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Background: Identifying lifestyle factors associated with cognitive decline has 
critical clinical and public health implications for dementia prevention in later life. 
The longitudinal associations of sleep and physical activity with cognitive function 
remain unclear. This study examined whether objectively measured sleep and 
physical activity were longitudinally associated with cognitive function in older 
adults over a three-year period.

Methods: This prospective cohort study enrolled 855 community-dwelling adults 
aged 65 and older, who were followed from 2015 to 2019. All participants were 
required to wear a wearable sensor for 7 consecutive days every 3  months and had 
annual cognitive assessments. Wearable sensor data (August 2015–September 
2019) and Mini-Mental State Examination (MMSE) scores (August 2015–April 2019) 
were collected over 3  years of follow-up. First, principal component analysis was 
conducted to reduce the dimensions of the sleep and physical activity variables to 
two principal components for inclusion in a mixed-effects model. The sleep index 
consisted of sleep efficiency, time awake after sleep onset, and waking frequency. 
The physical activity index was composed of walking comprised steps per day 
and time devoted to light or moderate-to-vigorous physical activity. A higher 
sleep index indicated poor sleep quality, whereas a lower physical activity index 
indicated less physical activity. Second, a linear mixed effect model was used to 
examine the longitudinal association of sleep and physical activity indices with 
cognitive decline over time.

Results: In total, 855 adults were recruited for this study at baseline. Of these, 
729 adults (85.3%) completed a measurement of lifestyle factors and an annual 
cognitive testing, whereas 126 were excluded because of death or loss during 
follow-up. After adjusting for age, sex, education level, and time, the sleep index 
was inversely associated with MMSE scores (estimate, −0.06229; standard error, 
0.02202; p =  0.0047) and the physical activity index was positively associated with 
MMSE scores (estimate, 0.06699; standard error, 0.03343; p =  0.0453).

Conclusion: Poor sleep quality and lower physical activity were significant 
risk factors for subsequent cognitive decline in older adults. The present study 
facilitates the development of novel evidence-based interventions for physical 
activity and sleep quality to delay cognitive decline.
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Introduction

Dementia is a major public health issue globally because of 
population aging. The prevalence of dementia among people aged 
60 years and older in Japan was approximately 5.1 million in 2016, 
and if current trends are maintained, it is estimated that 5.03 
million people will develop dementia in 2025 (1). Therefore, 
identifying modifiable risk factors is critical for providing 
information about public health strategies for dementia prevention 
and improving patient quality of life. Cohort studies indicated that 
lower levels of education, vascular risk factors, unhealthy lifestyles, 
and hearing loss have adverse effects on cognitive function (2, 3). 
Sleep disturbance and physical inactivity, in particular, are major 
concerns in an aging society and important risk factors for 
dementia or Alzheimer’s disease (AD) later in life (2–5). The 
majority of previous cohort studies have examined the association 
between self-reported sleep or physical activity at baseline and 
subsequent cognitive decline or incidence dementia (6, 7). 
Subjective self-report questionnaires, however, have poor 
reliability and consistency due to recall bias or misclassification (8, 
9), and are limited to capture nonexercise physical activity that 
accounts for most of the energy expenditure among older adults. 
Recently, wearable sensors have been used to evaluate lifestyle 
factors in large epidemiological studies because they provide 
noninvasive, cost-effective tools for the objective and continuous 
measurement of total daily physical activity and sleep patterns 
without recall bias. Moreover, longitudinal studies are valuable in 
determining the prospective association between habitual sleep or 
physical activity and the risk of subsequent cognitive decline or 
development of dementia (10–18). In fact, previous studies linking 
objective sleep with cognitive function showed the association of 
lower sleep efficiency, longer sleep latency, and sleep fragmentation, 
such as greater wakefulness and number of long wake episodes, 
were subsequent cognitive decline the risk of developing AD (10–
13) and those linking objective physical activity with cognitive 
function showed the association of total physical activity with 
lower risk of cognitive decline (14–18). However, these studies 
objectively measured sleep and physical activity using wearable 
sensor only at baseline. Since the sleep–wake cycle, physical 
activity, and Mental State Examination (MMSE) scores change 
with aging (19–21), periodic measurement of sleep, physical 
activity, and cognitive function over follow-up period is helpful in 
understanding their dynamic association. Although several studies 
have examined the longitudinal association between change in 
self-reported sleep or physical activity and subsequent cognitive 
decline over time (22–27), to the best of our knowledge, few 
studies have focused on the longitudinal associations of objectively 
measured sleep and physical activity with cognitive function. 
Therefore, we conducted a prospective cohort study to determine 
the longitudinal association of objectively measured lifestyle 
factors with MMSE scores in community-dwelling older adults 
from 2015 to 2019. The aim of this study was to determine whether 
lifestyle factors were longitudinally associated with cognitive 
decline over a three-year period. We hypothesized that poor sleep 
quality or low physical activity would be associated with cognitive 
decline. The present study may improve the understanding of the 
influence of modifiable lifestyle factors on cognitive function in 
later life.

Methods

Study participants

The Usuki study is a prospective cohort study of non-demented 
community-dwelling older adults conducted from August 2015 to 
September 2019 in Usuki, Oita Prefecture, Japan exploring risk and 
protective lifestyle factors for cognitive decline in later life (28, 29). 
The detailed design and methods have been described elsewhere (28). 
The inclusion criteria were as follows: (1) age ≥ 65 years; (2) residing 
in Usuki; (3) physically and psychologically healthy; (4) absence of 
dementia; and (5) independent function regarding activities of daily 
living. Participants who self-reported a dementia diagnosis or the use 
of dementia medication were excluded. This study was limited to 
adults aged 65 years and older because of their high risk of cognitive 
impairment or dementia and the target of the intervention. All 
participants were required to wear a wristband sensor (Silmee™ 
W20, TDK Corporation, Tokyo, Japan) continuously except when 
bathing for seven consecutive days every three months (four times 
per year) and to undergo annual cognitive assessments using the 
MMSE over a three-year follow-up period. Valid sensing data was 
defined as those obtained over least 3 days in one period and in at 
least two period per year as previously described (30). The mean 
[standard deviation (SD)] total measurement period was 89.2 (25.3) 
days. The MMSE results were reviewed by a neurologist and clinical 
psychologist for the primary screening for dementia. Demographic 
information, including age, sex, education level, body mass index, 
medication history, and dementia diagnosis or administration of 
dementia medication in the local hospital were obtained from the 
participants and their closest relatives via face-to-face clinical 
interviews by trained medical staff every year. At the baseline, 855 
older adults {317 men (37.1%) and 538 women (62.9%), with a 
median age of 73 years [interquartile range (IQR): 69–78] and a 
median educational level of 12 years (IQR: 11–12)} who met the 
criteria had valid sensing data for analysis. The numbers of 
participants from whom valid wearable sensor data and cognitive 
testing results were completely collected during follow-up were 793 
(92.7%) in second year (from 2016 to 2018) and 729 (85.3%) in the 
third year (from 2017 to 2019). Of the remaining 126 (14.8%) 
participants, 10 (1.2%) died, 69 (8.1%) refused to participate in this 
study, 23(2.7%) were lost to follow-up, and 24 (2.8%) had incomplete 
sensing or medical data (Figure  1). This prospective study was 
conducted in accordance with the Helsinki Declaration and was 
approved by the local ethics committee of Oita University Hospital 
(UMIN000017442). All participants provided written 
informed consent.

Wearable sensor data

We excluded data indicating that the wristband sensor had been 
removed according to the heart rate. Variables were calculated by 
summing the sensor data collected on each day. Sleep–wake 
variables such as the total sleep time (TST), sleep efficiency, time 
awake after sleep onset (WASO), and waking frequency were 
measured during nighttime. The time of sleep onset was defined as 
the clock time when the first 20 min block of the resting state 
without movement began. Nocturnal waking was defined as 
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5–90 min of continuous movement during a continuous sleep 
period. Sleep efficiency was calculated as a percentage of TST versus 
the time spent in bed. WASO and waking frequency were calculated 
by averaging the total number of minutes awake after sleep onset 
and the number of awakenings per day, respectively. Naptime was 
defined as the resting period without movement on the wearable 
sensor during daytime. Physical activity data were detected by a 
three-axis accelerometer that measured acceleration in three 
perpendicular axes. Data were captured continuously and 
summarized in 1 min intervals. Steps were defined as walking in the 
frequency range of 2–3 Hz of acceleration as detected by the 
wristband sensor. Additionally, this device computed the intensity 
of activity as metabolic equivalents (METs). We classified physical 
activity intensity into three categories, namely sedentary behavior 
(≤1.5 METs), light physical activity (LPA; 1.6–2.9 METs), and 
moderate-to-vigorous physical activity (MVPA: ≥3.0 METs), as 
previously described (31). The absolute time spent in sedentary 
behavior, LPA, and MVPA was measured when participants were 
awake. We verified the measurement accuracy for walking steps and 
sleep time by comparing the sensor data with video observation 
data in healthy adults aged 20–80 years (28). Significant correlation 
was found between sleep duration and walking steps from 
wristband sensor and those from video observation (r = 0.9995, 
r = 0.9869, respectively, Pearson correlation).

Statistical analysis

We first conducted principal component analysis (PCA) to 
reduce the dimensions of the various sleep and physical activity 
variables to two principal components for inclusion in a mixed-
effects model. PCA was used to rank the physical activity and sleep 
variables by their relative importance and reduce the dimensionality 
of highly correlated original variables, including TST, sleep 
efficiency, WASO, waking frequency, and naptime, steps per day, 
LPA, MVPA, sedentary behavior at baseline. All 9 variables were 

subjected for PCA. Two main principal components emerged with 
eigenvalues >2. These components were extracted by contributing 
six variables with relatively high loadings to two components, such 
as the sleep and physical activity indices. Assuming the estimated 
component loadings were invariant to follow-up times, baseline 
scoring algorithm was applied to all follow-up variables to construct 
two time-varying. A linear mixed-effects model was used to examine 
whether the two time-varying indices were longitudinally associated 
with MMSE scores during follow-up after controlling age, sex, 
education level as potential confounders. The effect of follow-up 
time was modeled as discrete, and the interaction between two time-
varying indices and follow-up time was not included in the model 
due to clinical and statistical difficulties in parameter interpretation. 
Compound-symmetry structure was specified for within-subject 
serial correlation among repeated-measures of MMSE by including 
random intercept term in the model. Statistical analyses were 
conducted using IBM SPSS Statistics version 25.0 (IBM Corp., 
Armonk, NY, United States) and JMP Pro 14.2.0 (SAS Institute Japan 
Ltd., Tokyo, Japan).

Results

Clinical and demographic characteristics

Table  1 summarizes the annual changes in demographic 
characteristics, MMSE scores, and wearable sensor data of all 
participants. At baseline, the mean (SD) daily TST was 410.7 min 
(68.6), the median (IQR) daily sleep efficiency was 96.4% (94.3–97.9), 
the median (IQR) daily WASO was 15.4 min (8.6–24.4), the median 
(IQR) waking frequency was 0.38 times/day (0.22–0.6), and the 
median (IQR) naptime was 34.8 min/day (18.7–61.9 min). The median 
(IQR) steps per day was 5,113 (3337.4–7093.5), the median (IQR) 
times devoted to LPA, MVPA, and sedentary behavior were 21.1 
(11.9–33.7), 23.6 (14.1–37.1), and 782 min/day (733.1–821.7), 
respectively. The median (IQR) MMSE score was 29 points (27–30) 
at baseline.

Principal component analysis

The sleep and physical activity indices were derived from wearable 
sensor data using principal component analysis. The first principal 
component termed the “sleep index” was mainly dominated by sleep 
efficiency, WASO, and waking frequency, whereas the second principal 
component termed the “physical activity index” was mainly 
dominated by steps per day, LPA, and MVPA (Figure  2). Sleep 
efficiency moved in the opposite direction of WASO and waking 
frequency, whereas steps per day, LPA, and MVPA moved in the 
same direction.

The sleep index was calculated as follows:
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The physical activity index was calculated as follows:

FIGURE 1

Flow of participant recruitment. 855 older adults who met the criteria 
had valid sensing data for analysis in the first year. The number of 
participants from whom valid wearable sensor data and cognitive 
testing results were completely collected during follow-up was 793 
(92.7%) in the second year and 729 (85.3%) in the third year.
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Therefore, a higher sleep index indicated poor sleep quality, 
whereas a lower physical activity index indicated less physical activity. 
These two principal components that accounted for 58.7% of the total 
variance of the data.

Association of time-specific changes in 
physical activity and sleep variables with 
those in MMSE score

Table 2 presents the results of the linear mixed-effects models 
estimating the longitudinal associations of the physical activity index, 
sleep index, and demographic factors with MMSE scores. After 
adjusting for age, sex, education level, and time, time-specific changes 
in the physical activity index were positively associated with MMSE 
scores (estimate, 0.06699; standard error, 0.03343; p = 0.0453), whereas 
those of the sleep index were inversely associated with MMSE scores 
(estimate, −0.06229; standard error, 0.02202; p = 0.0047).

Discussion

In this prospective cohort study, we  identified longitudinal 
associations of objectively and simultaneously measured sleep and 
physical activity with MMSE score over a three-year follow-up period 
in community-dwelling older adults. Our findings indicated that poor 
sleep quality and lower level of physical activity were associated with 
cognitive decline. The present study findings contribute to the 
development of novel evidence-based interventions for sleep quality 
and physical activity in older adults to delay cognitive decline.

The most interesting finding of the present study was the 
longitudinal association of objectively measured sleep quality with 
cognitive decline. Sleep is important for memory consolidation and 
health-related quality of life. Sleep disturbances affect up to 50% of 
community-dwelling older adults and are bi-directionally linked to an 
increased risk of cognitive decline, or AD (4, 5). Previous population-
based prospective studies commonly demonstrated that baseline levels 
of self-reported or objectively measured sleep variables, such as 
abnormal sleep duration, lower sleep efficiency, higher WASO or 

TABLE 1 Clinical and demographic characteristics of all participants.

Characteristics First year (n =  855) Second  year (n =  793) Third year (n =  729)

Age, median (IQR), years 73 (69–78) 74 (70–78) 75 (71–79)

Sex (M:W) 317:538 289:504 263:466

Educational level, median (IQR), years 12 (11–12) 12 (11–12) 12 (11–12)

BMI, median (IQR), kg/m2 23 (21.1–25.1) 23 (21.2–25.1) 23.2 (21.4–25.2)

MMSE, median (IQR), score 29 (27–30) 29 (28–30) 29 (28–30)

TST, mean (SD), min/day 410.7 (68.6) 410.1 (70) 411.7 (70)

WASO, median (IQR), min/day 15.4 (8.6–24.4) 15.9 (8.6–24.9) 16 (8.2–25.7)

Sleep efficiency, median (IQR), %/day 96.4 (94.3–97.9) 96.2 (94.2–98) 96.4 (94–98)

Waking frequency median (IQR), times/day 0.38 (0.22–0.6) 0.4 (0.22–0.6) 0.38 (0.21–0.63)

Naptime, median (IQR), min/day 34.8 (18.7–61.9) 35.3 (18.7–61.4) 35.6 (18.9–64.8)

Walking steps, median (IQR), steps/day 5,113 (3,337.4–7,093.5) 5,022.8 (3,175.2–6,910.5) 4,706 (3,123.2–6,900.7)

LPA, median (IQR), min/day 21.1 (11.9–33.7) 21.5 (12–32.7) 19.6 (11–31.9)

MVPA, median (IQR), min/day 23.6 (14.1–37.1) 22.3 (12.8–35.1) 21.2 (12.2–33.8)

Sedentary, median (IQR), min/day 782 (733.1–821.7) 780.4 (733.1–824.2) 783.1 (731.7–825.8)

IQR, interquartile range; M, man; W, woman; BMI, body mass index; MMSE, mini-mental state examination; SD, standard deviation; min, minute; TST, total sleep time; WASO, time awake 
after sleep; LPA, light physical activity; MVPA, moderate-to-vigorous physical activity.

FIGURE 2

Principal component analysis of the variables. Principal component 
analysis reduced the dimensions of the various lifestyle factors to 
two principal components. The direction and relative importance of 
each variable are indicated by arrows. PCs 1 and 2 explained 32.6% 
and 26.1% of the total data variance, respectively. LPA, light physical 
activity; MVPA, moderate-to-vigorous physical activity; PC, principal 
component; TST, total sleep time; and WASO, time awake after sleep.
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waking frequency, poor sleep quality, and longer sleep latency were 
associated with an increased risk of cognitive decline or dementia in 
cognitively healthy older adults (10–13). However, another study 
showed no significant association between self-reported sleep patterns 
and cognitive decline in older women (32). On the other hand, only a 
few studies have examined the longitudinal association between self-
reported sleep variables and cognitive decline (22–24). These studies 
found an association between chronic insomnia and adverse changes 
in sleep duration (decreased from 6–8 h or increased from 7 or 8 h) 
and an increased risk of cognitive decline over 3–5 years of follow-up. 
Our results suggested that maintaining sleep quality with age was an 
important determinant in preventing dementia. The potential 
mechanisms linking sleep and cognitive function have been identified 
in human and animal models of AD (33–35). The physiological 
fluctuations in amyloid β (Aβ) are disrupted in AD mouse models and 
the older adults with an amyloid burden on PET imaging (33, 34). 
Furthermore, sleep deprivation acutely increased soluble Aβ levels in 
the interstitial fluid and chronically developed amyloid plaque 
formation in a mouse model of AD (34) and one night of sleep 
deprivation is negatively associated with amyloid burden in the 
human brain (35). These results suggested that chronic sleep 
deprivation increased Aβ production and reduce Aβ clearance, leading 
to amyloid plaque formation.

Another interesting finding of the present study was the 
longitudinal association of physical activity index with MMSE score 
over time. Physical activity is an important protective factor for 
age-related cognitive decline. Previous population-based prospective 
studies consistently found that lower levels of self-reported or 
objectively measured physical activity, such as total daily physical 
activity, total energy expenditure, low-to-moderate or vigorous 
physical activity, and walking, at baseline were associated with 
cognitive decline or an increased risk of AD in older adults (14–18). 
To the best of our knowledge, only a few studies have examined the 
dynamic association between self-reported physical activity and 
cognitive function (25–27). These studies found that physical activity 
duration or intensity were longitudinally associated with cognitive 
decline over a 10-year follow-up period. The present study is the first 
to confirm the longitudinal association between objectively measured 
physical activity and cognitive function in older adults. These findings 
suggest that maintaining physical activity with age is an important 

determinant in preventing dementia. Several possible mechanisms 
underlying the protective effect of physical activity on cognitive 
function have been proposed on the basis of human and animal 
studies (36–41). Physical activity may increase cerebral blood flow by 
reducing vascular risk factors (36), directly promoting neurogenesis 
(37), angiogenesis (38), synaptic plasticity, and stimulating 
neurotrophic factors (39). Moreover, physical activity was associated 
with a decreased Aβ burden on positron emission tomography 
imaging and higher Aβ42 levels in the cerebrospinal fluid of 
non-demented older adults as well as decreased amyloid plaques in a 
transgenic mouse model (40, 41).

This study had several strengths, including a large and prospective 
population-based cohort, objective measurements of lifestyle factor 
every three months and assessment of the MMSE every year over 
three years of follow-up. However, several limitations must 
be considered. First, the possibility of reverse causation could not 
be ruled out due to the relatively short follow-up period. Although 
we collected clinical information to define the presence or absence of 
dementia at baseline, patients with preclinical dementia could not 
be  completely excluded from participating in the current study. 
Second, the 126 participants who were excluded from the analysis 
were older and had lower MMSE scores and physical activity levels 
than those who completed the follow-up (Supplementary Table S1). 
Therefore, excluding these participants may cause distortions in the 
results. Third, the use of the MMSE, which is widely used to screen 
patients with cognitive decline has limitations due to ceiling effects in 
community-dwelling cohorts.

Conclusion

We confirmed that poor sleep quality and lower levels of physical 
activity were associated with subsequent cognitive decline over 3 years 
of follow-up in community-dwelling older adults. As sleep disturbance 
and physical inactivity are major problems in an aging society, 
we  recommended intervention for improving these variables to 
prevent dementia or AD in older adults.
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