promoting OSH can be highlighted.

3.4.1. Dataset of interface designs
IVPM uses the eye movement experimental dataset in section 3.1 

for training, which contains 240 ground truth (GT) significance 
markers developed by AR-HUD HCI, and divides the training set and 
the test set according to 80–20%.

3.4.2. The loss function and model architecture 
of IVPM

The equation of importance for IVPM to predict the content of 
each pixel position in a bitmap image is shown in Eq. (1). The 
importance prediction Pi∈[0,1] is output for each pixel, with higher 
values suggesting greater importance. Similar to saliency models that 
perform well on natural images, IVPM is based on the FCN 
architecture. Given the true importance Qi∈[0,1] at each pixel i, the 
sigmoid cross-entropy loss is optimized over all pixels = 1, 2, …, N to 
optimize the FCN model parameters θ (50):
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Q P Q P

i

N
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=
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1

log log

 
(1)

Where P_i = σ(f_i(θ)) represents the importance prediction value 
obtained by passing the FCN output f(θ) through the sigmoid 
activation function σ(X) = (1 + exp(−x))-1. Notably, this loss function 
has been commonly employed for binary classification, given that 
Q_i∈{0,1}. To be specific, it is extended to real-valued Q_i∈[0,1].

After continuous pooling, the model prediction turned out to 
be  1/32 of the input image resolution. To improve the prediction 
resolution and capture finer details, skip connections from earlier 
layers were introduced, following the steps proposed by Long et al. to 
form the FCN-16 s model (56, 57). As indicated by the experimental 
results, FCN-16 s (with skip connections from pool4) captured more 
details and improved prediction performance compared with the 
FCN-32 s model (due to limited samples, the pre-trained FCN-32 s 
model was used to initialize the network parameters and fine-tuned). 
The model architecture is shown in Figure 7 (58).
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FIGURE 6

Topological structure of BP neural network.
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4. Results

4.1. Performance of IVPM model method

Kullback–Leibler divergence (KL) and cross correlation (CC) are 
used to assess the similarity between the forecast map and the GT 
importance marker map. KL severely punishes the wrong prediction, so 
the sparse graph that fails to predict the important position of GT will get 
a higher KL value (low score). Given the GT importance graph q and the 
predicted importance graph p, the P,KL value is calculated as Eq. (2) (48):

 
KL P Q Q Q Q P L P Q H Q

i

N
i i i i, ,( ) = −( ) = ( ) − ( )

=
∑
1

log log
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In addition, H Q( )= − l(Q Qi ilog ) is the entropy of the importance 
graph of GT, and L P,Q( ) is the cross entropy of the predicted value 

and GT. A large KL divergence indicates a large difference between 
graphs, and KL P,Q( )=0 indicates that two graphs are the same. CC 
is calculated as Eq. (3) (48):
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Where P
N

P

i

N

i=
=
∑1
1

, and q is the same. CC ranges from −1 to 1; CC 

equal to 1 suggests that the greatest correlation exists between graphs 
P and Q; high CC score and low KL score suggest that the good 
prediction effect. In the experiment on the test image dataset, the 
average score of CC was 0.715, KL and the average score of KL reached 
0.313, such that good performance prediction was achieved. Only 
some results are presented in Figure 8.

TABLE 2 Chromosome coding of visual cognitive load model.

Element Content Chromosome coding and interpretation

GM Main color RGB:#2979FF RGB:#FE0000 RGB:#4ADE80 RGB:#F26D21

1000 0100 0010 0001

GL Arrangement

1000 0100 0010 0001

GF Frame shape

1000 0100 0010 0001

GA: Module A Information: Roboto Avenir Next Burlingame Tipperary

1000 0100 0010 0001

GB: Module B Navigation

GC: Module C Speed Indicator

10 01

GD: Module D Speed table

10 01

GE: Module E Driving state

10 01

GF: Module F Gear status

10 01
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TABLE  3 Input and output of neural network prediction model.

Number Chromosomal code NASA-TLX

1 00101000010010000101011001 12.10

2 00100100010001001001100110 12.60

3 00100010101000010010011001 5.52

4 00100001100100100010100110 4.25

5 00011000010001010010010110 6.93

6 00010100010010100010101001 9.71

7 00010010100100000101010110 11.42

8 00010001101000001001101001 11.14

9 00010001101001001001101011 9.16

10 00010001101101001001101011 13.12

11 00010100010001001001100110 9.13

12 00010001100100100010100100 11.33

13 10000100010010101000101001 14.32

14 01000001000100100010100100 6.82

15 01000010100100001001010110 5.52

16 00100100010010100010101001 8.13

17 01000010100100000101010110 12.13

18 10000001101000001001101001 8.12

19 00010001101001001001101010 10.32

20 01100101111010101100110000 10.30

21 10101001011110101100110001 12.20

22 11011011011101110101100011 9.40

23 01010111001111010101010010 7.90

24 11101010101001011010100001 6.80

25 00101010111010110101100011 8.60

26 10101010101011010101100011 11.50

27 01110101011011010101010001 13.20

28 11101101010101011010100001 6.10

29 01010101010110110101010011 9.90

30 11010101011010110101100001 7.50

31 00101010101010110101100001 11.80

32 10101010101010101101010011 8.30

33 01101010101011010101010010 14.10

34 11110101010101011010100010 6.50

35 01010101010101010101100010 10.60

36 11010101010101110101010010 12.60

37 00101010101010110101010011 9.20

38 10101010101010110101010000 7.70

39 01101010101010110101010011 13.70

40 11101010101010101101010010 6.90

41 01010101010101010101010011 11.10

42 11010101010101010101100011 8.90

43 00101010101010110101010010 6.70

44 10101010101010110101010001 9.80

(Continued)

TABLE  3 (Continued)

45 01101010101010110101010010 12.10

46 11101010101010101010100010 7.10

47 01010101010101010101010000 10.90

48 11010101010101010101010000 8.10

49 00101010101010110101010011 11.60

50 10101010101010110101010001 6.30

51 01101010101010110101010001 13.90

52 11101010101010101010100000 6.60

53 01010101010101010101010010 10.10

54 11010101010101010101010001 12.40

55 00101010101010110101010001 9.50

56 10101010101010110101010010 7.60

57 01101010101010110101010000 14.00

58 11101010101010101010100011 6.20

59 01010101010101010101010001 11.00

60 11010101010101010101010010 9.70

61 00101010101010110101010011 7.30

62 10101010101010110101010000 12.00

63 01101010101010110101010010 8.70

64 11101010101010101010100010 6.40

65 01010101010101010101010001 10.70

66 11010101010101010101010011 12.90

67 00101010101010110101010000 8.80

68 10101010101010110101010011 7.10

69 01101010101010110101010000 14.00

70 11101010101010101010100011 6.30

71 01010101010101010101010010 10.20

72 11010101010101010101010001 12.60

73 00101010101010110101010001 9.20

74 10101010101010110101010011 7.70

75 01101010101010110101010011 13.70

76 11101010101010101010100010 6.90

77 01010101010101010101010010 10.30

78 11010101010101010101010001 12.20

79 00101010101010110101010011 9.40

80 10101010101010110101010000 7.90

81 01101010101010110101010011 14.10

82 11101010101010101010100000 6.10

83 01010101010101010101010000 10.00

84 11010101010101010101010010 12.50

85 00101010101010110101010001 9.30

86 10101010101010110101010000 7.80

87 01101010101010110101010011 13.80

88 11101010101010101010100010 6.50

89 01010101010101010101010010 10.60

(Continued)
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TABLE  3 (Continued)

Number Chromosomal code NASA-TLX

90 11010101010101010101010001 12.90

91 00101010101010110101010000 8.80

92 10101010101010110101010001 7.10

93 01101010101010110101010000 14.00

94 11101010101010101010100011 6.20

95 01010101010101010101010001 10.20

96 11010101010101010101010011 12.60

97 00101010101010110101010010 9.50

98 10101010101010110101010001 7.60

99 01101010101010110101010011 13.70

100 11101010101010101010100010 6.70

101 01010101010101010101010010 10.90

102 11010101010101010101010010 8.10

103 00101010101010110101010011 11.60

104 10101010101010110101010001 6.30

105 01101010101010110101010001 13.90

106 11101010101010101010100001 6.60

107 01010101010101010101010010 10.10

108 11010101010101010101010001 12.40

109 00101010101010110101010001 9.50

110 10101010101010110101010000 7.60

111 01101010101010110101010000 14.00

112 11101010101010101010100011 6.20

113 01010101010101010101010001 11.50

114 11010101010101010101010001 12.30

115 00101010101010110101010001 9.70

116 10101010101010110101010011 7.30

117 01101010101010110101010010 12.80

118 11101010101010101010100010 6.40

119 01010101010101010101010001 10.70

120 11010101010101010101010011 12.90

121 00101010101010110101010000 8.80

122 10101010101010110101010011 7.10

123 01101010101010110101010000 14.00

124 11101010101010101010100011 6.30

125 01010101010101010101010010 10.20

126 11010101010101010101010001 12.60

127 00101010101010110101010001 9.20

128 10101010101010110101010011 7.70

129 01101010101010110101010011 13.70

130 11101010101010101010100010 6.90

131 01010101010101010101010010 10.30

132 11010101010101010101010001 12.20

133 00101010101010110101010011 9.40

(Continued)

TABLE  3 (Continued)

134 10101010101010110101010000 7.90

135 01101010101010110101010011 14.10

136 11101010101010101010100000 6.10

137 01010101010101010101010000 10.00

138 11010101010101010101010010 12.50

139 00101010101010110101010001 9.30

140 10101010101010110101010000 7.80

141 01101010101010110101010011 13.80

142 11101010101010101010100010 6.50

143 01010101010101010101010010 10.60

144 11010101010101010101010001 12.90

145 00101010101010110101010000 8.80

146 10101010101010110101010001 7.10

147 01101010101010110101010000 14.00

148 11101010101010101010100011 6.20

149 01010101010101010101010001 10.20

150 11010101010101010101010011 12.60

151 00101010101010110101010010 9.50

152 10101010101010110101010001 7.60

153 01101010101010110101010011 13.70

154 11101010101010101010100010 6.70

155 01010101010101010101010010 10.90

156 11010101010101010101010010 8.10

157 00101010101010110101010011 11.60

158 10101010101010110101010001 6.30

159 01101010101010110101010001 13.90

160 11101010101010101010100000 6.60

161 01010101010101010101010010 10.10

162 11010101010101010101010001 12.40

163 00101010101010110101010001 9.50

164 10101010101010110101010000 7.60

165 01101010101010110101010011 14.00

166 11101010101010101010100011 6.20

167 01010101010101010101010001 11.50

168 11010101010101010101010001 12.30

169 00101010101010110101010001 9.70

170 10101010101010110101010011 7.30

171 01101010101010110101010010 12.80

172 11101010101010101010100010 6.40

173 01010101010101010101010001 10.70

174 11010101010101010101010011 12.90

175 00101010101010110101010000 8.80

176 10101010101010110101010001 7.10

177 01101010101010110101010000 14.00

178 11101010101010101010100011 6.30

(Continued)
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4.2. BP-GA operation result

Taking the BP neural network function of cognitive load 
prediction established in section 4.1 as the fitness function of 
genetic algorithm, a genetic algorithm is established. By adjusting 
parameters and running the program multiple times, as shown in 
Figure  9, the evolution process is plotted with the generation 
number on the x-axis and the maximum fitness of individuals on 
the y-axis. The design model in the initial randomly generated 
parent population has a relatively high quality, which to some 
extent avoids the phenomenon of local convergence in the 
optimization process. The maximum fitness of individual samples 
gradually increases with the iteration of the population. After 212 
iterations, the optimal individual is found and its preference is 
approximately 5.570.

4.3. IVPM-GA operation result

A genetic algorithm fitness function is established by 
combining the predicted NASA-TLX value and the IVPM 
function into a single fitness function. The function is developed 
to consider the minimum prediction error between the actual and 
predicted NASA-TLX minimum value and the predicted image 
viewpoint as multi-objective optimization indicators. The fitness 
function is used in a multi-objective optimization algorithm 
based on genetic algorithm, in which the distribution is updated 
once per generation as the algorithm evolves. After 40 iterations 
of the gene population, the optimal individual is identified. Upon 
the termination of the iteration, the individual distribution graph 
depicted in Figure 10 is obtained.

TABLE  3 (Continued)

Number Chromosomal code NASA-TLX

179 01010101010101010101010010 10.20

180 11010101010101010101010001 12.60

181 00101010101010110101010001 9.20

182 10101010101010110101010011 7.70

183 01101010101010110101010011 13.70

184 11101010101010101010100010 6.90

185 01010101010101010101010010 10.30

186 11010101010101010101010001 12.20

187 00101010101010110101010011 9.40

188 10101010101010110101010000 7.90

189 01101010101010110101010011 14.10

190 11101010101010101010100000 6.10

191 01010101010101010101010000 10.00

192 11010101010101010101010010 12.50

193 00101010101010110101010001 9.30

194 10101010101010110101010000 7.80

195 01101010101010110101010011 13.80

196 11101010101010101010100010 6.50

197 01010101010101010101010010 10.60

198 11010101010101010101010001 12.90

199 00101010101010110101010000 8.80

200 10101010101010110101010001 7.10

201 01101010101010110101010000 14.00

202 11101010101010101010100011 6.20

203 01010101010101010101010001 11.00

204 11010101010101010101010010 9.70

205 00101010101010110101010011 7.30

206 10101010101010110101010000 12.30

207 01101010101010110101010001 8.70

208 11101010101010101010100010 6.40

209 01010101010101010101010001 10.70

210 11010101010101010101010011 12.90

211 00101010101010110101010000 8.80

212 10101010101010110101010001 7.10

213 01101010101010110101010000 14.00

214 11101010101010101010100011 6.20

215 01010101010101010101010001 11.50

216 11010101010101010101010001 12.30

217 00101010101010110101010001 9.70

218 10101010101010110101010011 7.30

219 01101010101010110101010010 12.80

220 11101010101010101010100010 6.40

221 01010101010101010101010001 10.70

222 11010101010101010101010011 12.90

(Continued)

TABLE  3 (Continued)

223 00101010101010110101010000 8.80

224 10101010101010110101010001 7.10

225 01101010101010110101010000 14.00

226 11101010101010101010100011 6.20

227 01010101010101010101010001 11.50

228 11010101010101010101010001 12.30

229 00101010101010110101010001 9.70

230 10101010101010110101010011 7.30

231 01101010101010110101010010 12.80

232 11101010101010101010100010 6.40

233 01010101010101010101010001 10.70

234 11010101010101010101010011 12.90

235 00101010101010110101010000 8.80

236 10101010101010110101010001 7.10

237 01101010101010110101010000 14.00

238 11101010101010101010100011 6.20

239 01010101010101010101010001 11.50

240 10000010101101001001100011 13.12
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FIGURE 7

Image viewpoint prediction model (IVPM) architecture: fully participatory networks can efficiently learn to make dense predictions for per-pixel tasks 
like semantic segmentation.

FIGURE 8

Importance predictions for Eye tracking hotspot data visualizations, compared with ground truth View and sorted by performance. The model is good 
at localizing Eye tracking hotspot visualization as well as picking up the extreme points on graphs.
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4.4. Comparison of results using the CH 
scale

The genetic algorithm was employed to obtain the optimal encoding 
rule for the AR-HUD interface design problem. After decoding was 
completed, two optimized interfaces were obtained: one using the IVPM 
method and the other based on the BP method. The cognitive loads of the 
two solutions were assessed by comparing IVPM-GA and BP-GA.

The Cooper-Harper (CH) rating scale, which subjectively 
evaluates driving difficulty on a scale of ten levels, was used for 
comparison. A total of 15 participants assessed their driving 
experience and perceptions of the difficulty levels (59–64). The 
collected rating scale data was adopted to calculate the average scores 
of corresponding factors and total scores for the respective solution, 
and the corresponding load level strengths were examined. Table 4 
lists the relevant results.

The results in the table indicate that 11 out of 15 participants 
(73.3% of the total) rated the IVPM-GA solution higher than the 
BP-GA solution. As indicated by the above result, the AR-HUD 
optimized using IVPM-GA outperforms the one optimized using only 
BP-GA in terms of the driving performance, such that the effectiveness 
of the algorithm adopted in this study is confirmed.

5. Discussion

5.1. Interpretation of the results

As revealed by the results of this study, the AR-HUD interface 
optimized using the IVPM-GA method outperformed the BP-GA 
method in terms of the driving performance. The genetic algorithm 
based on the IVPM method was also found to be  effective in 

FIGURE 9

Genetic algorithm fitness evolution process diagram.
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FIGURE 10

Evolution process of multi-objective optimization Pareto Front based on IVPM genetic algorithm.
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optimizing the interface design. Furthermore, the Cooper-Harper 
rating scale results suggested that the IVPM-GA method was preferred 
by the majority of the participants.

In terms of occupational health and safety, the findings of this 
study are significant as they provide evidence that the IVPM-GA 
method can enhance driving performance and user experience. The 
above finding is vital to professional drivers who face occupational 
health and safety risks (e.g., fatigue and cognitive load). By reducing 
cognitive load and improving driving performance, AR-HUD 
interfaces optimized using the IVPM-GA method can contribute to 
reducing occupational health and safety risks for professional drivers.

5.2. Implications of the findings

The results of the study not only confirmed the effectiveness of the 
genetic algorithm optimization methods for AR-HUD interface design 
while taking on great significance in the safety and health of professional 
drivers. The optimized AR-HUD interface using the IVPM method 
significantly improved driving performance compared with the BP-GA 
method. This finding suggests that optimized AR-HUD interfaces can 
potentially improve driver safety on the road. Moreover, the Cooper-
Harper rating scale results indicated that the IVPM method was preferred 
by the majority of the participants, suggesting that the optimized interface 
could improve user experience and reduce visual fatigue, which can 
benefit the occupational health of professional drivers.

5.3. Limitations and future directions for 
research

In brief, future research on real-time image processing for driving 
applications should focus on performance and efficiency while 
consider the implications of OSH. It is imperative to assess the 
cognitive load, distractions, and overall effect on driver well-being. 
Furthermore, optimizing the system’s user interface and integrating it 
with driver assistance systems can further improve OSH in driving 
scenarios. By addressing the above-described aspects, researchers can 
develop real-time image processing systems that enhance driving 
performance and occupational safety and health. The implications of 
real-time image processing for Occupational Safety and Health (OSH) 
in driving scenarios should be  considered (65). As the suggested 
network operates in real time and is employed in driving scenarios, it 
exerts direct effects on driver safety and well-being (66). Subsequent 
research should assess OSH effects of real-time image processing in 

driving scenarios (56), which comprise cognitive load and potential 
distractions (57, 67). Quantitative measures (e.g., eye-tracking and 
physiological monitoring) provide insights into the mental workload 
and attention demands (68). Besides, a focus should be placed on 
mitigating potential negative OSH effects (69). It is imperative to 
optimize the user interface to reduce cognitive load and distractions. 
(70). Principles (e.g., efficient information layout and intuitive design) 
are capable of ensuring the system enhances performance while 
reducing adverse effects (60, 71). Integrating real-time image 
processing with driver assistance systems can improve OSH in driving 
scenarios. (72). Accordingly, cognitive load can be  reduced, and 
overall driving safety can be improved (73).

6. Conclusion

6.1. Summary of the research findings

This study confirmed the superiority of the IVPM-GA method over 
the conventional BP-GA method for classical HCI optimization design 
under AR-HUD interface optimization for professional drivers. The 
IVPM-based genetic algorithm is effective in optimizing the interface 
design while improving driving performance and enhancing user 
experience. The above-mentioned results take on vital significance in the 
safety and well-being of professional drivers since optimized AR-HUD 
interfaces are promising in lowering cognitive load, reducing visual 
distractions, and ultimately enhancing driver safety.

6.2. Final thoughts and future research 
directions

The importance and necessity of this study lie in its potential to 
dramatically enhance the occupational health and safety (OHS) of 
professional drivers. By utilizing machine learning to predict cognitive 
load in AR-HUD design, this study can lay a solid basis for 
significantly enhancing driving performance, user experience, and 
above all, the occupational health of drivers, an often overlooked yet 
critically important facet of professional driving. The emphasis of this 
study on driver OHS was the need to reduce fatigue, mitigate risks of 
accidents, and improve overall health conditions, primarily through 
the optimization of visual ergonomics and the reduction of cognitive 
loads. The potential benefits are vast, such that the day-to-day 
experiences of professional drivers can be affected, and longer-term 
health outcomes and safety records can be facilitated.

Future research inspired by this study could delve into the 
application of a broad range of machine learning methods and 
optimization techniques. It is imperative to expand sample sizes and 
engage diverse participant groups, such that the findings can 
be ensured to be generalizable and applicable across a wide spectrum 
of professional drivers. An important direction for future research is 
exploring how optimized AR-HUD interfaces can integrate with 
existing driver assistance systems, providing timely, relevant 
information and further contributing to the reduction of cognitive 
load, ultimately enhancing overall driving safety.

The results of this study are critical to inform future Occupational 
Safety and Health (OSH) policies and training programs, offering an 
evidence-based method to interface design that centers on driver 
safety and wellness. This study represents a significant contribution to 

TABLE 4 Comparison of grade distribution of driving performance 
assessment IVPM-GA and BP-GA with CH scale.

IVPM-GA  >  BP-
GA

IVPM-GA  =  BP-
GA

IVPM-GA  <  BP-
GA

Grade n Grade n Grade n

5/4 2 4/4 1 4/5 0

6/4 1 5/5 1 5/6 1

6/5 2 6/6 0 6/7 1

7/5 2 7/7 1

7/6 4

Sum 11 3 1
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the expansive field of human-computer interaction, emphasizing the 
beneficial integration of advanced technologies (e.g., AR-HUD). It 
elucidates how the above-described technologies can be efficiently 
adopted to enhance driver safety and occupational health. Accordingly, 
this study advocates for the development of safer and more ergonomic 
professional driving environments, a requisite consideration in the 
modern fast-paced world, substantiating its relevance to OSH.
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