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Introduction: The spread of antimicrobial resistance among zoonotic pathogens 
such as Salmonella is a serious health threat, and mobile genetic elements 
(MGEs) carrying antimicrobial resistance genes favor this phenomenon. In this 
work, phenotypic antimicrobial resistance to commonly used antimicrobials was 
studied, and the antimicrobial resistance genes (ARGs) and plasmid replicons 
associated with the resistances were determined.

Methods: Eighty-eight Italian Salmonella enterica strains (n  =  88), from human, 
animal and food sources, isolated between 2009 and 2019, were selected 
to represent serovars with different frequency of isolation in human cases of 
salmonellosis. The presence of plasmid replicons was also investigated.

Results and discussion: Resistances to sulphonamides (23.9%), ciprofloxacin 
(27.3%), ampicillin (29.5%), and tetracycline (32.9%) were the most found 
phenotypes. ARGs identified in the genomes correlated with the phenotypical 
results, with blaTEM-1B, sul1, sul2, tetA and tetB genes being frequently identified. 
Point mutations in gyrA and parC genes were also detected, in addition to many 
different aminoglycoside-modifying genes, which, however, did not cause 
phenotypic resistance to aminoglycosides. Many genomes presented plasmid 
replicons, however, only a limited number of ARGs were predicted to be located 
on the contigs carrying these replicons. As an expectation of this, multiple ARGs 
were identified on contigs with IncQ1 plasmid replicon in strains belonging to 
the monophasic variant of Salmonella Typhimurium. In general, high variability in 
ARGs and plasmid replicons content was observed among isolates, highlighting 
a high level of heterogeneity in Salmonella enterica. Irrespective of the serovar., 
many of the ARGs, especially those associated with critically and highly important 
antimicrobials for human medicine were located together with plasmid replicons, 
thus favoring their successful dissemination.
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1. Introduction

In Europe, salmonellosis is the second most common zoonosis, 
with 87,923 confirmed cases in 2019 (1). In spite of more than 2,600 
identified Salmonella serovars (2), only three serovars, namely 
S. enterica serovar Enteritidis (S. enteritidis), S. Typhimurium and the 
monophasic variant of S. Typhimurium (MVST), accounted for more 
than 70% of the human cases (1).

Most of the human cases of salmonellosis result in self-limiting 
gastrointestinal diseases, which does not require treatment with 
antimicrobials. However, treatment is required, when systemic 
infections occur, and it is therefore a serious health problem, when 
strains of important zoonotic pathogens, such as Salmonella, become 
resistant to commonly used antimicrobials. Antimicrobial overuse 
and misuse in humans and animals for food production is the main 
cause for the increase in antimicrobial resistance (AMR) in Salmonella 
(3), while mobile genetic elements (MGEs) have played a major role 
in the rapid spread of resistance genes among Salmonella strains (4).

Control strategies against salmonellosis have been implemented 
in the European countries at primary production level, with the aim 
of reducing the incidence of target serovars, i.e., serovars which have 
been designated as ‘particularly relevant for public health’ 
(Commission Regulation (EU) No 2160/2003, 5). This strategy is 
however challenged by the fact that serovars that used to be  less 
frequently isolated from human specimens are being detected with 
increasing frequency (5, 6), also in animal populations in which 
national control plans to control Salmonella prevalence had been 
implemented (7). Importantly, Annex III from the Commission 
Regulation (EU) No 2160/2003 underlined that resistance(s) to 
relevant therapies for human infections was an important criterion to 
define which serovars with public health significance should 
be considered targets for the reduction of Salmonella prevalence in 
breeders population (8).

While phenotypic susceptibility testing has informed on the 
current level of resistance in strains of Salmonella, it does not have the 
power to inform on the underlying mechanisms behind AMR in 
strains, nor the mechanisms by which AMR spreads in the population. 
Whole genome sequencing (WGS) has therefore become a valuable 
support to phenotypic susceptibility testing in surveillance of AMR, 
allowing detection of the major antimicrobial resistance genes (ARGs) 
circulating in zoonotic pathogens and the MGEs which contribute to 
spread of AMR. The current study investigated the correlation 
between phenotypic and genotypic resistance to antimicrobials in a 
selection of Salmonella strains, isolated from humans, animals and 
food in Italy and belonging to serovars associated with different 
frequency of isolation from human infections. The study aimed to 
analyze the presence of AMR genes and MGEs in strains with AMR, 
in order to determine the resistance genes and plasmids, which 
seemed to contribute to the spread of resistant isolates.

2. Materials and methods

2.1. Dataset description

Eighty-eight Italian Salmonella enterica isolates, belonging to 
15 different serovars, were selected. The serovars were chosen to 

represent serovars which are frequently (F) and rarely (R) isolated 
from human infections in the European Union (EU) countries (1). 
The serovars which are frequently isolated from human infections 
were represented by S. enteritidis, S. Typhimurium and MVST, 
while rarely isolated serovars from human infections were 
represented by S. Derby, S. Dublin, S. Hadar, S. infantis, 
S. Kentucky, S. Livingstone, S. Mbandaka, S. Montevideo, 
S. Newport, S. Rissen, S. Senftenberg, and S. Thompson. The 
strains were collected spanning the years 2009–2019, from 
different Italian regions, and were isolated from animals, food and 
human sources. The selected strains are part of a broader 
collection maintained at the National Reference Laboratory for 
Salmonellosis at the Istituto Zooprofilattico Sperimentale delle 
Venezie (Legnaro, Italy) and Istituto Superiore di Sanità (Rome, 
Italy). Two strains were selected for each serovar for each source 
(human, animal, and food), with the exception of S. Dublin and 
S. Mbandaka, for which only one human isolate was available 
(Table  1). The strains were maintained at the Istituto 
Zooprofilattico Sperimentale delle Venezie (IZSVe), in cryobank 
tubes at −80°C, with preservative medium (Copan Diagnostics, 
CA, United States).

2.2. Antimicrobial susceptibility testing

Antimicrobial susceptibility testing was performed as minimum 
inhibitory concentration (MIC) by broth microdilution method with 
Sensititre EUVSEC panel (TREK Diagnostics System). Results were 
interpreted according to European Committee on Antibiotic 
Susceptibility Testing (EUCAST) epidemiological cut-off values 
(ECOFFs; http://www.eucast.org). Multidrug-resistant (MDR) strains 
were defined as resistant to one drug in at least three different 
antimicrobial classes (9).

2.3. DNA extraction and WGS analysis

The Salmonella isolates were processed for DNA extraction and 
sequencing as already described in Petrin et al. (10). Briefly, after 
culturing, genomic DNA (gDNA) was extracted using a commercial 
column-based kit (QIAamp DNA Mini, QIAGEN, Valencia, CA), and 
purified gDNA was quantified with a Qubit 3.0 Fluorometer (Life 
Technologies, Waltham, MA). Libraries for WGS were prepared using 
the Nextera XT DNA sample preparation kit (Illumina, San Diego, 
CA) following the manufacturer’s instructions. High-throughput 
sequencing was performed with MiSeq Reagent kit v3, resulting in 
251 bp long paired-end reads, or NextSeq High Output kit v2.5, 
resulting in 151 bp long paired end reads. Subsequent bioinformatics 
analyzes on raw reads were performed as previously described in 
Petrin et al. (11).

2.4. Genomic analyzes

To confirm the serovar., in-silico serotyping was performed using 
three different tools: MOST 1.0 (12) and SeqSero 1.0 (13) on raw data, 
and SISTR 1.0.2 (14) on assembled data.
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Plasmid replicons were identified using blastn 2.7.1 (15) against 
PlasmidFinder 1.3 database [downloaded on 05/03/2018 (16)], while 
acquired antimicrobial resistance genes (ARGs) and chromosomal 
point mutations against ResFinder 3.0 and PointFinder databases, 
respectively [downloaded on 05/03/2018 (17)].

E-value thresholds were adjusted for each search depending on 
database size and were set as follows: 0.001 for plasmid replicons 
search, and 0.01 for ARGs search, respectively. All hits were required 
to have a 60% minimum coverage of the reference sequence found in 
the database, while the minimum required percentage of identity was 
90% for plasmid replicons search, and 80% for ARGs search.

To further characterize plasmids that potentially contribute to the 
spread of antimicrobial resistance genes, only contigs longer that 
200 bp were retained from the assemblies. Barrnap v0.9 (18) was used 
to mask ribosomal sequences on contigs. Contigs on which 
PlasmidFinder had identified a plasmid replicon were identified and 
collected to keep track of the incompatibility group(s) for each sample 
having putative plasmid(s).

A reference database containing plasmids from the taxa 
Enterobacteriaceae was built as follow:

 1. Genebank (.gbk) format files for plasmids identified in taxa 
Enterobacteriaceae (Taxid 543) were downloaded from the 
NCBI nucleotide database;

 2. only ‘complete sequence’ and ‘circular’ sequences were retained;
 3. sequences were clustered using cd-hit v4.8.1 software (19) and 

setting 100% redundancy;
 4. sequences were annotated with Plasmid Finder to search for 

the incompatibility group.

After building the reference database, blastN (15) was used to 
identify contigs that matched in the plasmid reference database with 
90% identity and 90% coverage: if a contig matched with a plasmid in 
the reference database having an incompatibility group already 
identified by PlasmidFinder in that sample, the contig was retained 
and added to the contig identified by PlasmidFinder. All the contigs 
from one sample belonging to the same incompatibility group already 
identified by PlasmidFinder were concatenated by means of 150 bp Ns 
linkers. BlastN (15) was used to compare the resulting pseudomolecule 
for each incompatibility group with the plasmid reference database, in 
order to identify the best match (i.e., the match with the lowest 
e-value).

2.5. Conjugation assay, detection of 
plasmid replicon and antimicrobial 
resistance genes

In order to confirm the presence of ARGs on plasmids, for 
convenience reasons, two Salmonella isolates were chosen from those 
showing at least one ARG and a plasmid replicon on a putative 
plasmid from the in silico genomic analyzes. The transfer frequencies 
of tetA and catA1 genes were investigated by conjugation experiments 
with nalidixic acid resistant E. coli 1816 as recipient strain. Donors and 
recipient strains were grown in Luria-Bertani (LB) broth for 24 h at 
37°C. Then, a 1:50 dilution was prepared for each strain, and bacteria 
were grown at 37°C to a final OD600 0.4. Five hundred μl of the donor 
strain was added to 4.5 mL of the recipient strain, and the bacterial 

TABLE 1 Description of serovars, sources and number of isolates used in 
the study.

Serovar Source No. isolates

Derby Animal 2

Food 2

Human 2

Dublin Animal 2

Food 2

Human 1

Enteritidis Animal 2

Food 2

Human 2

Hadar Animal 2

Food 2

Human 2

Infantis Animal 2

Food 2

Human 2

Kentucky Animal 2

Food 2

Human 2

Livingstone Animal 2

Food 2

Human 2

Mbandaka Animal 2

Food 2

Human 1

Montevideo Animal 2

Food 2

Human 2

MVST Animal 2

Food 2

Human 2

Newport Animal 2

Food 2

Human 2

Rissen Animal 2

Food 2

Human 2

Senftenberg Animal 2

Food 2

Human 2

Thompson Animal 2

Food 2

Human 2

Typhimurium Animal 2

Food 2

Human 2
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suspensions were filtered using 0.22 μm filters (Merck Millipore) on 
MacConkey plates, pre-heated at 37°C for 1 h. After incubation for 
18 h at 37°C, the filters were washed with 10 mL of physiological saline 
and vortexed to completely resuspend the cells. The cellular 
suspensions were centrifuged at 5000 rpm for 10 min, and the pellets 
resuspended in 1 mL of physiological saline after removing the 
supernatant. Serial dilutions were prepared, and 100 μL were plated on 
LB plates supplemented with nalidixic acid (50 mg/L) and 
chloramphenicol (50 mg/L) or nalidixic acid (50 mg/L) and tetracyclin 
(50 mg/L) to select for transconjugant colonies. The transfer 
frequencies were calculated as the number of transconjugants 
obtained per donor. Selected transconjugants colonies were 
transferred onto MacConkey agar plates to confirm they were 
E. coli colonies.

Identification of plasmid replicons from transconjugant colonies 
was performed by PCR-based replicon typing using the PBRT 2.0 kit 
(Diatheva, Fano, Italy), according to manufacturer’s instructions.

To screen for the presence of chloramphenicol resistance genes 
in transconjugant colonies, a multiplex PCR targeting catA1, cmlA1 
and floR genes was performed according to the protocol described 
in Guerra et  al. (20) using catA1, cmlA1 and floR forward and 
revers primers. PCR was performed in a final volume of 50 μL using 
1X Buffer Taq Gold, 2 mM MgCl2, 400 μM dNTPs, 1 μM each 
primer, and 2,5 U Taq Gold (Life Technologies). Thermal cycling 
consisted of 95°C for 5 min, followed by 30 cycles (95°C for 30 s, 
55°C for 30 s, 72°C for 40 s) and a final step at 72°C for 5 min. 
Finally, to screen for the presence of tetracycline resistance genes in 
transconjugant colonies, a multiplex PCR targeting tet genes was 
performed according to the protocol described by Ng et al. (21) 
using tetA, tetB and tetF forward and revers primers. PCR was 
performed in a final volume of 50 μL using 1X Buffer Taq Gold, 
2 mM MgCl2, 200 μM dNTPs, 1 μM each primer, and 2,5 U Taq 
Gold (Life Technologies). Thermal cycling consisted of 95°C for 
5 min, followed by 30 cycles (95°C for 30 s, 55°C for 30 s, 72°C for 
30 s) and a final step at 72°C for 5 min. Amplicons were confirmed 
on a 2% agarose gel (Merck Life Science).

2.6. Statistical analysis

The data were statistically analyzed with RStudio (22) to generate 
plots, while graphical analysis was performed using the ggplot2 
package (23). In order to evaluate the agreement between phenotypic 
and genotypic resistance, Cohen’s kappa statistics and value of p were 
calculated in RStudio using the vcd package (24). A kappa value 
between 0 and 1 is assigned and values ≤0 indicate no agreement; 
0.01–0.20 none to slight agreement; 0.21–0.40 fair agreement; 0.41–
0.60 moderate agreement; 0.61–0.80 substantial agreement; and values 
in the range of 0.81–1.00 indicate an almost perfect agreement (25).

3. Results

3.1. Phenotypic resistance to antimicrobials

Antimicrobial susceptibility test, performed with the EUVSEC 
panel, showed MIC values above the cut-off value to at least one 
antimicrobial molecule in 48 out of the 88 isolates. Results of MIC 

tests and definitions of susceptibility testing categories, according to 
epidemiological cut-off values, are reported in Supplementary Table S1.

Resistances to tetracycline, ampicillin, ciprofloxacin and 
sulfamethoxazole were common, with more than 20 resistant isolates 
each (Supplementary Table S1). None of the tested isolates showed 
resistance to ceftazidime, meropenem and tigecycline, while resistance 
to azithromycin was identified in one S. Rissen isolate, and resistance 
to cefotaxime was identified in one S. Derby and one S. infantis isolate.

S. Senftenberg isolates did not show resistance to any tested drugs, 
while S. Dublin (3 out of 5 isolates) and S. enteritidis (3 out of 6 
isolates) showed resistance to colistin only (Figure 1). Only one isolate 
of S. Mbandaka showed resistance to antimicrobials, and this isolate 
was resistant to ampicillin and ciprofloxacin (Figure 1). The other 
tested serovars showed resistance to different antimicrobial molecules 
(Figure  1). Five out of 6 isolates of S. Hadar showed phenotypic 
resistance to ciprofloxacin and tetracycline, and three of them to 
ampicillin and nalidixic acid. S. infantis showed resistance to 
ciprofloxacin, nalidixic acid and trimethoprim (4 out of 6 isolates), to 
sulfamethoxazole and tetracycline (3 out of 6 isolates), to ampicillin 
(2 out of 6 isolates) and one isolate showed resistance to cefotaxime.

Five out of 6 isolates of S. Kentucky showed phenotypic resistance 
to ciprofloxacin and nalidixic acid, and two of them, both isolated 
from human specimens, also resistance to ampicillin, gentamycin, 
sulfamethoxazole and tetracycline. Resistance to ampicillin and 
sulfamethoxazole was present in all the tested MVST isolates, and five 
out of six isolates showed phenotypic resistance also to tetracycline. 
Finally, four out of six S. Typhimurium isolates showed resistance to 
ampicillin, three isolates to sulfamethoxazole and tetracycline and two 
isolates also to chloramphenicol and ciprofloxacin.

Of the isolates, which is a selection from a broader collection 
maintained at the National Reference Laboratory for Salmonellosis at 
the Istituto Zooprofilattico Sperimentale delle Venezie (Legnaro, Italy) 
and Istituto Superiore di Sanità (Rome, Italy), nine isolates from 
animals, nine isolates from food, and eight isolates from humans 
(25.9, 30.9, 33.3%, respectively) were multidrug-resistant. The 
percentage of strains within each serovar showing MDR are reported 
in Figure 2. The serovars with the highest number of MDR isolates 
were S. infantis and MVST.

3.2. Antimicrobial resistance genes

The dataset of genomic sequences was searched for the presence 
of known genes and chromosomal mutations conferring resistance to 
different classes of antimicrobials, and in total, 221 ARGs and AMR 
relevant point mutations were found (Table 1).

In details, 13 genes conferring resistance to aminoglycosides were 
identified and 6 genes conferring resistance to β-lactams. Among 
these, the most frequently identified ARGs to aminoglycosides were 
aph(3″)-Ib (strA) and aph (5)-Id (strB) identified in 19 genomic 
sequences, while the most common ARG to β-lactams was blaTEM-1B, 
found in 16 genomic sequences. The ARGs sul1 and sul2, conferring 
resistance to sulphonamides, were found in 11 and 13 genomic 
sequences, respectively. The ARGs tetA, tetB, tetG and tetD, conferring 
resistance to tetracyclines, were found in 18, 11, 2, and 2 genomic 
sequences, respectively. None of the selected samples presented mcr 
genes or mutation(s) in the chromosomal pmr genes, conferring 
resistance to colistin. When present, reduced susceptibility or 
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resistance to (fluoro)quinolones was mainly caused by point mutations 
in gyrA (S83Y, D87N, D87Y, D87G, S83F) and parC (T57S) genes, 
while qnr genes were less commonly seen. Seven genomes were 
characterized by a point mutation in gyrA gene and a second mutation 
in gyrA, gyrB, or parC gene, while four genomes presented a point 
mutation in gyrA gene and qnr genes. This latter combination only 
confers reduced susceptibility to quinolones. Finally, genes conferring 
resistance to phenicol, trimethoprim, lincosamides and macrolides, 
and fosfomycin were present but in a limited number of genomic 
sequences (Table 2).

A substantial agreement with statistical significance between 
genotypic predictions and phenotypic resistance to ampicillin 
(k = 0.79, p–value <0.01), azithromycin (k = 0.66, p = 0.03), 
chloramphenicol (k = 0.78, p–value <0.01), sulfamethoxazole (k = 0.78 
p–value <0.01) and tetracycline (k = 0.64, p–value <0.01) was observed. 
Only fair agreement was found for ciprofloxacin (k = 0.35, p–value 
<0.01), nalidixic acid (k = 0.37, p–value <0.01) and trimethoprim 
(k = 0.40, p–value <0.01) resistance, while no to slight agreement was 
observed for cefotaxime (k = 0.04, p–value = 0.498) and gentamicin 
(k = 0.15, p–value = 0.06) resistance (Table 3).

The distribution of ARGs per serovar showed that strains of 
S. Dublin and S. enteritidis, in agreement with their lack of 
phenotypic resistances which are not associated with point 
mutations, were without antimicrobial resistance genes 

(Supplementary Figures S1–S15). The distribution of ARGs per 
source revealed similar profiles in animal, food and human strains. 
The most frequently identified ARGs in the three sources were sul1 
and sul2, tetA and tetB, aph(3″)-lb (strA) and aph (5)-Id (strB), and 
the chromosomal point mutation in parC (T57S), potentially 
conferring reduced susceptibility to (fluoro)quinolons 
(Supplementary Figures S16–S18).

3.3. Plasmid replicons and co-location of 
plasmid replicons with ARGs

Among the 88 strains, 61 contained DNA sequences, which 
matched at least with one plasmid replicon (Supplementary Table S2). 
In total, 22 different plasmid replicons were detected, with 
Col(pHAD28), IncQ1 and IncFII(S) as the most frequently found 
(n = 20, n = 12 and n = 10 strains, respectively). In 20 sequences, at least 
two different plasmid replicons were detected and 5/20 contained 
IncX1 plasmid replicon. The frequency of detection of the plasmid 
replicon is reported in Table 4.

Col(pHAD28) replicon plasmid was mainly found in S. Hadar 
(3/6) and S. Rissen (4/6) genomes, while IncFIB(pN55391) was only 
identified on S. infantis (3/6) genomes. IncX1 was predominantly 
found in S. Dublin (5/5) genomes, IncQ1 in MVST (6/6) genomes and 

FIGURE 1

Phenotypic antimicrobial resistance in Salmonella serovars. The number of isolates resistant to antimicrobial molecules according to the European 
Committee on Antibiotic Susceptibility Testing (EUCAST) epidemiological cut-off values (ECOFFs; http://www.eucast.org). As described in Materials 
and Methods in the main text, two strains were selected for each serovar for each source (human, animal and food), with the exception of S. Dublin 
and S. Mbandaka, for which only one human isolate was available. Results of MIC tests and definitions of susceptibility testing categories, according to 
epidemiological cut-off values, are reported in Supplementary Table S1.
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IncFII(S) in S. Dublin (2/5), S. enteritidis (5/6) and S. Typhimurium 
(3/6) genomes (Supplementary Table S2).

In 14 genomic sequences, ARGs and at least one plasmid replicon 
were found to be located on the same contig, and only 3 strains carried 
plasmids with just one resistance gene [tetB (n = 1), floR (n = 2)]. 
Detailed information about the co-occurrence of plasmid replicons 
and ARGs on contigs scored as plasmid contigs is reported in 
Supplementary Table S3.

3.4. Conjugation assay and confirmation of 
transconjugants determinants

Conjugation experiments using E. coli 1816 as recipient strain 
were successful and frequencies of conjugation were calculated as 
being 3.45 transconjugants per donor for a S. Newport strain resistant 
to tetracycline, and 1.48E-06 transconjugants per donor for a 
S. Livingstone strain resistant to chloramphenicol.

Twelve E. coli transconjugant colonies selected from LB plates 
supplemented with nalidixic acid and chloramphenicol showed the 
catA1 gene amplicon and tetA gene was successfully amplified from 
sixteen E. coli transconjugant colonies selected from LB plates 
supplemented with nalidixic acid and tetracycline 
(Supplementary Figures S19, S20). The presence of IncN and IncHI2 

plasmid replicons were confirmed in transconjugants from S. Newport 
and S. Livingstone strains, respectively.

4. Discussion

Antimicrobial resistance (AMR) occurs in microorganisms that 
become resistant to molecules intended to limit or prevent their 
growth, and it is considered a major threat to human and animal 
health (26, 27). In recent years, MDR has emerged as one of the most 
important threats to human health (28) and the spread of AMR is of 
particular concern in bacteria that represent common causes of 
infections in the human population, such as Salmonella spp. (29, 30).

Resistance levels in Salmonella vary by country, but on average 
29,0%, 25,8% and 25,6% Salmonella isolates from human infections 
were reported to be  resistant to sulphonamides, ampicillin and 
tetracyclines (30). The ability of Salmonella to acquire resistance genes 
from other bacteria is well described (4) and multidrug resistant 
(MDR) strains could cause infections that are more serious compared 
to those caused by pan-susceptible stains (28).

In this study, we  characterized the phenotypic and genotypic 
antimicrobial resistance in a selection of Italian Salmonella isolates 
from human, food and animal sources. Moreover, WGS data were 
used to verify the co-occurrence of resistance gene and plasmids. 

FIGURE 2

Percentage of multidrug-resistant isolates per serovar.
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Conjugation experiments confirming the plasmidic nature of ARGs 
were successfully carried out in two strains, where only one ARG and 
one replicon type were present, and transfer of resistance could firmly 
be linked to this MGE.

Only 48 strains among the 88 strains subjected to phenotypic 
testing were resistant to at least one antimicrobial, and among these 
isolates, 26 displayed MDR phenotype, with serovars S. infantis and 
MVST being the most MDR serovars. This level of MDR is similar to 
what has been reported at the EU level (1). In accordance with the 
reported data for the EU as a whole, MDR among Italian isolates was 
high among strains of MVST and S. infantis. Conversely, MDR is very 
high among isolates of S. Kentucky at the EU level [73.7% (31)], while 
the proportion was much lower in the studied samples, where only 
33.3% of S. Kentucky isolates were MDR, probably reflecting the low 
number of strains analyzed in the current study.

Interestingly, the proportion of MDR isolates was found to 
be higher in isolates from food and human sources than from animals. 
This result opens to two possible scenarios: a) the ARGs stabilize in 
bacterial communities isolated from food handling environment, 
eventually reaching the final products. Indeed it is commonly 
recognized that meat from animals never treated with antibiotics 
could harbor antibiotic resistant bacteria, and b) other sources, for 
example, meat handlers or meat processing surfaces hosting resistant 
bacteria, could contribute to the ARGs stabilization in the bacterial 
communities in food processing environments (32). An alternative 
explanation could be the ban of antimicrobial as growth promoter in 
veterinary settings (33).

The proportion (33.3%), coherently with the Italian scenario, was 
slightly higher than what has been reported from the EU as a whole 
(31), and it was comparable to the proportion of MDR in food isolates 
(30.9%).

The degree of concordance observed between predictions of 
ARGs and resistance to a specific class of antimicrobial varied from 
no agreement, as in the case of colistin to substantial agreement, as in 
the case of ampicillin, chloramphenicol and sulfamethoxazole. Similar 
variability in agreement has been reported in other studies (34, 35). 
For those classes where agreement is high, surveillance for resistance 
by WGS of strains is a possibility, while care should be taken to base 
surveillance on this methodology for the classes with low agreement.

One possible explanation for low agreement between some 
resistance genes with the related phenotypes is a biological 
explanation. Indeed, ARGs could not be expressed due to the presence 
of weak or distant promoter or due to mutations in the promoter 
regions (36, 37). Alternatively, a technical explanation can be given: 
when the epidemiological cut-off values used to define whether an 
isolate is resistant or susceptible are higher than the resistance 
imparted by the resistance genes, isolates are classified as susceptible, 
as already described for aadA genes and streptomycin resistance (38).

Resistance to ampicillin was found in almost 30% of the isolates, 
and in 60% of these isolates, this was sustained by the presence of 
blaTEM-1B gene. Most of the isolates bearing the blaTEM-1B gene were of 
serovar MVST, S. Hadar, and S. Newport. Other bla genes were 
identified in genomes of isolates resistant to ampicillin. The TEM 
β-lactamase genes are usually carried by transposons (39) and found 
in plasmids (40), which increases the spread of this mechanism of 
resistance, posing a great concern for human health. Ampicillin is 
indeed classified as a critically important antimicrobial (CIA) by 
WHO (3), and the presence of blaTEM gene characterized pandemic 

TABLE 2 Number of genomic sequences positive for ARGs and AMR 
relevant point mutations, divided by antimicrobial classes.

Antimicrobial 
class

ARG namea Number of genomic 
sequences positive for 
the ARG*

Aminoglycosides

aadA1 1

aadA2 5

aph(3″)-Ib (strA) 19

aph(6)-Id (strB) 19

aph(3′)-Ia 5

aac(3)-IId 2

aadA5 1

aac(3)-IV 1

aph(4)-Ia 1

ant(3″)-Ia 2

aac(3)-Id 1

aadA7 1

ant(2″)-Ia 1

β-lactams

blaTEM-1A 1

blaTEM-1B 16

blaCARB-2 2

blaOXA-10 1

blaCTX-M-1 1

blaTEM-1D 1

Phenicol
catA1 3

floR 6

(Fluoro)quinolones

gyrA (S83Y) 3

parC (T57S) 39

gyrA (D87N) 3

gyrA (D87Y) 1

gyrA (S83F) 5

gyrA (D87G) 4

qnrB19 5

qnrD1 2

qnrS1 1

Sulphonamides
sul1 11

sul2 13

Trimethoprim

dfrA1 1

dfrA12 1

dfrA17 1

dfrA14 5

Lincosamides and 

macrolides

lnuG 1

mphA 1

Tetracyclines

tetA 18

tetB 11

tetG 2

tetD 2

Fosfomycin fosA7 1

aChromosomal point mutations conferring resistance to antimicrobials are reported in 
brackets. *Some genomic sequences contained more than one ARG, conferring resistance to 
the same antimicrobial class.
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clones such as the multiresistant MVST circulating in the European 
countries since 2006 (41).

Only two strains showed phenotypical resistance to cefotaxime, a 
third-generation cephalosporin, classified as highest priority CIA, and 
interestingly both were of human origin. For just one of them, an 
S. infantis isolate, it was possible to identify a blaCTX-M-1 gene 
responsible for the resistance. Also in this case, it is interesting to 
report that clonal lineages of ESBL-producing MDR S. infantis 
emerged recently in Italy and other European countries, causing 
human infections (42–44). Other identified genes conferring 
resistance to β-lactam antimicrobials (blaOXA and blaCARB) were only 
detected in few genomic sequences. Nonetheless, given they usually 
are carried by plasmids and other MGE (45), they could potentially 
be  transferred to other enteric bacteria and limit the therapeutic 
treatments in case of severe human infections. On the genomic 
sequences from S. Derby, the second isolate phenotypically resistant 
to cefotaxime, we could not identify any resistance gene that confers 
resistance to cefotaxime (46). We could therefore hypothesize the 
expression of efflux pumps that contribute to resistance to cefotaxime 
in this case (47, 48).

Resistance to sulfamethoxazole was found in 24% of the tested 
isolates, most of which carried sul1 or sul2 resistance genes. These 
genes are indeed the most common in the analyzed genomic 
sequences, especially in serovars S. infantis, S. Typhimurium and its 
monophasic variant. It is interesting to note that nine strains showing 
sul2 gene located on plasmid contig were not phenotypically resistant 
to sulfamethoxazole. Further studies are needed to elucidate 
this finding.

Only five isolates (5.7%) were phenotypically resistant to 
gentamicin, however, ResFinder identified resistance genes [aadA2, 
aadA5, aadA7, aac(3)-Id, aac(3)-IId, aph(3′)-Ia, aph(3″)-Ib (strA), 
aph(6)-Id (strB), and ant(2″)-Ia] in only four of them. Multiple genes 
were found in the same isolate, as already reported by other studies 
(49, 50). For the isolate genomic sequence where we could not identify 
any resistance gene, the presence and expression of efflux pump, such 
as AcrD, can contribute to gentamicin resistance (51, 52). The 
agreement between genotypic and phenotypic resistance was indeed 
only slight. Moreover, there were different isolates in which resistance 
genes to aminoglycosides and streptomycin were identified (53), but 
which did not show phenotypic resistance to antimicrobials. It is 
possible that these isolates lack other components necessary to 
transfer an acetyl group that is required for the resistance mechanism 
of kanamycin, and further studies are needed to understand the lack 
of kanamycin resistance in these strains, as suggested by other authors 
(35). The most common detected resistance genes to aminoglycosides 
were aph(3″)-Ib (strA) and aph(6)-Id (strB) especially in genomes of 
S. Hadar and MVST serovars, while the resistance gene aadA2 was 
mainly identified in isolated from S. Derby and S. Typhimurium.

Aminoglycoside resistance genes are enlisted as current threats for 
human health, since they are commonly associated to ESKAPE 
pathogens (54). Finding these genes in Salmonella isolates highlights 
the need for an active surveillance of emerging resistances also in 
community associated bacteria.

Phenotypic resistance to ciprofloxacin and nalidixic acid was 
expressed by 27 and 19% of the isolates, respectively, while only a 
limited number of strains carried qnr resistance genes, a transferable 
resistance mechanisms responsible for reduced susceptibility to 
quinolones (55). Susceptibility to nalidixic acid co-occurring with T
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resistance to ciprofloxacin was observed, corroborating the possible 
occurrence of plasmid mediated quinolone resistance mechanisms 
(30). One S. Mbandaka isolate carried a qnrS1 resistance gene, 
2 S. Montevideo isolates carried a qnrD1 gene and five isolates a 
qnrB19 gene (S. Thompson (N = 1), S. Newport (N = 2) and S. Hadar 
(N = 2)). Interestingly, only one of the isolates carrying a qnr gene was 
of human origin and none of them belonged to S. enteritidis, which 
showed an increased proportion of resistant isolates in 2016 (56), nor 
to S. infantis or S. Kentucky serovars, in which resistance to (fluoro)
quinolones is widespread (57). High level of ciprofloxacin resistance 
is observed in isolates with both qnr genes and chromosomal 
mutations, such as double substitutions in gyrA and a single 
substitution in parC genes, such in the case of the dominant clone of 
S. Kentucky ST198 in Europe (57, 58). Indeed, point mutations in 
DNA gyrase A (gyrA gene, position 83 or 87) and topoisomerase C 
(parC gene, at position 57) were present in different Italian isolates 
and also in the Salmonella genomes from different European countries, 
especially S. infantis and S. Kentucky sequences (58, 59). Of interest, 
a high number of genomes showed a point mutation at position 57 of 
parC gene (T57S, n = 39). Previous report showed that parC T57S is a 
spontaneous compensatory mutation, resulting in resistance to 
nalidixic acid but sensitivity to ciprofloxacin in Salmonella isolates (60, 
61). However, accumulation of mutations in gyrA or parC genes, 
together with parC T57S, resulted in complete resistance to 
ciprofloxacin in different Salmonella serovars (62, 63). The resistance 
to quinolones has been widely reported in Salmonella serovars, 

especially in serovars frequently isolated from poultry sources such as 
S. infantis and S. Kentucky, probably due to the selective pressure 
exerted on the microbial communities of poultry farming where the 
use of quinolones as therapeutic are still present (64). As for 
aminoglycoside resistance genes, also the presence of mobile genes 
such as qnr (S and B) are ranked among the current threads having the 
potential to contribute to MDR in pathogens (54).

Resistance to trimethoprim, encoded by dfrA1, dfrA12, dfrA17, 
dfrA14 genes, was identified in 11,4% of the Italian isolates and this 
level of resistance has been confirmed at the European level, also in 
successful epidemic clones (65, 66). Interestingly, two isolates, which 
showed phenotypic resistance to trimethoprim, lacked resistance 
genes to the molecule. Further investigations are needed to explore the 
possibility of efflux pumps or other mechanisms that could explain 
this phenomenon. The resistance to trimethoprim was particularly 
common among isolates of S. infantis, as already demonstrated (66). 
This high level of strains carrying trimethoprim resistance genes is 
quite alarming as these genes are enlisted among the Rank I AMR 
genes contributing to MDR in human pathogens (54). This is of 
particular relevance in Salmonella as the serovar mainly displaying 
these genes is S. infantis, a serovar with high potential of causing 
severe infections in humans and well known to carry SGI and large 
plasmids harboring MRG cassettes (58, 67).

Resistance to chloramphenicol was sustained by catA1 (n = 3) and 
floR (n = 6) genes in the Italian isolates, while at the European level 
also cmlA1 gene was widespread. Chloramphenicol is not used for 
treatment of humans due to toxicity risks, however, this drug class is 
classified as highly important antimicrobial for human health (3). 
Epidemic clones of chloramphenicol-resistant Salmonella, such as 
S. Typhimurium ST313 in Africa (68), S. Typhimurium DT104 (69), 
and even S. typhi, have emerged and chloramphenicol resistance genes 
are often carried in plasmids, together with other genes conferring 
resistance to streptomycin, sulfonamides, and tetracyclines (70).

Tetracycline resistance was confirmed in 33% of the Italian 
isolates, where tetA and tetB genes were identified. While tetA was 
identified in different serovars, such as S. Hadar, S. infantis, S. Newport, 
S. Rissen, tetB was predominantly identified in S. Typhimurium and 
its monophasic variant. The reasons for this different occurrence are 
not known, however, multiple studies showed the presence of tetB in 
clinically relevant clone of S. Typhimurium and its monophasic 
variant (71–74). In the current study, tetA was shown to be present on 
a conjugative plasmid in a tetracycline resistant strain of S. Newport, 
and this plasmid transferred resistance with high frequency to a strain 
of E. coli, suggesting that such plasmid confer high ability of spread 
of resistance.

Interestingly, resistance to colistin was identified only in eight 
isolates, most of which were of serovars S. Dublin and S. enteritidis. 
None of the isolates showed relevant chromosomal mutations or 
acquired mcr genes. These serovars belong to group D Salmonella, 
which are characterized by a decreased susceptibility to colistin, due 
to the presence of abequose, the dideoxyhexose characterizing 
O-antigen epitope of this group (75, 76). Despite the increasing 
number of Salmonella isolates carrying mcr genes conferring 
resistance to colistin (77–81), and the diverse variants of mcr genes 
(82), we did not identify any mcr variant in the studied genomes.

Many of the resistance genes identified in the studied genomes are 
usually located on plasmids, that play a major role in evolution and 
horizontal gene transfer of bacterial antimicrobial resistance (83). 

TABLE 4 Frequency of detection of plasmid replicons in strains of 
Salmonella, based on PlasmidFinder results.

Plasmid replicon name Frequency of detection

Col(pHAD28) 20

Col156 3

Col3M 2

Col440I 6

ColE10 1

ColpVC 5

IncFIA(HI1) 1

IncFIB(pECLA) 2

IncFIB(pN55391) 3

IncFIB(S) 2

IncFII 1

IncFII(S) 10

IncHI1B(pNDM-CIT) 1

IncHI1B(R27) 1

IncHI2 0

IncHI2A 2

IncI1-I(Alpha) 3

IncN 4

IncQ1 12

IncX1 8

IncX4 1

IncY 1
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Plasmid replicons were indeed detected in 69% of the genomic 
sequences and belonging to all the selected serovars. Of note, plasmid 
replicons (Inc groups) were in most of the cases associated with only 
one serovar., with the exception of IncFIB(S) and IncFII(S), that were 
identified in both S. enteritidis and S. Typhimurium and IncX1, that 
was identified in both S. Dublin and S. Kentucky. Previous reports 
demonstrated that certain serovars presented specific incompatible 
plasmids (83–86). We  developed a workflow to map the plasmid 
replicons against known Salmonella plasmids, and all the identified 
replicon carrying contigs showed similarity to published plasmid 
sequences Salmonella enterica strains.

The resistance genes located on the same contig(s) as plasmid 
replicons were encoded on IncQ1 plasmid type, mainly harbored 
by genomes of the MVST. Interestingly, multiple resistance genes 
(sul2, aph(3″)-I and aph (6)-Ic) were identified on such IncQ1 
contigs. IncQ1 plasmids are present in 4–12 copies/cell and have a 
size range from 8 to 14 kb (83) and were reported to carry bla genes 
(87) or the sul2-strA-strB cluster (88, 89). Of note, bla genes were 
not located on contigs carrying plasmid replicons, such as IncX 
plasmids, which usually carry resistance genes to β-lactams and 
quinolones (83). Similar IncX1 plasmids were already identified in 
Salmonella and E. coli strains. Interestingly, tet genes, usually found 
on plasmids, were not detected on IncQ1 plasmids. Recently, Oliva 
et al. (90) reported a novel IncQ1 plasmid carrying tet genes and 
postulated that recombination between a recipient IncQ1 plasmid 
and the tetR-tetA gene cluster had occurred. We did not search for 
recombination events nor genetic elements that could favor 
recombination, however it is worth noting that plasticity in bacteria 
genomes could likely mobilize such regions and contribute to the 
spread of plasmids with multiple resistance genes. IncQ1 contigs 
were found to match with plasmids already identified in E. coli and 
K. pneumoniae (91, 92).

Surprisingly, only a limited number of replicon containing 
contigs, with the exception of contigs found in MVST and 
S. Typhimurium genomes, were predicted to have ARGs. This however 
can be explained by the multiple mechanism by which antimicrobial 
resistance could arise in Salmonella. Besides horizontal transfer, also 
translocation from plasmids to chromosome has been described, 
creating clusters or antimicrobial resistance islands that are now 
regarded as an efficient means of resistance genes dissemination (67, 
93, 94). Moreover, MGEs together with integrons, transposons and 
insertion sequences, favoring genetic recombination mechanisms, 
facilitate the accumulation on resistance islands (70, 95, 96). Another 
explanation could be that multiple resistance genes are carried on very 
large plasmids, as in the case of the pESI megaplasmid in S. infantis 
(42, 97). Such mega plasmids, with sizes ranging from 280 to 320 kb, 
unlikely would be completely assembled from short-read sequencing 
technology, such as used in the current study. It is therefore possible 
that plasmid replicon and antimicrobial resistance gene(s) would 
be identified in different contigs, hampering the association between 
plasmid and resistances (98).

The advent of WGS has enabled the prediction of AMR and 
antimicrobial resistance surveillance from genomic data alone (99), 
demonstrating high concordance between the presence of known 
ARGs or mutations and MIC of several antimicrobials (100). 
Despite the need to harmonize and standardize pipelines and 
databases, one of the most important advantage of WGS for AMR 

surveillance is the unprecedented level of detail in one assay, that 
made it possible also to define multidrug-resistance with great 
precision compared to phenotypic tests, allowed the description of 
current and emerging trends in AMR and allowed to trace specific 
allele profiles, rather than just phenotypic patterns by drug 
class (100).

5. Conclusion

Salmonella enterica represents an extremely heterogeneous 
species, and diseases caused by non-typhoidal Salmonella serovars 
vary considerably, with some serovars being significantly more prone 
to cause infections in humans. The reasons behind this are not 
completely understood, even if virulence mechanisms and genetic 
differences are believed to contribute to its success (101). In this 
paper, we described the variability in resistance genes and potential 
plasmids that characterize a set of Italian Salmonella isolates. Many 
of the identified genes, especially those that confer resistance to 
critically and highly important antimicrobials for human medicine 
were located together with plasmid replicons on contigs, which 
mapped to known plasmid sequences, and such plasmids can 
potentially favor in the spread and dissemination of ARGs. Indeed, 
genome plasticity, even more if associated to multidrug resistance, 
seems to be  an important characteristic of successful Salmonella 
clones, regardless of the serovar.
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