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SARS-CoV-2 has caused a high number of deaths in several countries. In Brazil,
there were 37 million confirmed cases of COVID-19 and 700,000 deaths caused
by the disease. The population size and heterogeneity of the Brazilian population
should be considered in epidemiological surveillance due to the varied tropism of
the virus. As such, municipalities and states must be factored in for their unique
specificities, such as socioeconomic conditions and population distribution.
Here, we investigate the spatiotemporal dispersion of emerging SARS-CoV-2
lineages and their dynamics in each microregion from Sergipe state, northeastern
Brazil, in the first 3years of the pandemic. We analyzed 586 genomes sequenced
between March 2020 and November 2022 extracted from the GISAID database.
Phylogenetic analyses were carried out for each data set to reconstruct
evolutionary history. Finally, the existence of a correlation between the number
of lineages and infection cases by SARS-CoV-2 was evaluated. Aracaju, the largest
city in northeastern Brazil, had the highest number of samples sequenced. This
represented 54.6% (320) of the genomes, and consequently, the largest number
of lineages identified. Studies also analyzed the relationship between mean
lineage distributions and mean monthly infections, daily cases, daily deaths, and
hospitalizations of vaccinated and unvaccinated patients. For this, a correlation
matrix was created. Results revealed that the increase in the average number of
SARS-CoV-2 variants was related to the average number of SARS-CoV-2 cases
in both unvaccinated and vaccinated individuals. Thus, our data indicate that it
is necessary to maintain epidemiological surveillance, especially in capital cities,
since they have a high rate of circulation of resident and non-resident inhabitants,
which contributes to the dynamics of the virus.
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Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
emerged in China in late 2019 and rapidly spread across the globe,
leading the World Health Organization (WHO) to declare a pandemic
state on 11 March 2020 (1, 2). The virus has been widespread, causing
waves of infections in almost all regions of the world (3). The first
cases were confirmed in the state of Sdo Paulo in February 2020. After
that, actions were taken by the Ministry of Health in order to contain
the emerging epidemic (4). As of today, 37.9 million cases in Brazil
have resulted in 706,531 deaths, representing a mortality rate of 441.3
individuals per 100,000 inhabitants (accessed on 28 October 2023;
available in https://covid.saude.gov.br//). This high mortality rate is
related to the lack of a national policy against the disease, the
increasing population mobility, especially in large urban centers, the
return of face-to-face work activities, difficulties in implementing
individual and community preventive measures to reduce the spread
of COVID-19, and delays in vaccination have contributed to the
emergence and spread of SARS-CoV-2 variants of concern (VOCs)
across the country over time (5).

In Brazil, the pandemic was characterized by the co-circulation of
multiple variants over time (6). The emergence of new variants was
directly related to adaptive mutations in the viral genome that
modified the pathogenic potential of SARS-CoV-2. A single amino
acid change can dramatically affect a virus’s ability to evade the
immune system and complicate the clinical status of infected
individuals (7). Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta
(B.1.617.2), and omicron (B.1.1.529) lineages were important variants
associated with greater transmissibility or virulence, reduced
neutralization by antibodies obtained through natural infection or
vaccination, ability to avoid detection, and/or decreased therapeutic
or vaccination efficacy (8).

Monitoring SARS-CoV-2 was possible due to recent technological
and scientific advances in genome sequencing and bioinformatics
tools, allowing almost real-time genomic surveillance and tracking the
emergence and replacement dynamics of variant emergence and
prevalence among populations (9). Several studies focusing on
genomic surveillance have provided crucial information to understand
the dynamics of SARS-CoV-2 lineages in the states or regions of Brazil
due to the large differences between inter- and intra-state population
sizes, concentration, and dynamics of human movement (10, 11). This
proposal has been shown to be relevant to determine the spread of the
virus based on the specific characteristics of the state in a refined
resolution (11). In the Brazilian Northeast, 7.4 million cases of
COVID-19 and 136,000 deaths have already been reported. Bahia,
Ceard, and Pernambuco are the states with the highest incidence of
cases and deaths in the region. In Sergipe state, 363,329 individuals
were diagnosed with COVID-19, resulting in 6,539 deaths (accessed
on 28 October 2023; available at https://covid.saude.gov.br//). At the
moment, a single study has been identified in the literature related to
genomic surveillance in Sergipe, and this analyzed genomes sequenced
between March 2020 and February 2021 (5). This demonstrates the
necessity to implement new research aimed at understanding the
effects of the pandemic.

Therefore, this study aimed to assess the dynamics of SARS-
CoV-2 variants from 2020 to 2022 in the state of Sergipe within Brazil.
Knowledge gained would identify viral evolutionary patterns and
behavior as it relates to epidemiological impacts.
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Methods
Study area

Sergipe is located in northeastern Brazil and has a land area of
21,938,188 km? and an estimated population of 2,338,474 inhabitants.
The state has 75 municipalities and is divided into 13 microregions
(Agreste de Itabaiana, Agreste de Lagarto, Aracaju, Baixo Cotinguiba,
Boquim, Carira, Cotinguiba, Estancia, Japaratuba, Nossa Senhora das
Dores, Propria, Sergipana do Sertiao do Sao Francisco, and Tobias
Barreto) (Figure 1). The microregion of Aracaju is made up of the
capital (Aracaju), and the municipalities of Barra dos Coqueiros,
Nossa Senhora do Socorro, and Sdo Cristévao, forming the
metropolitan region of Aracaju, which represents approximately 36%
of the state population'.

Data collection

Full-length SARS-CoV-2 genomes from February 2020 to
November 2022 were obtained from the GISAID database”. Only
complete genomes and complete collection data were used. The
sequences were evaluated individually, considering the lineage, which
was determined by the Pangolin software’, municipality, and collection
date. Soon after, the genomes were separated by year, giving rise to
three data sets. The Circos program (12) was used to visualize the
distribution of the genomes by strains and municipalities.

In order to correlate the number of lineages of SARS-CoV-2 with
the average of infections by months, daily cases, daily deaths, and
admissions of vaccinated and unvaccinated patients, the data were
uploaded to a cross-country database of COVID-19* (13, 14). The
Pearson correlation test was performed using a native stats (V.4.0.3)
package available in R software, and the grouped stacked bars with the
abundance of lineage between months were performed and
represented using the ggplot2 package (15, 16) and the correlation
matrix was performed using corrplot package (17). All the differences
with p-values <0.05 were considered statistically significant.

Phylogenetic analyses

Multiple sequence alignment was carried out using MAFFT v.7
with auto and add fragments parameters (18). The sequence from
Wuhan-Hu-1 (NC_045512.2) was then added as an outgroup.
Subsequently, the maximum likelihood (ML) phylogenetic trees
were built using IQ-TREE v2.1.2 (19). The nucleotide substitution
models TN+ E GTR+F+1+1+R4, and TIM +F+1+1+R3 were
selected using ModelFinder in IQ-TREE2 v2.1.2 for the SARS-
CoV-2 genomes of 2020, 2021, and 2022, respectively (20). Clade
support was estimated using 1,000 replicates of bootstrap. The tree
was visualized and edited using the iTOL v.4 tool (21). The
haplotype network was created with PopART software version 1.7

https://censo2022.ibge.gov.br/
https://www.gisaid.org/

https://cov-lineages.org/resources/pangolin.ntml
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https://globalepidemics.org/
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FIGURE 1

State map of Brazil with emphasis on Sergipe state, showing the 13 microregions.

(22) using the median-joining method to identify the existence of
shared haplotypes.

Spatial analysis

The maps to represent the spatial distribution of SARS-CoV-2
lineages were constructed using the QGIS software version
3.18.2, with the cartographic projection corresponding to the
Universal Reference System SIRGAS 2000. The cartographic
projection used corresponded to the Universal Transverse
Mercator (UTM) system, Terra Datum horizontal model (SIRGAS
2000) to segment by municipalities and states were collected
from the databases of the Brazilian Institute of Geography and
Statistics (IBGE).

Results

Genomic surveillance of SARS-CoV-2
variants in Sergipe

For this analysis, 586 SARS-CoV-2 viral genomes were evaluated
and classified into 36 variant lineages (Figure 2). Sequences have been
distributed in 47 municipalities, representing 62.7% of the total. Most
of the genomes obtained from the GISAID database have their origin
in the Aracaju microregion, as can be seen in Table 1.

In 2020, five lineages were detected circulating in Sergipe, B.1 (11
sequences, 36.7%) was the most frequent, followed by B.1.1 (6
sequences, 20%), B.1.1.33 (6 sequences, 20%), B.1.1.28 (4 sequences,
13.3%), and B.1.212 (3 sequences, 10%) (Figure 2). A total of 30
genomes were available on the GISAID database. In total, 19 of those
30 genomes were related to samples from Aracaju
(Supplementary Figure S1). Genomic sequences have also been
observed in 10 other municipalities (Figure 3). At first, B.1 was
identified in the state on 12 March 2020 during the first wave. This
sample belongs to an individual who resided in Aracaju with a travel

history to Europe (Spain).
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For 2021, 406 sequences were used to create the datasets and
subsequently classified into 16 viral variant lineages. In total, 212
samples were identified as the P.1 gamma variant, representing
approximately 52.2% (Figure 2). Initially, the circulation of this variant
was registered on 17 January 2021 in the municipality of Aracaju
during the second wave. Delta sequences have been registered in
Sergipe between January and September. P.1.2 (56 sequences, 13.8%)
and P2 Zeta variant (50 sequences, 12.3%) were also highly
represented (Figure 4). This variant was predominant in infection
cases from September and December. A total of 57 genomes of the
AY.* lineages were found in the GISAID database. This is distributed
in four strains (AY.34.1.1, AY.99.1, AY.99.2, and AY.101). AY.99.2 (45
sequences, 11.1%) was prevalent during this period. Lineages
AY.34.1.1, AY.99.1, and AY.101 represented approximately 2.9% of the
total genomes (Figure 2). All other strains identified in 2021 represent
approximately 10.6% (43 sequences). Aracaju was the municipality
with the highest number of strains circulating when compared to
other localities (Figure 4). Lineages were also identified in 37 other
cities (Supplementary Figure S2).

An alignment with 150 genomes was created using the genomes
of 2022, and it was possible to identify 18 lineages distributed in 27
municipalities (Figure 5) (Supplementary Figure S3). In January, nine
sublineages of the Omicron variant were identified as circulating. The
first variant sample detected was on 3 January 2022. The lineage
BA.1.1 (33 sequences, 22%) was the most frequent during the third
wave, followed by BA.1 (28 sequences, 18.7%), BA.5.2 (21 sequences,
14%), and BA.5.2.1 (18 sequences, 12%). All other lineages identified
represented approximately 33.3% (50 sequences) (Figure 2).

Evolutionary analysis of SARS-CoV-2
lineages

The maximum likelihood phylogenetic tree was constructed to
confirm the SARS-CoV-2 variant classification that circulated between
February 2020 and November 2022 in the state of Sergipe. Considering
the sequences from 2020, the phylogenetic analysis suggested five
distinct well-supported groups (B.1, B.1.1, B.1.212, B.1.1.28, and

frontiersin.org
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B.1.1.33) (Figure 6). The haplotype network has been constructed with
the purpose of characterizing the ancestral relationships maintained
between the lineages. Five well-defined clades (B.1, B.1.1, B.1.212,
B.1.1.28, and B.1.1.33) were identified. Notably, haplotype sharing was
not observed among the sequences from these different strains
(Figure 7).

For the genomes from 2021, the ML tree revealed five main well-
supported clades. One clade was composed only of the delta variant.
N.9, B.1.1.28, and P2 lineages were divided into different clades with
significant support values (Figure 8). B.1.1.28 was identified as a
common ancestor of P.1 and P.2. A clade represented by sublineages
relative to P.1 (P1.7, P1.14, and P.1.2) was observed. However,
sequences belonging to lineages B.1.1, B.1.1.33, and P4 have not
demonstrated significant bootstrap values. P.7 clade showed high
support value, and its genetic pattern is associated with the P.2 lineage.
The haplotype network revealed five heterogeneous clusters, where P.1
was associated with P.1.2, P1.14, and P.1.7. Another cluster was
observed with P2 and P.7 lineages. N.9, B.1.1.28, and all AY.* remained
isolated in the phylogenetic tree (Figure 9).

Analyzing the genomes from 2022, it was possible to observe
differences, revealing two distinct clades (Figure 10); both groups were
significantly supported. A clade was formed by genomes from lineages
BA.5,BA.5.1, BA5.2, BA5.2.1, BA.2, BA.2.12.1, BA.2.56, BA 4, and
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BA 4.1, and another clade was formed by genomes from lineages BA.1,
BA.1.1, BA.1.14, BA.1.14.1, BA.1.14.2, BA.1.15, BA.1.17.2, BA.1.1.1,
and BA.1.1.14. The haplotype network also suggested two clusters.
One cluster was composed by BA.5, BA.5.1, BA.5.2, BA.5.2.1, BA.2,
BA.2.12.1, BA.2.56, BA 4, and BA.4.1. On the other hand, the other
cluster was formed by lineages BA.1, BA.1.1, BA.1.14, BA.1.14.1,
BA.1.14.2,BA.1.15,BA.1.17.2, BA.1.1.1, and BA.1.1.14. In addition, it
was observed genomes from different lineages sharing haplotypes,
such as BA.1.1{10,322,472, BA.1.1|10,322,464, BA.1.14|10,322,474,
BA.5.2.1|15,279,654, BA.5.2.1|15,202,013, BA.5.2.1|15,802,440, and
BA.5.2.1|15,802,439 (Figure 11). In the BA.1.1]10,322,472 genome,
genetic patterns associated with BA.1 and BA.1.1 have been identified,
suggesting the maintenance of ancestral relationship.

Correlation analysis of SARS-CoV-2
lineages and infection cases in Sergipe

A correlation matrix analysis was employed to examine the
relationship between the average distributions of viral lineages and the
average number of individuals infected, as indicated by registered
cases reported by global epidemics (Figure 12). Furthermore,
we explored relationships among the averages of hospital admissions

frontiersin.org
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TABLE 1 Distribution of SARS-CoV-2 genomes obtained from the GISAID database divided by microregions of Sergipe.

10.3389/fpubh.2023.1222152

Microregions Municipalities 2020 2021 2022 %
Aracaju 19 252 49
Barra dos Coqueiros 02 11 22
Aracaju 69.6%
Sao Cristovao - 02 12
Nossa Senhora do Socorro 01 25 13
Estancia 01 05 -
Estancia 2.6%
Itaporanga D’ajuda 01 07 01
Lagarto 01 01 05
Agreste de Lagarto 2.2%
Riachdo do Dantas - 02 04
Laranjeiras 01 04 -
Riachuelo 01 01 -
Baixo Cotinguiba Maruim - 01 - 1.9%
Santo Amaro das Brotas - 01 -
Carmoépolis - - 02
Telha 01 01 -
Amparo de Sio Francisco - 01 -
Canhoba - 01 -
Propria 1.9%
Cedro de Sao Jodo - 03 -
Nossa Senhora de Lourdes - 01 01
Propria - 02 -
Tomar do Geru 01 02 -
Boquim - 06 02
Cristindpolis - 02 _
Boquim 4.4%
Itabaianinha - 06 -
Salgado - 03 03
Umbauba - - 01
Aquidaba - 02 -
Nossa Senhora das Dores 0.5%
Nossa Senhora das Dores - - 01
Canindé de Sao Francisco - 14 -
Nossa Senhora da Gléria 01 05 -
Sergipana do Sertdo do Sao
Gararu - 01 - 4.8%
Francisco
Monte Alegre de Sergipe - 03 -
Porto da Folha - 04 -
Capela - 04 03
Cotinguiba 1.9%
Divina Pastora - - 04
Carira - 01 -
Frei Paulo - 03 03
Carira 3.4%
Ribeir6polis - 08 04
Pinhdo - - 01
Itabaiana - 04 09
Areia Branca - - 02
Agreste de Itabaiana 2.9%
Macambira - - 01
Malhador - - 01
Simao Dias - 11 01
Tobias Barreto Tobias Barreto - 04 02 3.4%
Pogo Verde - 01 01
Pirambu - 01 -
Japaratuba
Japaratuba - - 02 0.5%
Total 30 406 150
Frontiers in Public Health 05 frontiersin.org
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Sergipe state map showing the clinical distribution of the SARS-CoV-2 lineages in 2020 by municipality. Colors represent the municipality and lineages
downloaded from the GISAID database.
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FIGURE 4
Sergipe state map showing the clinical distribution of the SARS-CoV-2 lineages in 2021 by municipality. Colors represent the municipality and lineages

downloaded from the GISAID database.

in vaccinated and unvaccinated patients as well as the averages of daily ~ admissions in vaccinated patients were associated with clusters of
deaths and daily cases (Figure 12). Notably, the averages of registered  registered cases, while hospital admissions in unvaccinated patients
cases exhibited a correlation cluster among all reported cases as well ~ were linked to daily deaths and daily cases. The observed increase in
as between vaccinated and unvaccinated patients. Additionally, the ~ the number of variant lineages during the study period was directly
averages of daily cases and deaths showed a direct correlation. Hospital ~ correlated with the averages of infections.
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FIGURE 5

downloaded from the GISAID database.

Sergipe state map showing the clinical distribution of the SARS-CoV-2 lineages in 2022 by municipality. Colors represent the municipality and lineages
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assigned to the branches are related to their respective lineages and the samples are labeled according to their sampling dates and virus lineages.
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Discussion

This is a pioneering study of the state of Sergipe. The evolutionary
history of circulating SARS-CoV-2 genomes over the last 3 years was
reconstructed using phylogenetic analyses based on ML and the
median-joining method. Our data support that B.1 was the first
lineage detected in Sergipe (as recorded in Aracaju on 12 March

Frontiers in Public Health

2020). However, Gurgel et al. (23) report in their study that the first
case of COVID-19 in the state of Sergipe may have occurred a few
months earlier, as samples from asymptomatic individuals sent for
blood tests between the months of January and April 2020 by reasons
unrelated to COVID-19 showed the presence of SARS-CoV-2
immunoglobulins (IgM and IgG) before the notification of clinical
cases in the state. The country registered its first COVID-19 case in
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late February in Sao Paulo (4). In Bahia, the first confirmed SARS-
CoV-2 infections occurred on 28 February, being the first case in the
Northeast region®.

The lineages B.1, B.1.1, B.1.1.33, B.1.1.28, and B.1.212 were
prevalent until mid-August 2020. In an analysis carried out by Dos
Santos et al. (5), B.1 (58.5%), B.1.1.33 (17.1%), B.1.1.119 (12.2%),
B.1.1.28 (9.8%), and B.1.212 (2.4%) were dominant from March to
August 2020 in Sergipe. In late 2020, the variants zeta (P.2) (24) and
gamma (P.1) (25), descendants of lineage variants B.1.1.28, emerged
and were associated with the second phase of the pandemic. P.1 was
identified in the state of Amazonas in mid-December 2020, with a
proposed emergence around November (25, 26).

P.1 was dominant in infection cases by SARS-CoV-2, having their
circulation on 17 January 2021. Some studies proposed that the
emergence of three mutations E484K, N501Y, and K417T in the Spike
protein allowed the virus to escape from the host immune response
(27-29). In mid-January 2021, samples from 11 suspected cases and
their contact reporting a travel history to/from Amazonas state were
screened at the Central Laboratory of Health of the Bahia state
(LACEN-BA). Genetic evidence has confirmed for the first time the
circulation of the P1 in the Brazilian Northeast (30). The study
conducted by Dos Santos et al. (5) also confirms that P.1 circulated in

5 www.genomahcov.fiocruz.br/gisaid/
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Aracaju (Sergipe) on 17 January 2021 in a sample belonging to a
resident from the city of Manaus (Amazonas) who traveled to Sergipe
to visit his family (5).

Our results from the evolutionary analysis showed that B.1.1.28 is
a common ancestor of P.1 and P.2. In the studies conducted by Varela
et al. (31) and Harvey et al. (32), it was indicated that P.1 and P.2
descend from B.1.1.28 although they have different times of
appearance and share the S: E484K mutation. A cluster formed by P.1,
P1.1,P1.2,and P.1.7 demonstrates the ancestral relationship between
these lineages, as reported by Varela et al. (31) and Machado etal. (11).
In the present study, a shared ancestry between P.2 and P.7 was also
observed similar to that suggested by Lamarca et al. (33).

Assessing the results, it was suggested that AY.99.2 (11.1%)
became dominant in cases from September to December 2021. There
are signs that the delta variant emerged in October 2020 on the Asian
continent as has been classified by WHO (33). In Brazil, the first
community-sustained transmission chains of the delta variant were
registered in June 2021 in the state of Rio de Janeiro (34), and it has
been widely detected in other Brazilian states over time (see footnote
5). Among the delta variants, the AY.99.2 was the most dominant,
reaching 58% of all sublineages sampled during the period (35). Some
evidence demonstrate that AY.99.2 emerged in Brazil; the first SARS-
CoV-2 genomes from this lineage available in the GISAID database
are from samples collected in April 2021 in the northeastern state of
Ceara (36). Studies have identified mutations in the spike protein of
the delta sublineages found in Brazil, and the most common mutations
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FIGURE 8

virus lineages.

Maximum likelihood tree of 406 SARS-CoV-2 whole-genome sequences available at the GISAID database using the GTR + F + | + | + R4 evolutive
model. The colors assigned to the branches are related to their respective lineages and the samples are labeled according to their sampling dates and

mentioned are T19R, T95I, E156G, DEL157/158, L452R, T478K,
D614G, Q677H, P681R, D950N, V1104L, and L1265F°. Some of these
mutations can be related to viral fitness advantages such as enhanced
viral entry, pathogenesis, and immune escape (37, 38). Despite that,
the number of hospitalizations declined from 6.9% (January to June
2021) to 3.6% (July to December 2021) during the community
transmission of the delta variant with the progression of vaccination
in the second half of 2021 in Sergipe (39).

6 https://outbreak.info/compare-lineages
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The phylogenetic tree revealed that the samples of the delta variant
formed a monophyletic clade. In an analysis using the neighbor-
joining method with genomes from the delta lineage, a compatible
structuring with a monophyletic clade was shown, and the omicron
variant emerged from it (40).

In this study, the lineage BA.1.1 was reported as most frequent,
followed by BA.1, BA.5.2, and BA.5.2.1. Genomic surveillance
detected that in February 2022, the omicron variant was majority;
99.8% of the samples analyzed around the country being positive
for the variant (see footnote 5). From January to September, BA.1
(4,253 genomes) and BA.1.1 (2,521 genomes) were also prevalent
in infection cases by SARS-CoV-2 in the northeast Brazil (see
footnote 5). Since the beginning of the pandemic, the SARS-CoV-2
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genome has been rapidly evolving. This is mostly due to the
inherent polymerase mistakes and host immune selection factors
(32). The omicron variant is the most mutated variant containing
more than 60 mutations in its genome. In total, 32 of these
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mutations lie within the receptor binding domain (RBD) of the
spike protein (41, 42). The large number of mutations associated
with the spike RBD domain can be related to infectivity rates, high
transmission capacity, and rapid dispersal potential (26). Among

frontiersin.org


https://doi.org/10.3389/fpubh.2023.1222152
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

Freitas et al.

10.3389/fpubh.2023.1222152

Tree scale: 0.001

Colored ranges  bootstrap
W ougowp [l 50
W a2 W s
[] BAa | k&
I Bas2 W es
[] Basa B w00
W 525

[ Bas21

| :INE

[] Bax

[ BaL1L14

W Ba1141

[ BAL14

W Br1172

| [L:ISESI

| ISEY

[[] BA1142

W Ba4a

[ Ba2121

W 82256

Cristz,
Crsingy
B "
P ISL 95715330701 2022 A e
BAIIEPIISL 1201007604022022Divina -
BAEPI 1SL957152710012022 Capea
012022 Barrados Conueires
BAEPIISL 103224603

Coqueires
e o
AR IsL B2 e

LIS,
322478131

20221530

BAUEPISL 1201005

FIGURE 10

lineages.

Maximum likelihood tree of 150 SARS-CoV-2 whole-genome sequences available at the GISAID database using the TIM + F + | + | + R3 evolutive model.
The colors assigned to the branches are related to their respective lineages and the samples are labeled according to their sampling dates and virus

the mutations identified in the omicron variants, 14 are exclusive
and found in all the omicron variants (43).

Our phylogenetic tree for omicron VOC suggests the existence of
two main clades, one composed of the sublineages linked to BA.1 and the
other associated with BA.2, BA 4, and BA.5 variants. In a study developed
by Veneziano et al. (44) with Omicron SARS-CoV-2 genomes in Italy, a
group composed of BA.1 and another by BA.2, BA 4, and BA.5 lineages
was identified. Six mutations have been identified in all the omicron
variants, excluding omicron BA.1: Del24-26, V213G, T376A, S371F,
D405N, and R408S (43). These mutations may have contributed to the
structure of the clades of the phylogenetic tree and also in the haplotype
network, as observed in other organisms (45, 46). Notably, our study
presents a limitation due to the fact that in some months of 2020 and
2022, there were no records of SARS-CoV-2 genomes in the GISAID
database. However, there is agreement between our genomic surveillance
results and those observed in other states of Brazil.

Frontiers in Public Health

Finally, the increase in the average number of SARS-CoV-2
lineages during the studied periods is related to the average number
of infections in both unvaccinated and vaccinated individuals.
Tarkowski et al. (47) demonstrated that vaccinated individuals
presented higher levels of IgG against viral proteins of spike protein-1
(S1) and receptor-binding domain (RBD), which resulted in a better
immune response to B.1 and P.1 variants although immune activation
is less noticeable in response to the B.1.617.2 variant. A similar study
revealed differences in the efficiency of humoral activity in vaccinated
individuals against B.1.617.1, B.1.617.2, B.1.351, and P.1 lineages due
to mutations in the spike protein (S) (48). Unvaccinated individuals
are intrinsically associated with daily cases and deaths. Martins-Filho
et al. (39) studied the dynamics of hospitalizations and the
predominance of delta and omicron variants in the Northeast of
Brazil and found that during the circulation of the delta variant (July
to December 2021), the majority of deaths occurred in people who
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were not vaccinated or who had not completed the vaccination
schedule. Furthermore, in 2020, vaccines were scarce, with high
hospitalization rates (46% of the population with active
infection) (39).

Conclusion

Our data suggest a correlation between the increase in the mean
number of variant lineage strains and the mean number of infections
in unvaccinated and vaccinated individuals. It is important to note
that 3years after the beginning of the SARS-CoV-2 pandemic, and
despite the availability of several vaccines for 2 years, the restrictive
measures to contain SARS-CoV-2 spreading were met with several
challenges among most countries. In particular, the recent variants are
generating new outbreaks of infection, even in countries where the
level of vaccinations is high. However, it becomes necessary for
continuous monitoring of the most predominant SARS-CoV-2

Frontiers in Public Health

lineages as well as their specific dynamic and processes of evolution.
Therefore, this knowledge gain and continual analysis of variant
lineages is imperative for epidemiologists to define public health
measures, perform adequate diagnostic tests, and strategically employ
vaccines (49).

Despite the number of positive cases of COVID-19 in Sergipe, these
did not have minimum values to be submitted for genetic sequencing;
and we were unable to establish a stratified correlation between the
number of lineages and the severity of COVID-19 cases in both
vaccinated and unvaccinated individuals. This correlation could have
demonstrated how lineage variability impacts the severity of infections.
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