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Recurrent outbreaks of zoonotic infectious diseases highlight the importance of 
considering the interconnections between human, animal, and environmental 
health in disease prevention and control. This has given rise to the concept of One 
Health, which recognizes the interconnectedness of between human and animal 
health within their ecosystems. As a contribution to the One Health approach, this 
study aims to develop an indicator system to model the facilitation of the spread of 
zoonotic diseases. Initially, a literature review was conducted using the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement 
to identify relevant indicators related to One Health. The selected indicators 
focused on demographics, socioeconomic aspects, interactions between animal 
and human populations and water bodies, as well as environmental conditions 
related to air quality and climate. These indicators were characterized using 
values obtained from the literature or calculated through distance analysis, 
geoprocessing tasks, and other methods. Subsequently, Multi-Criteria Decision-
Making (MCDM) techniques, specifically the Entropy and Technique for Order 
of Preference by Similarity to Ideal Solution (TOPSIS) methods, were utilized to 
combine the indicators and create a composite metric for assessing the spread 
of zoonotic diseases. The final indicators selected were then tested against 
recorded zoonoses in the Valencian Community (Spain) for 2021, and a strong 
positive correlation was identified. Therefore, the proposed indicator system can 
be valuable in guiding the development of planning strategies that align with the 
One Health principles. Based on the results achieved, such strategies may prioritize 
the preservation of natural landscape features to mitigate habitat encroachment, 
protect land and water resources, and attenuate extreme atmospheric conditions.
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1. Introduction

Zoonotic diseases pose a significant public health concern, with over 70% of emerging 
diseases being transmitted from animals to humans and 60% of human infectious diseases being 
shared with animals (1). This means that zoonotic diseases have played a role in recent outbreaks, 
including Ebola and coronavirus pandemics, as well as in well-known foodborne illnesses. These 
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diseases can be  transmitted not only through direct contact with 
animals or vectors, or the ingestion of animal products, but also 
through the consumption of contaminated vegetables grown in areas 
where domestic or wild animal manure or irrigation water is used (2).

The transmission of zoonotic diseases is a complex and 
multifactorial process, making it difficult to manage and predict due 
to the interconnected elements involved. Therefore, an 
interdisciplinary approach is necessary; focusing not only on disease 
surveillance but also on the development of predictive models (3).

The concept of One Health is crucial for today’s sustainable 
human development. One Health is “an approach that recognizes 
people’s health, closely connected to the health of animals and our 
shared environment” (4). The recurrence of outbreaks of emerging 
and re-emerging zoonotic diseases has emphasized the importance of 
the One Health approach, which acknowledges the interconnectedness 
of human, animal, and environmental health (5, 6). Achieving One 
Health requires a comprehensive understanding of the complex 
interactions and feedback between these systems and the identification 
of interventions that can promote positive outcomes for all (7). 
However, measuring progress toward One Health goals remains 
challenging, and various initiatives have employed different indicator 
systems to address this issue (8–10).

There is an ongoing debate on the most effective way to measure 
progress toward One Health goals (11–14), but there is a clear 
relationship between contagious diseases and spatial configurations 
and conditions (15, 16). The exponential growth of human population 
has disrupted the interface between humans, animals, and the 
environment through increased urbanization and the expansion of 
livestock and agricultural areas (17). These processes lead to the 
fragmentation of wildlife habitats that increase interspecies friction 
and the spread of pathogens. For example, it has been argued that 
certain infectious diseases are exacerbated by factors such as rapid 
urbanization, large migrant workers populations, climate change, 
ecological changes, and policies like deforestation (18).

Spatial assessment of disease susceptibility or transmissibility is 
crucial for the One Health approach as it helps identify areas where 
zoonotic diseases are more likely to occur and spread. Understanding 
the relationship between different spatial configurations and the 
spread of pathogens is essential to reduce the transmission of 
infectious diseases (17, 19, 20). However, it is a complex and 
challenging subject.

The number of publications examining the relationship between 
spatial configuration and the spread of infectious diseases increased 
from 100 in 2000 to over 700 publications in 2017 (20). This highlights 
the growing interest in this field and the motivation behind conducting 
a systematic literature review to better understand what had been 
done previously.

Previous research has addressed this issue from different 
perspectives. There is a general trend toward interdisciplinary 
strategies (17), although the focus has often been on program 
implementation rather than contextual research (21). More 
specifically, the analysis diverges in multiple directions. The interest in 
modeling methodologies has been of particular interest, but different 
approaches have been taken. Some authors have incorporated census 
data, land use information, and population mobility into their model 
design (22), while others have examined multiple cases to understand 
how mathematical models can generate robust evidence and shape 

effective public health policies at local and global levels (23). Recent 
research shows a notable trend toward automation and the 
development of more complex models.

Significant research has attempted to understand how proximity 
to Green Infrastructure (GI), which refers to a network of natural and 
semi-natural areas, can help improve human health (24). Other 
studies have focused on zoonoses related to ecosystems, assessing 
their impact on human health while examining the existing evidence 
of ecological responses to global changes (25). Recent studies have 
emphasized the need for a holistic approach within the concept of One 
Health to predict and prevent future pandemics (26, 27). Some models 
have considered different spatial conditions (28), while others have 
focused on specific species (29). An important percentage analyzed 
specific outbreaks in detail (e.g. (30–33),). In these cases, the 
proliferation of Geographic Information Systems (GIS) has 
contributed to a better understanding of the role of space in pathogen 
spillover (34, 35). For more details, refer to (36–39).

In general, the study of previous research has provided insights 
into the strong relationship between the spread of diseases and various 
spatial conditions. However, we could not find any studies specifically 
addressing how these spatial conditions could represent susceptibility 
or weaknesses that contribute to the faster, stronger, or broader spread 
of zoonotic diseases. Apart from the previously mentioned approaches, 
some authors have worked on developing indicators to better 
understand One Health conditions (8, 9, 40), but they used qualitative 
research based on binary logic, were conducted at the regional/
national scale, or were somehow not holistic and complex enough to 
capture all the conditions prevailing in the area. In other words, to 
address a given area using the One Health framework, holistic tools to 
assess its spatial susceptibility need to be developed.

This research helps to fill this knowledge gap by developing a 
spatial indicator system that models the facilitation of zoonotic 
diseases spread, providing insights into a region’s contribution to 
One Health. The proposed indicator system takes a multidimensional 
approach for One Health, incorporating indicators of human, 
animal, and environmental health, as well as their interactions. 
We  apply this indicator system to the region of Valencia, Spain, 
which exhibits diverse ecosystems and land uses including 
agriculture, urban areas, and natural areas. The novelty of this 
research lies in the development of a practical tool for measuring a 
region’s contribution to One Health.

As mentioned earlier, One Health requires collaboration among 
different sectors and stakeholders (41–43). This case study aims to 
provide policymakers, researchers, and practitioners with a practical 
tool for monitoring progress toward One Health goals and identifying 
areas for intervention and improvement. Furthermore, our study seeks 
to evaluate the usefulness and validity of the proposed indicator 
system by comparing its results with infectious disease records in the 
case study area and assessing the potential role of GI in achieving 
One Health.

This document is structured as follows: first, we  review the 
literature on One Health and indicator systems. Second, we describe 
the methodology employed to develop the indicator system and apply 
it to the region of Valencia, Spain. Third, we present the results of our 
case study and evaluate the utility and validity of the proposed 
indicator system. Finally, we discuss the implications of our findings 
and provide recommendations for future research.
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2. Materials and methods

The steps for designing and applying the proposed indicator 
system are depicted in Figure 1. A systematic literature review was first 
conducted to gain insights into the breadth of prior research on using 
indicators for One Health goals. The outcomes of the literature review 
were used to select a list of indicators that encompassed aspects related 
to animal, human, and environmental health. GIS and Multi-Criteria 
Decision-Making (MCDM) methods were employed to characterize, 
weight, and aggregate the shortlisted indicators. This resulted in a 
composite index that reflects the contributions of a region’s spatial 
context to One Health. These index values were then compared with 
the area covered by GI to assess its impact on One Health.

2.1. Selection of indicators

The indicators were selected based on the results of a literature 
review conducted according to the Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses (PRISMA) statement (44). 
The literature review aimed to answer the research question: are there 
any indicators or metrics that have been consistently used to address 
One Health issues? Finding an answer to this question should result 
in a set of indicators ranked by their frequency of use in previous 
research. The inclusion criteria for the review were as follows:

 • The publications are original research articles.
 • The articles are indexed in the Scopus, Web of Science or 

PubMed databases.

 • The year of publication of the documents is equal to or later 
than 2004.

 • The articles are published in English.

Review articles, conference papers, and books were excluded 
from the eligible items to focus on original research contributions 
that utilized indicators to address the One Health initiative. The 
search included the Scopus, Web of Science, and PubMed 
databases because of their extensive journal coverage, temporal 
range, and relevance to medical research, respectively (45). The 
time frame was limited to 2004 onwards, aligning with the year 
when the term One Health was coined (46, 47). The documents 
had to be written in English because of its consideration as the 
language of science (48).

The search query included the terms “one health,” and either 
“indicator*” or “metric*” in the title, abstract, or keywords of the 
documents. Additional specific terms related to different facets of the 
One Health concept, particularly those with spatial implications, were 
also incorporated into the search query. Eq. (1) presents the search 
query used in the Scopus database.

TITLE-ABS-KEY [“one health” AND (“indicator*” OR  
“metric*”)] AND [“agricultur*” OR “air” OR “biodiversity”  
OR “climate change*” OR “disease*” OR “ecologic*” OR  
“ecosystem*” OR “epidemi*” OR “food” OR “forest*” OR  
“habitat” OR “land use*” OR “livestock” OR “pollution”  
OR “population” OR “soil” OR “urban*” OR “warming”  
OR “water” OR “wildlife”] AND LIMIT-TO (DOCTYPE,  
“ar”)] AND [LIMIT-TO (PUBYEAR, 2022–2004)  
AND LIMIT-TO (LANGUAGE, “English”]. 

(1)

FIGURE 1

Components of the indicator system to measure the facilitation of the spread of zoonotic diseases.
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The results from the databases were combined to eliminate 
duplicates. Aside from the fields returned directly from the query 
(authors, year, title, abstract, and keywords), a few others were added 
manually to gather more specific information. One of these fields was 
used to track the reasons for discarding initially eligible articles. This 
could be for a variety of reasons, including the article being a review 
that is not labeled as such, misinterpretation of search query terms 
(e.g., “one’s health” instead of “one health”), or the absence of suggested 
indicators. Invalid documents could be identified through reading the 
abstracts or full texts.

Six additional fields were related to the dimensions of One Health. 
Three fields indicated whether articles emphasized animal, human, or 
environmental health, while the other three fields recorded the specific 
terms used for each dimension. Two binary fields were included to 
indicate whether the articles considered GI and whether they had a 
spatial component. Another pair of fields compiled the indicators 
proposed in the papers and derived from reading them.

The screened documents were processed to generate frequency 
counts from the words contained in some fields, particularly keywords, 
and indicators, as well as the binary data on the dimensions of One 
Health and the presence of GI and spatial approaches. After 
reclassification and standardization, this analysis revealed the main 
trends found in the articles and created a hierarchy of the most 
frequently recurring indicators for modeling One Health.

2.2. Processing of indicators

Due to the orientation of the study on the role of spatial planning 
in the facilitation of zoonotic disease spread, the indicators were 
designed in a way that allowed them to be  characterized using 
GIS. This involved applying geoprocessing tools to conduct spatial 
analyses regarding densities, distances, or algebraic operations. The 
resulting maps were then used to calculate descriptive statistics (mean 
or sum) per administrative unit through zonal calculations.

The outputs of this characterization process enabled the creation 
of a matrix of m  indicators assessed with xij values across n  
administrative units. This arrangement resembles an MCDM problem, 
where multiple alternatives are evaluated depending on a set of criteria 
(49). MCDM problems broadly consist of two steps: weighting of 
criteria (indicators) and assessment of alternatives (administrative 
units) across the weighted criteria (50). Given the multiple branches 
that stem from the concept of One Health, the selection of indicators 
aimed to capture different aspects of environmental, human, and 
animal health.

2.2.1. Weighting of indicators
The weighting of indicators was performed using the Entropy 

Method (EM), which was proposed by Zeleny (51) to objectively 
calculate the weights of criteria in decision-making processes. The 
importance of a criterion is assumed to be proportional to the amount 
of information it provides about the alternatives. The idea is to give 
more weight to the criterion that can better discriminate the other 
options, i.e., the criterion that shows greater diversity when evaluating 
the other options. The higher the entropy (E jj), the lower the 
diversity (1− E j).

In this study, the EM was employed to determine the weights of 
indicators based on their differentiation. Indicators that exhibited 

more distinct values across the administrative units contained more 
information and had lower entropy (52). This implies large weights for 
indicators with low entropy values and vice versa. For example, if all 
administrative units had very similar values (e.g., from 0.5 to 0.6) 
regarding a particular indicator, that indicator would be given a low 
weight. Conversely, if another indicator exhibited a wide range of 
values (e.g., from 0.1 to 0.9) across the administrative units, it would 
be assigned a higher weight.

To enable a proper comparison of the index dimensions within 
the decision-making matrix a max-min transformation was applied 
to normalize the values xij of the m  indicators across the n  
administrative units, as shown in Eq. (2). Transformation ensured that 
the indicator values were on a comparable scale.
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where max x j  and min x j are the maximum and minimum values 
among the alternatives for indicator j . The entropy E j of each 
indicator was determined from the normalized values rij as formulated 
in Eq. (3).
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those indicators that contain more information, the weights wj were 
computed as defined in Eq. (4).
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2.2.2. Ranking of administrative units
Once the weights were determined, the Technique for Order of 

Preference by Similarity to Ideal Solution (TOPSIS) (53) was utilized 
to aggregate them and generate a composite measure of each 
administrative unit’s contribution to One Health. Here, TOPSIS was 
used to evaluate the proximity of a set of alternatives (administrative 
units in this case) to an ideal solution in terms of One Health.

The ideal administrative unit represents a theoretical scenario 
with the best scores for all the indicators related to the facilitation 
of zoonotic disease spread. In practice, this scenario is highly 
unlikely, as it should usually be the case that the highest values of 
the indicators are distributed over several administrative units. 
Therefore, TOPSIS calculates the distance between these real 
solutions and the ideal solution through a series of steps. Again, 
the first one was to normalize the decision-making matrix. In this 
case, a vector normalization as shown in Eq. (5) is proposed for the 
TOPSIS method (54).
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The weights wj yielded by Eq. (4) were then multiplied by the 
normalized values rij  in Eq. (5) to result in a set of normalized 
weighted values vij. These were in turn used to determine the positive 
(A+) and negative (A−) ideal solutions through Eqs. (6) and (7), 
respectively.
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where J  and ′J  represent indicators that are beneficial and 
harmful to the spread of zoonotic diseases, respectively. The distances 
(di+  and di−) from the actual administrative units to these ideal 
solutions were calculated by applying Eqs. (8) and (9).
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Finally, the Relative Closeness (RCi) from the administrative units 
to the ideal solution was computed using Eq. (10). The higher the 
value of RCi , the more susceptible the administrative unit is to 
zoonoses (the less it contributes to One Health), and vice versa.
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2.3. Correlation between the number of 
infectious diseases and Green 
Infrastructure

The validity of the values of RCi  obtained from Eq. (10) was 
assessed by comparing them with the records of infectious disease 
counts in the case study area. This comparison was conducted using 
Pearson’s r  correlation coefficient (55) since both variables were 
quantitative (continuous). The presence of a statistically significant 
association was determined at a significance level (α ) of 0.05. 
Therefore, the proposed indicator system was considered valid if it 
exhibited a strong positive correlation with the infectious disease 
count, and the value of p obtained from Pearson’s r was less than α .

Moreover, the results were also analyzed in terms of their 
relationship with Green Infrastructure (GI). The potential benefits of 
GI for the three pillars of One Health have been discussed in previous 

literature (24). GI can be defined as “a strategically planned network 
of natural and semi-natural areas with other environmental features 
designed and managed to deliver a wide range of ecosystem services. 
It incorporates green spaces (or blue if aquatic ecosystems are 
concerned) and other physical features in terrestrial (including 
coastal) and marine areas” (56).

The correlation between One Health and GI was determined by 
the correlation coefficient between these values of RCi  and the area 
covered by GI in each administrative unit. The latter was determined 
based on the following classes in the Corine Land Cover (CLC) (57): 
1.4 (artificial, non-agricultural vegetated areas), 2 (agricultural areas), 
3.1 (forest), 3.2 (shrub and/or herbaceous vegetation associations), 4 
(wetlands), and 5.1 (inland waters). These categories allowed for 
differentiation between artificial (class 1.4) and natural and semi-
natural (classes 2, 3.1, 3.2, 4, and 5) GI.

3. Results and discussion: a case study 
in the Valencian Community (Spain)

The indicator system was tested in the 33 counties of the Valencian 
Community as shown in Figure  2. The Valencian Community is 
located in eastern Spain and has a predominantly Mediterranean, arid, 
and semi-arid climate. Regions with Mediterranean ecosystems, like 
the Valencian Community, are known to experience high levels of 
environmental degradation due to biophysical factors such as 
wildfires, drought, erosion, as well as social factors such as tourism, 
urbanization, and deforestation (58, 59).

In terms of biophysical factors, it is noteworthy that 17% of the 
forest area in the region has experienced at least one wildfire, 29% 
suffers from serious erosion problems, and 46% is at risk of 
desertification. In addition, the effects of climate change significantly 
affect the regularity of precipitation, which can have implications for 
areas prone to desertification (58, 60).

Concerning social factors, the region is characterized by a 
dominance of the service sector, which accounts for more than 65% 
of total employment, and tourism activities, such as real estate, 
gastronomy, and transportation, which have an employment rate of 
over 12% and contribute 15% to the GDP (61, 62). In particular, the 
Valencian Community has cultivated a tourism model focused on 
second homes linked to construction that has resulted in serious 
environmental impacts, high space requirements, and an 
unsustainable approach (63).

All these activities have been boosted by lax political guidelines 
and favorable economic incentives, leading to land degradation (58) 
(EVR, 2020). Thus, insufficient budgetary resources further contribute 
to the challenge of meeting the goal of recovering 15% of degraded 
ecosystems. Besides, other studies indicate that the Valencian 
Community has primarily focused on reforestation projects with 
limited impact on biodiversity, while neglecting medium and long-
term-ecological restoration projects (64, 65).

3.1. Selection of indicators

The systematic literature review conducted following the PRISMA 
statement produced the results presented in Figure 3, which shows the 
number of records removed at each step. The search query formulated 
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in Eq. (1) initially returned 463 records from the three databases 
considered. This number gradually decreased through the different 
steps of the PRISMA statement until a final number of 99 articles was 
obtained for data analysis.

The extraction of information from these articles allowed for the 
identification of several indicators that could potentially influence the 
spread of diseases impacting human, animal, and environmental 
health. The vast majority of these indicators were not used as direct 
metrics to model spatial facilitation of disease spread but were instead 
discussed as factors that may affect One Health. Table 1 compiles the 
list of indicators extracted from the review and provides the main 
references that supported their use as surrogates for aspects that go 
against the One Health concept (9, 14, 40, 66–161).

Certainindicators were discarded due to limited data availability, 
low frequency, and/or the impossibility to characterize them spatially. 
Based on the frequency of the indicators found to be valid, the list in 

Table 2 was compiled for subsequent calculations. The first subset of 
indicators (from I1 to I8) focused on population demographics (either 
human or animal) and socioeconomic aspects such as health facility 
density, education level, and financial resources. Another group 
consisted of indicators related to land use (from I9 to I13). The 
interactions between animal and human populations and water bodies 
were addressed in the indicators ranging from I13 to I18. The final 
group of indicators pertained to environmental conditions, including 
air quality (I19 and I20) and climate (I21 and I22).

The rationale behind the influence of these indicators on One 
Health is outlined below. The impact of Antimicrobial Resistance 
(AMR) and its implications for One Health has been linked to reduced 
accessibility to adequate healthcare and human health (I1) as well as 
veterinary (I2) professionalism (83). Moreover, high population 
densities (I3, I6, I7 and I8) can contributeto the spread of zoonotic 
diseases and increased intra-interactions within and between 

FIGURE 2

Situation map of the Valencian community and geographical extent of its counties.
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populations and ecosystems (81). In the case of human populations, 
factors such as poverty (I5) can support the evolution of pathogen life 
cycles, while education (I4) can aid in controlling global zoonotic 
pathogens (75).

The impact of agriculture (I9) is associated with freshwater, which 
serves as a common drinking source for wildlife (69), as reflected in 
I17. Agricultural runoff can be  a source of pollution, especially if 
antibiotics are utilized in farming practices (68). The use of 
agrochemicals in agriculture contributes to reduced biodiversity and 
promotes mutation among microbial populations in soil and water 
bodies (I13) (162). Other forms of anthropogenic land use changes 
such as deforestation (I10) are linked to the increased adaptability of 
disease vectors and the creation of the conditions for increased 
interactions at the wildlife-human interface (163). I11 and I12 relate to 
aspects like the role of hunted animals as carriers of bacteria with 
specific resistance traits (92) and livestock movement as a contributing 
factor to the emergence of zoonotic diseases (164).

Increased global connectivity between humans and animals 
(either livestock or wildlife; I14 and I16) has been identifiedas a source 
of acceleratedand exacerbated AMR (70). Surface water (streams, 
rivers, lakes, and ponds) used as drinking water for dairy cattle can 
serve as a source of pathogens (72) (I18), posingbilateral implications 
for farm animals and humans (I15) due to the dissemination and 
maintenance of resistance genes in the environment (165).

The impact of air pollution (I19 and I20) is indirect as it stems 
from its contribution to biodiversity decline (166), which in turn has 
been argued to increase human exposure to zoonotic pathogens (167). 
Moisture resulting from precipitation (I21) results in dense vegetation 
that provides suitable conditions for vector proliferation (168). Floods 
caused by heavy rainfall also increase the risk of waterborne diseases 

(169). Temperature (I22) is proportional to vector distribution and 
disease risk too. High temperatures promote increased activity of 
mosquitoes, ticks, and sandflies, while they can lead to the migration 
of rodents into human habitats (170, 171).

3.2. Processing of indicators

Some indicators in Table 2 were obtained directly as single values 
per administrative unit, while others were available as either vector 
(point or polygon) or raster layers. These data had to be processed to 
express them as a single value per administrative unit. The indicators 
in point format were processed to obtain densities per county. Instead, 
polygon data were used to determine the proportion of the area 
corresponding to the indicators covered by the counties.

The indicators related to the interactions between point and 
polygon layers (I14, I16, and I17) were determined through a three-
step process: transform the point layer into a raster using a Kernel 
density function (shape = quartic, radius = 25 km), calculate the 
interaction of the gridded density and the polygon layer by 
multiplication, and aggregate the values per county by taking the 
median of the interaction values per raster unit into a 
polygon layer.

Apart from these general procedures, two indicators required 
specific calculations. Deforestation (I10) was determined based on the 
variations in class 3.1 (Forests) in the 2006, 2012, and 2018 CLC maps 
in the Valencian Community. The CLC map was also used to 
characterize water and soil pollution (I13), which was computed by 
assigning scores depending on the land cover classes (172).

Figure 4 shows various steps in the processing of indicators as an 
example. Figure  4A depicts the location of health and veterinary 
centers in the study area, which were used to obtain their density per 
county (I1 and I2). Figure 4B applies the aforementioned scores for 
water and soil pollution to the different land covers in the study area. 
Figures 4C,D represent the presence of wild animals and livestock 
areas in the region along with the human population values per 
county, which were the inputs used to characterize I14 and I15. The 
values per county for each indicator considered (I1-I22) are provided 
as Supplementary material.

3.2.1. Weighting of indicators
The application of the EM algorithm according to Eqs. (2)–(4) 

resulted in the weights shown in Figure 5. These weights indicate the 
importance of various indicators for this study. Some indicators were 
found to have reduced importance (weights less than 0.025 out of 1): 
including healthcare facilities (for humans or animals), temperature, 
and NOx concentration, deforestation, hunting territory, and water 
and soil pollution. According to the EM principle, these variables are 
not sufficiently discriminatory among the counties in the Valencian 
Community, indicating that most counties are relatively homogeneous 
in relation to these indicators.

Instead, the indicators related to human and animal populations 
and their interactions obtained the highest weights. In particular, the 
presence of wildlife and humans was identified as the two most 
important indicators. This highlights the significance of distinct 
habitats and the risks associated with phenomena such as urban 
sprawl. The next most important indicators were also aligned with this 
focus, involving domestic and farm animals and their interactions 

FIGURE 3

Number of records retained and removed after each step of the 
systematic literature review.
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with wildlife, humans, and water bodies, with the latter also being 
represented by precipitation. The ozone uptake by wheat was also 
identified as an important environmental indicator due to its impact 
on food safety.

Apart from the rationale behind them, all of these indicators with 
the highest weights exhibited spatial variability among the counties in 
the study area. In addition, they accounted for the three dimensions 
of One Health. Among them, animal-related variables were the most 
important (I6-I8, I14-I18), followed by those focused on humans (I3, 
I14, and I15) and the environment (I17, I20, and I21).

3.2.2. Ranking of administrative units
The use of Eqs. (5)–(10) following the steps of the TOPSIS method 

resulted in the map shown in Figure 6A. The results are consistent 
with the significance of indicators associated with humans and wildlife 

(Figure 5), as well as the distribution of these populations (Figure 4A). 
According to this map, the primary focus of disease spread is observed 
in the county of València (Figure  2), where the region’s capital is 
situated, highlighting the implications of population movement in 
this area.

The second county in the ranking of zoonotic disease susceptibility 
was el Baix Segura, located in the southern of the Valencian 
Community. Although the human population density is not as high 
in this county, it attained the highest scores in terms of wildlife-
livestock-water interactions. Instead, counties in the western and 
northern regions exhibited lower susceptibility. As can be seen from 
the results provided as Supplementary material, these counties only 
obtained high scores in indicators of lesser importance (Figure 5), 
such as illiterate population (I4), average income per consumption 
unit (I5), or hunting territory (I12).

Overall, the results presented in Figure 6A are instructive in terms 
of indicating hotspots linked to susceptibility to infectious diseases. 

TABLE 1 List of proposed or derivable indicators from the systematic 
literature review on metrics used to address One Health.

Indicators proposed or 
derivable

Reference(s)

Crops; Agriculture (66–68)

Hunting spaces, human-wildlife interface; and 

crops-animals-water interface

(69–71)

Exposure of farm animals to water pollution (72–74)

Income per capita; access to water supply (40, 75)

Wildlife population (76, 77)

Soil pollution (78, 79)

Cardiovascular diseases; diabetes (80)

Poverty; livestock movement; and population 

density

(75, 81, 82)

Climate change; extreme weather, healthcare 

facilities; and education

(83, 84)

Hiking trails; parks (85)

Seabirds (86–88)

Social inequalities (70)

Domestic animals (89, 90)

Animal bites (91)

Habitat overlap; wildlife-livestock interactions (92)

Deforestation (75, 93)

Bird migration (71)

Dog abandonment (94, 95)

Sewage water (96, 97)

Rainfall, temperature; humidity; and air 

pollution

(98–101)

Farm outbreaks; rural areas (102)

Human-livestock interface (103–105)

Human-bird interface (106)

Insects-farms interface (107)

None (at least in the terms that can be useful 

for this study)

(9, 14, 72, 108–161)

TABLE 2 List of indicators to model spatial susceptibility to zoonotic 
diseases.

ID Indicator Type Format

I1 Density of health centers (no./km2) Cost Point

I2 Density of veterinary centers  

(no./km2)

Cost

Point

I3 Human population density (no./km2) Benefit Value

I4 Share of illiterate population (%) Benefit Value

I5 Average income per consumption unit 

(€)

Cost

Value

I6 Density of domestic animals (/km2) Benefit Value

I7 Density of farm animals (no./km2) Benefit Value

I8 Density of wild animals (no./km2) Benefit Point

I9 Agricultural land (%) Benefit Polygon

I10 Deforestation (%) Benefit Polygon

I11 Livestock (%) Benefit Polygon

I12 Hunting territory (%) Benefit Polygon

I13 Water and soil pollution (score) Benefit Polygon

I14 Humans * Wild animals (score) Benefit Polygon/Point

I15 Humans * Livestock (score) Benefit Polygon

I16 Wild animals * Livestock (score) Benefit Point/Polygon

I17 Wild animals * Water bodies (score) Benefit Point/Polygon

I18 Livestock * Water bodies (score) Benefit Polygon

I19 Average concentration of NOx (μg/m3) Benefit Grid polygon

I20 Average concentration of POD6 wheat 

(mmol/m2)

Benefit Grid polygon

I21 Total precipitation (mm) Benefit Raster

I22 Mean temperature (° C) Benefit Raster
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The indicator system based on the EM and TOPSIS methods enables 
the derivation of discriminative results, highlighting substantial 
differences between the most critical counties and the others. 

Consequently, this facilitates the implementation of strategies to 
strengthen One Health through measures aimed at safeguarding the 
interface between humans, animals, and the environment.

FIGURE 4

Processing of indicators before their calculation per county (A) Health and veterinary centers (I1 and I2); (B) Water and soil pollution (I13); 
(C) Interaction between human population and wildlife (I14); and (D) Interaction between human population and livestock (I15).
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3.3. Correlation between the number of 
infectious diseases and green infrastructure

The Valencian Animal Identification Registry (RIVIA in 
Spanish) provides a report on the cases notified in 2021 for the 
following diseases: Leishmaniosis, Ehrlichiosis, Dirofilariosis, 
Leptospirosis, Toxoplasmosis, and Babesiosis. Figure  6B shows 
how these cases are distributed across the counties in the 
Valencian Community.

Figure 7A demonstrates that the value of Pearson’s r  obtained 
between disease density (number of records per county area) and the 
values of RCi  was 0.72 (value of p < 0.05). This strong and positive 
correlation coefficient reinforces the effectiveness of the proposed 
indicator system in representing a region’s susceptibility to the 
emergence of infectious diseases.

A similar analysis was carried out to examine the relationship 
between RCi and the proportion of artificial (Figure 6C) and natural 
and semi-natural GI (Figure 6D) in the study area. Again, the p values 
were below the significance level of 0.05 in both cases, while the values 
of Pearson’s r obtained were 0.78 (Figure 7B) and − 0.73 (Figure 7C), 
respectively. These results indicate that more developed and urbanized 
counties exhibit a higher susceptibility to the emergence of infectious 
diseases, while the presence of natural and semi-natural areas may 
contribute to the One Health initiative.

4. Discussion

The results obtained in this study address some key demands in 
the field of landscape epidemiology, including the incorporation of 
spatial interactions between individuals and environmental gradients 
in large-scale studies (173). Spatial dimensions such as distances 
between humans, animals, and environments have been found to 
be associated with both directly and indirectly transmitted infectious 
diseases (174). Overall, the spatial processing of indicators proposed 
in this study aligns with these premises.

The results are also consistent with the notion that urbanization 
contributes to increased encounters with wildlife, leading to challenges 
in infectious disease epidemiology due to amplified and faster spread 
(175). Although the interface between human and wildlife populations 
(I14) carries moderate weight, wild animals (I8) and human population 
(I3) were identified as the two most important indicators according to 
Figure 5.

Other authors have emphasized that land urbanization, rather 
than population urbanization is a key driver of infectious disease 
morbidity and mortality (176). This does not necessarily contradict 
the results obtained in this study but underscores the importance of 
using appropriate metrics. Population density goes beyond population 
size by considering how the accumulation of people and animals can 
facilitate disease transmission.

FIGURE 5

Weights obtained for the proposed indicators using the Entropy Method (EM).
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Urbanization promotes the occurrence of zoonoses through 
demographic growth and density, socioeconomic inequalities, increased 
movement of people and animals, and land use change (177). All these 
factors are included in the list of indicators presented in Table 1. The 
results in Figure 7 would be supported by this line of thought, since 

considering these aspects together correlates positively with the number 
of infectious diseases and the presence of natural and semi-natural GI, 
while correlating negatively with artificial GI in more urbanized areas.

The role of GI is linked to biodiversity, which is a crucial factor to 
consider when pursuing One Health goals. Zoonotic pathogens are 

FIGURE 6

(A) Susceptibility to zoonoses according to the indicator system; (B) Infectious disease density (cases/km2); (C) Proportion of artificial GI (%); and 
(D) Proportion of natural and semi-natural GI (%).
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more likely to originate from specific taxa that often reproduce due to 
human influences, i.e., in urbanized areas lacking biodiversity values 
(167). This may explain the lower susceptibility to infectious diseases 
in counties with higher proportions of natural and semi-natural 
GI. Notably, the provision of suitable habitats for vector and zoonotic 
reservoir populations is one of the regulating ecosystem services 
supported by GI (178).

Therefore, the results of the indicator system can support the 
development of planning strategies aimed at promoting the principles 
of One Health. Strategies could focus on the implementation of 
natural GI, as the presence of these areas showed a negative correlation 
with zoonoses. Preserving and/or restoring natural landscape features 
can help minimize habitat encroachment, improve land and water 
quality, and mitigate extreme atmospheric conditions. Instead, 
artificial green spaces, commonly found in urban areas, showed a 
positive correlation with zoonoses. This is associated with urban 
sprawl and its effects on increased interactions between populations 
through greater movement of people, animals, and wildlife between 
developed and undeveloped areas.

Although these conclusions stem from validated results, this 
investigation had some limitations that constrain its impact. First, the 
data used to characterize certain indicators were site-specific, which 
hampers the usability of the indicator system in other parts of the 
world where such data may be  lacking. Second, the methodology 
behind the indicator system could benefit from automation, which 
would result in a web-based application where users only need to 
input the data to obtain the composite metric of zoonotic disease 
susceptibility, while calculating the GIS and MCDA tasks would be in 
the background. Finally, this indicator system may have limitations in 
modeling diseases transmitted by vectors such as ticks or mosquitoes, 
whose distribution and survival are influenced by complex dynamics 
determined by climatic and seasonal factors, as well as by the presence 
of specific hosts, with certain conditions being favorable for some 
species but not for others (179, 180).

5. Summary and concluding remarks

This research consisted of the development, application, and 
validation of an indicator system to model spatial susceptibility to 

zoonotic disease facilitation, thus providing an indirect measurement 
of contributions to the One Health initiative. The study focused on the 
counties of the Valencian Community (Spain) as a case study. The 
methods used to achieve this goal included a systematic literature 
review, the combination of GIS and MCDM techniques, and the use 
of statistical testing.

The systematic literature review resulted in the identification of 22 
spatial indicators that encompassed population, land use, and 
atmospheric variables. These indicators represented the risks 
associated with direct or indirect interactions at the interfaces between 
humans, wildlife, livestock, and ecosystems, thereby addressing the 
three pillars of the One Health approach: human, animal, and 
environmental health.

Processing these indicators using GIS and MCDM methods 
resulted in a composite metric for zoonotic disease susceptibility. The 
results showed that the indicators concerning human and animal 
populations and their interactions are the most important ones, 
underlining the relevance of controlling urban sprawl to mitigate 
habitat encroachment. The impact of urbanization was also further 
supported by the county level analysis, with the highest susceptibility 
to zoonotic diseases observed in the county corresponding to the 
capital and most populated city in the region.

This trend was confirmed by the strong positive correlation between 
the results of the indicator system and the presence of artificial 
GI. Conversely, the association with natural and semi-natural GI 
exhibited an opposite relationship, underscoring the importance of 
these areas for habitat preservation and biodiversity protection, thus 
aligning with the principles of One Health. The validity of these findings 
was verified by comparing the results of the indicator system with the 
records reported in the Valencian Community in 2021, showing a 
strong positive correlation. Therefore, the indicator system is proposed 
as a tool for implementing the principles of the One Health approach 
when designing strategies for better public space planning.

Data availability statement

The original contributions presented in the study are included in 
the article/Supplementary material; further inquiries can be directed 
to the corresponding author.

FIGURE 7

Correlation coefficient between the results of applying the indicator system to the Valencian Community and (A) Infectious disease density reported in 
2021 (cases/km2); (B) Proportion of artificial GI (%); and (C) Proportion of natural and semi-natural GI (%).
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