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The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), broke out in December 2019 in Wuhan 
city, in the Hubei province of China. Since then, it has spread practically all over 
the world, disrupting many human activities. In temperate climates overwhelming 
evidence indicates that its incidence increases significantly during the cold 
season. Italy was one of the first nations, in which COVID-19 reached epidemic 
proportions, already at the beginning of 2020. There is therefore enough data 
to perform a systematic investigation of the correlation between the spread of 
the virus and the environmental conditions. The objective of this study is the 
investigation of the relationship between the virus diffusion and the weather, 
including temperature, wind, humidity and air quality, before the rollout of any 
vaccine and including rapid variation of the pollutants (not only their long term 
effects as reported in the literature). Regarding them methodology, given the 
complexity of the problem and the sparse data, robust statistical tools based on 
ranking (Spearman and Kendall correlation coefficients) and innovative dynamical 
system analysis techniques (recurrence plots) have been deployed to disentangle 
the different influences. In terms of results, the evidence indicates that, even if 
temperature plays a fundamental role, the morbidity of COVID-19 depends 
also on other factors. At the aggregate level of major cities, air pollution and 
the environmental quantities affecting it, particularly the wind intensity, have no 
negligible effect. This evidence should motivate a rethinking of the public policies 
related to the containment of this type of airborne infectious diseases, particularly 
information gathering and traffic management.
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1. Introduction: COVID-19 and the 
weather fast variations

In the last years, it has become clear that, in the present 
interconnected world, the spread of infectious diseases is one of the 
major threats to human health and economic activities (1–3). The 
most evident last case is the outbreak of the severe acute respiratory 
syndrome coronavirus 2 SARS-CoV-2, which first appeared on a 
small scale in November 2019 with the first large cluster developing 
in Wuhan city, in the Hubei province of China in December 2019, 
before spreading rapidly all over the planet (4, 5). The transmission 
of coronavirus can occur in different ways. Some of the most 
important infection routes are interactions with infectious 
individuals, virus-carrying aerosols, contact with infected surfaces 
and super spread events due to congested living and traveling 
conditions (6–16).

Even if the basic forms of direct and indirect transmission are well 
known, their relative importance is yet not fully understood. Indeed, 
SARS-CoV-2 has been detected in almost all countries on earth but 
the transmission dynamics, virulence and mortality have shown 
substantial heterogeneity across nations, regions, and even 
neighborhoods (17–19). These spatio-temporal variations certainly 
depend on several factors, including no pharmaceutical interventions, 
human behavior, public policies and structural determinants of health 
(20–26). The influence of the weather and air quality is one of the 
aspects, which is less understood and certainly requires further 
investigation (27).

Various studies have analyzed the correlation between the spread 
of COVID-19 and environmental conditions such as temperature, 
humidity and wind velocity (28–38). The issue of co-infection with 
other viruses, such as influenza and rhinovirus affecting the 
respiratory system, has been the subject of several clinical studies as 
well (39–46). These better known viruses are also seasonal, raising 
again the issue of the dependence on the environment (29–32, 47–52). 
There is a growing consensus that environmental factors can have an 
effect on SARS-CoV-2 via four main mechanisms (53): (a) 
exacerbating other respiratory conditions, (b) influencing host 
susceptibility response to infection through immune response 
modification, (c) modifying viral metabolism and spreading, and (d) 
altering human behavioral patterns.

The conventional interpretation of the experimental evidence is 
that, with decreasing temperatures, people tend to spend more time 
indoors, in poorly ventilated locations, conditions well known for 
being conducive to increased transmission of viruses. Even if lower 
temperatures are correlated with the morbidity of SARS-CoV-2 and 
the mechanism of the effect is plausible, there are still some aspects 
that require further clarification (46–49).

The nature of the difficulties of an oversimplified interpretation 
of the temperature impact can be understood by simple inspection of 
the plots in Figure 1. In the case of Bergamo, the first major city to 
be severely struck by the pandemic in Italy, there are peaks of the 
infection even during periods of raising temperatures. An additional 
indication, that other environmental factors can play a significant 
role, is the difference in the absolute values of the temperature, when 
the outbursts of infections began in the last quarter of the year. In 
Bergamo, the temperature dropped below 15°C before the number of 
infections started to rise significantly, whereas in Palermo, there were 
already signs of the beginning of the outburst at 25°C. A confirmation 

of the insufficient role of the temperature, to explain the evolution of 
the COVID-19 pandemic (36, 37), can also be  derived from the 
inspection of data at the European scale. The plots of Figure 2 show 
the number of infections and excess deaths in 2020  in various 
European countries versus the average annual temperature. The 
names of the countries and all the numerical values shown in Figure 2 
are reported in Appendix A. At the aggregate level, there is no 
evidence of correlation between the temperature and the number of 
infections or deaths attributed to SARS-CoV-2. Indeed, on the 
continent, some of the countries less affected by the virus are the 
northern, coldest ones such as Norway and Finland (see Appendix A). 
Of course, the average annual temperature is a quite coarse indicator 
and different behavioral and policy factors have certainly played a 
role in the scatter of the results (54, 55). However, it remains an 
important observation that some of the coldest countries in the 
European Union have been affected much less by the pandemic than 
much warmer ones.

The analysis of the evolution of the new cases at high time 
resolution emphasizes the problematic nature of the naïve 
interpretation that the temperature decrease is the only direct cause 
of the increased spreading of the contagion (36, 37). Indeed, from the 
plots of Figure 1 it is already evident that the spectral components of 
the temperature and the evolution of the infections are significantly 
different. The cases of COVID-19 fluctuate at much higher 
frequencies than the variations in the ambient temperature (see 
Section 4).

All the aforementioned pieces of evidence seem to indicate that, 
even if the temperature certainly plays a crucial role in facilitating the 
spread of the infection, other environmental factors could also 
be  important, motivating an observational investigation of other 
potential causes, mainly wind and air quality (pollutants). The 
objective of the present work consists of substantiating the position 
that other environmental quantities, and not only the temperature, 
can have an influence on the morbidity of SARS-CoV-2. The main 
specificity of the study is the analysis of the weather variations impact 
on the contagion, mainly through their effect on the air quality and 
including high frequency components. This is a subject not granted 
a lot of attention in the literature. Indeed, for example even in the 
excellent overview reported in (53) a direct link between weather and 
the level of pollution is not considered, because the study is concerned 
only with the consequences of long term exposure to poor air quality. 
The proposed type of investigation requires deploying more 
sophisticated data analysis techniques than the ones normally 
reported even recently (56–59).

The lack of fully adequate and well-understood analysis tools has 
already been identified as one of the main factors rendering 
metastudies particularly difficult (60). Reaching solid conclusions 
becomes very problematic because the results of the reported 
investigations tend to depend also on the statistical methods 
deployed. To alleviate this issue and to perform high time resolution 
investigations, non-parametric indicators based on ranking and 
recurrence analysis in phase space have proved to be particularly 
appropriate (see Subsection 3.2). In Italy, the relevant information 
can be obtained with daily frequency, a fact that allows investigating 
the effects of the weather fast variations on the spread of 
the contagion.

Italy was one of the first and hardest-struck countries in Western 
Europe in 2020. During this year, COVID-19 reached very early 
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pandemic proportions, causing 74.000 estimated deaths in 2020 (and 
about two million infected). A reasonable amount of data is therefore 
available before the rollout of the first vaccines, at the beginning of 
2021. Indeed the objective of the present study consists of investigating 
the effects of the environmental conditions on the virulence of SARS-
CoV-2 and human interventions play the role of confounding factors 
in this perspective. This is indeed the main reason for limiting the 
investigation to 2020. Data are available also for 2021 and 2022 but 
their analysis becomes prohibitively difficult, because of the increased 
variety and intensity of countermeasures put in place by the 
government and the healthcare systems.

Another positive aspect of investigating Italian data, in addition 
to the amount of information collected before the first vaccine rollout, 
is that its orology is quite varied and therefore the country presents a 
wide range of climate conditions. The heterogeneous character of 
Italian geography and industrialization results also in different levels 
of pollution, allowing the analysis over a quite ample spectrum of air 
quality conditions. It should also be mentioned that Italy is expected 
to be quite representative of many other European countries located 
around the Mediterranean basin.

The main available quantities to investigate the influence of the air 
conditions on the spread of diseases are the wind intensity, humidity 
and air pollutants (56, 58). Figure 3 shows, again for representative 
cases of major Italian urban areas, that also the wind intensity seems 
to have a strong influence on the number of new cases. This is probably 
mediated by the pollutants, whose concentration is affected by the air 
mobility (33, 58–61). Indeed, the number of infections increases 

significantly when the wind intensity is lower and the concentration 
of pollutants higher.

Another environmental quantity, investigated in the literature as 
a potential candidate to explain the effects of the weather on the 
evolution of the contagion, is relative humidity (RH) (36–38, 62, 63). 
RH is defined as the ratio of the amount of water vapor present in the 
air to the greatest amount possible at the same temperature: 
RH p pH O H O= ∗

2 2
/  where pH O2  is the partial pressure of water vapor 

and pH O2
∗  is the equilibrium vapor pressure of water. As will be shown 

in detail in Sections 4 and 5, RH has a positive correlation with the 
number of cases of a strength comparable to the negative one of the 
temperature. However, RH is highly correlated with temperature, 
making it very difficult to disentangle the relative influence of these 
two variables. This is another aspect that needs advanced analysis 
techniques to be clarified.

The paper is organized in a quite traditional way. The next section 
provides a brief description of the main SARS-CoV-2 characteristics 
and overviews the literature on the relationship between the spread of 
the disease and environmental conditions. Section 3 is devoted to 
materials and methods: it describes in detail the database of a 
representative set of major Italian urban areas, the data pre-processing 
implemented and the statistical tools deployed for the analysis. The 
main results, obtained by the application of non-parametric indicators 
based on ranking, are the subject of Section 4. In Section 5, the outputs 
of the recurrence analysis in phase space are reported, to provide a 
completely independent view of the matter. The last section is devoted 
to the summary, discussion, and conclusions.

FIGURE 1

Time evolution of temperature and number of COVID-19 cases. Left: city of Bergamo Italy. Right: city of Palermo Italy.

FIGURE 2

Number of COVID-19 deaths (right) and cases (left) in various European countries vs. the average annual temperature of their capital city. All the details 
about the values reported in the plots can be found in Appendix A.
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2. SARS-CoV-2 transmission and 
environmental conditions

In this section, to render the paper self-contained, a brief 
description of SARS-CoV-2 main characteristics is provided. An 
overview of the basic literature on the relationship between SARS-
CoV-2 transmission and environmental conditions is also reported.

2.1. SARS-CoV-2

The SARS-CoV-2 is an enveloped, positive-sense, single–
stranded RNA virus causative agent of COVID-19 (64). The 
associated fatalities are believed to be due to hypercytokinemia, a 
severe reaction of the immunity systems, characterized by an 
uncontrolled release of pro-inflammatory cytokines (65). Even if the 
pathogenesis of SARS-CoV-2 deadly infections is not completely 
clear, the life cycle of the virus in the human lungs is known to consist 
of several phases, ending with SARS-CoV-2 reaching the epithelial 
alveoli, trachea and bronchial tract and replicating in these cells. The 
main entry door of the pathogen is the angiontensin converting 
enzyme 2 (ACE2).

The SARS-CoV-2 is aerosolized through talking or exhalation, 
explaining its virulence and quick spreading (6–8). Indeed 
bioaerosols are ubiquitous and can be  found both indoors and 
outdoors. The main routes of SARS-CoV-2 infection are considered 
to be human-to-human transmission via respiratory droplets and 
contact with contaminated surfaces. More recently evidence has 
emerged that outdoor viral diffusion via aerosols is also a possible 
pathway (6–8).

2.2. Weather conditions

The mechanisms of influenza diffusion have been investigated and 
debated for more than half a century. The basic modes of transmission 
are known to be direct contact, indirect contact, droplet transmission, 
and airborne transmission. The details of the various routes are not 
fully understood but it is believed that viruses of the influenza type are 
mainly transmitted through close contact. The effects of the weather 
on the spreading of these viruses are less known. No laboratory animal 
displays exactly the symptoms of humans and therefore animal studies 
are difficult to extrapolate to the natural transmission in our species. 
Epidemiological and observational human studies are also very 

FIGURE 3

Trend of the number of COVID-19 cases, wind intensity, pollutant amounts and humidity with time for three representative Italian cities. When the 
winds decrease and the particulates (PM2.5 and PM10) increase, the virulence of SARS-CoV-2 becomes clearly worse. Relative humidity shows a 
completely different type of correlation.
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difficult to interpret due to the presence of confounding factors and 
the lack of sufficiently complete databases (39–46).

The influence of weather conditions on the morbidity of SARS-
CoV-2 has also been analyzed recently. The main variables considered 
are temperature, humidity, wind and enthalpy (56–58). In addition to 
the evidence that temperature regulates the survival of SARS and 
MERS, these studies are motivated by the evidence of strong 
seasonality in the spread of the epidemic (33, 59–61). Given the 
potential role of various confounding factors linked to geography and 
population size, the available analyses have provided contradictory 
results. Some studies have revealed a quite strong correlation with 
temperature, whereas others show a very small correlation or even a 
negative one (66, 67). The same uncertainties are true for humidity 
and wind, even if these factors seem to have a lower incidence. In the 
attempt to resolve these issues, quite comprehensive meta-analytic 
studies have been performed, which seem to indicate that the 
influence of the temperature is significant, whereas humidity and wind 
roles in the spread of the disease are less clear (67, 68). The possible 
combined effects of these factors have also been analyzed. In 
particular, various studies on the influence of enthalpy have been 
published (69).

Notwithstanding the aforementioned uncertainties, the 
seasonality of viral transmission has been mainly linked to the 
temperature, since people tend to dwell more inside in colder weather; 
closer contact and poorly ventilated buildings are obvious conditions 
increasing the virulence of microorganisms, characterized by airborne 
transmission (70). Cyclic resistance of the host to infection has also 
been attributed to seasonal fluctuations in melatonin (71). Vitamin D 
deficiency, which is linked to the seasons as well, has been invoked as 
a possible cause (72). Viral stability has also been linked to UV 
radiation, in agreement with previous evidence that single-stranded 
RNA viruses can be inactivated by UV radiation (73–75).

The effect of humidity on viral diseases has not been completely 
clarified. However, there is a consensus that viruses with a lipid 
envelope, such as those of influenza, are more stable at a lower 
RH. Other studies showed that non-lipid enveloped viruses of the 
rhinoviruses and adenoviruses survive longer at high RH (76). 
Unfortunately, there is not even a clear definition of the line of 
demarcation between high and low RH (68). In any case, it is believed 
that there are three mechanisms, which could realistically account for 
the evidence that humidity influences transmission. The first relates 
to the host defences. Breathing dry air can cause desiccation of the 
nasal mucosa, affecting mucociliary clearance, which is an important 
protection for clearing the lungs of particulate matter (77). The second 
mechanism is at the level of the viruses themselves. As mentioned, 
there is evidence that humidity affects the stability of influenza virions. 
The third category of candidate effects is more physic-chemical in 
nature. The size of the exhaled bio aerosols is larger at high RH. Larger 
droplets tend to remain airborne for shorter periods and distances, 
affecting their potential for contamination (78). In reality, all these 
three types of mechanisms are expected to be simultaneously involved 
in determining the actual rate of aerosol transmission.

2.3. Particulate matter

Air pollution due to particulate matter (PM) is quite complex, 
originating from both anthropogenic sources, such as power 

generation and traffic, and natural phenomena, such as dust and 
biomass combustion. In urban areas, PM concentration is due to 
particles of different sizes: ultrafine particles PM0.1 with 
diameter < 0.1 μm, fine particles PM2.5 with diameter < 0.25 μm and 
coarse particles PM10 with 0.25 μm < diameter < 10 μm. Inhalable fine 
and coarse particles can contain not only chemicals and salts but also 
biological species, such as protein and lipids, and have been associated 
with increased morbidity and mortality.

Coarse particulates deposit mainly in the upper airways. Fine 
particulates can reach the lower respiratory tract while ultrafine PM 
are deposited in both the upper and lower respiratory tracts. PM2.5 
particulate consists of an inert carbonaceous core, which is covered by 
sulphate, nitrate, organic chemicals, and metals. On these structures, 
additional organic pollutants, such as bacteria and viruses can easily 
be adsorbed. Epidemiologic surveys have indicated that high levels of 
PM2.5 can have adverse health effects because they can be deposited 
quite deeply into the lungs. Together with PM10, fine particulate once 
inhaled can cause inflammation, oxidative and DNA damage, 
triggering various cardiovascular, pulmonary, and nervous systems 
diseases (65).

In synthesis, the available evidence suggests that air pollution may 
increase SARS-CoV-2 risk of infection and COVID/19 associated 
mortality though two main paths: (a) by modifying the host 
susceptibility to infection and capability of reaction, and (b) by 
elevating the incidence of comorbidities (66). In particular, exposure 
to particulate matter can influence the upregulation of proteins (ACE2 
and transmembrane protease serine type 2) necessary for viral entry, 
leading to higher viral load and therefore elevating the risk of severe 
COVID-19. More details can be found in (66) but basically all the 
reported studies are concerned with the effects of long term exposure 
to poor air quality conditions. To the authors’ knowledge, the effects 
of the fast weather variations on SARS-CoV-2 infectivity, using 
advanced data analysis tools, have never been investigated and 
reported in the literature.

3. Data sources, data pre-processing, 
and main statistical tools

The present section is divided into two subsections, the first of 
which is an overview of the database built and the sources of the 
information it contains. A description of the pre-processing, required 
to convert the inputs to a format suitable for the following 
investigations, is also covered in detail. The subject of Subsection 3.2 
is the description of the analysis tools deployed, some based on 
nonparametric statistics and others on methods originally developed 
for the study of dynamical systems.

3.1. Database and pre-processing

A specific database (DB) of nine major Italian urban areas has 
been built. It comprises the following cities: Bergamo, Brescia, 
Ferrara, Milano, Roma, Torino, Varese, Venezia and Verona (see 
the map in Figure 4 for their localization in the peninsula). They 
are among the most densely populated cities and span a latitude 
range from the industrial north to the center. The DB covers the 
entire year 2020 before the roll-out of any vaccine. The time 
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resolution is daily. The main characteristics of these cities are 
reported in Table 1.

The data about the number of infections has been provided by 
the European Centre for Disease Control (78). The environmental 
data have been collected by the Servizio Meteorologico 
dell’Aeronautica Militare and consist of the following entries: 
temperature (in degrees C), wind intensity (in Km/h), and relative 
humidity (in %). The particulates PM10 and PM2.5 (in μg per cubic 

meter) have been derived from the websites of the Agenzia 
Regionale Protezione Ambientale. The two Italian agencies sources 
of the data are national institutions, which provide information 
already fully validated. The choice of both the urban areas and the 
independent variables has been motivated by the need to have 
consistent data of acceptable quality (meaning without missing 
entries, without changes of standards or definitions etc.) for the 
entire year 2020.

FIGURE 4

Geographical localization of the cities included in the investigated database.
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For the purposes of the present analysis, some form of 
pre-processing is necessary, even if the data are provided by the most 
important European, national and regional agencies. The first form of 
pre-elaboration consists of applying a seven-days moving average to 
all the time series. This is motivated by the spurious features of the 
data collection for the number of new infections. Indeed, in all the 
considered urban areas, the data were not collected and made public 
uniformly during weekends. Consequently, all the Fourier transforms 
of the number of infections show a clear weekly frequency component, 
which is to be considered spurious and is eliminated by the averaging.

The aforementioned averaging alleviates another difficulty, the 
delay between the moment of the infection and the first symptoms 
being officially detected. Again a weekly average is expected to remedy 
also this problem. To corroborate this fact, it has been checked that 
the analysis tools deployed (see next Subsection) are constant over a 
period of 7 days or slightly longer.

Another important form of data treatment relates to the 
quantification of the particulate matter. Indeed, the values of PM2.5 
and PM10 have been averaged because they are not always consistently 
available. This probably causes a slight underestimate of the influx of 
these two variables on the number of infections.

3.2. Analysis tools

To investigate the mutual influence between the number of cases 
and the environmental variables, two important characteristics of the 
problem have to be kept in mind: first, the phenomena involved are 
strongly nonlinear and secondly the data are quite sparse. 
Consequently, simple indicators, such as the Pearson correlation 
coefficient, are of limited use because they can pick up only linear 
effects. Multivariate regression is also out of the question because it 
does not provide stable results with the limited entries available. Small 
variations in the data, at the level of the uncertainties, typically change 
completely the outputs of even the most sophisticate routines. The fact 
that the number of entries in the database is limited prevents also the 
use of information theoretic tools, such as mutual information or 
transfer entropy, which require the calculation of the probability 
density functions of the variables involved.

To handle the aforementioned difficulties two main types of data 
analysis techniques have been deployed: statistical indicators and 
dynamic system analysis. Nonparametric indicators based on ranking 

belong to the first class: among these, the two most widespread and 
effective are the Spearman’s and Kendall’s rank correlation coefficients 
(79). Recurrence plots and derived quantities are the most suitable 
tools of the second category (80, 81).

3.2.1. Nonparametric statistical indicators based 
on ranking

The Spearman’s correlation coefficient or Spearman’s ρ is a 
nonparametric measure of the dependence between the rankings of 
two variables (79). While Pearson’s correlation reflects only the linear 
relationships between quantities, Spearman’s ρ quantifies how well the 
relationship between two variables can be represented by a monotonic 
function, without any linearity assumption. In other words, Spearman’s 
correlation quantifies the monotonic relationships whether they are 
linear or not. Therefore, the Spearman correlation between two 
variables is high when observations have a similar rank, i.e., the 
relative position of the observations within the variables is similar 
between the two variables. On the contrary, it is low when samples of 
the two variables have a dissimilar ranking. Consequently, in the case 
of non-repetitions in the data, the Spearman’s correlation coefficient 
assumes the values +1 or − 1 when the two variables are a perfect 
monotone function of each other.

In more detail, given a sample of n observations (x1,y1),….,(xn,yn)
of the joint random variables X and Y, the values are ranked first to 
R(X) and R(Y). Then the Spearman’s ρ can be calculated as:

 
ρ =

( ) ( ) 

( ) ( )

cov R X R Y

R Y R Y

,

σ σ
 

(1)

where Cov indicates the covariance between two variables.
In its turn, the Kendall’s correlation coefficient or Kendall’s τ is a 

statistical indicator meant to measure the ordinal association between 
two variables, based on the similarity of the data orderings between 
the quantities (79). In other words, the Kendall’s τ rank correlation 
measures the similarity of the orderings of the data when the quantities 
are ranked. In more detail, again let us indicate with (x1,y1),….,(xn,yn)
the observations of the joint random variables X and Y. For simplicity 
all the values xi and yi are considered unique; this allows neglecting 
the problem of ties but more sophisticated treatments taking them 
into account are available. Any pair of observations (xi,yi) and (xj,yj) 
are called concordant if either both xi > xj and yi > yj are verified or 

TABLE 1 Main characteristics of the representative Italian cities chosen for the survey.

Cities Coordinates Elevation Population Density

BERGAMO 45°41′42″N 9°40′12″E 249 m s.l.m. 120,390 2,997,76 ab./km2

BRESCIA 45°32′20″N 10°13′13″E 149 (min. 101 max. 863) m s.l.m. 196,586 2,176,07 ab./km

FERRARA 44°50′07.07″N 11°37′11.51″E 9 m s.l.m. 130,833 322,92 ab./km2

MILANO 45°28′01″N 9°11′24″E 120 m s.l.m. 1,373,517 7,560,51 ab./km2

ROMA 41°53′35″N 12°28′58″E 21 m s.l.m. 2,758,839 2,143,02 ab./km2

TORINO 45°04′N 7°42′E 239 m s.l.m. 845,606 6,504,16 ab./km2

VARESE 45°49′N 8°50′E 382 m s.l.m. 79,639 1,452,21 ab./km2

VENEZIA 45°26′23″N 12°19′55″E 2,56 m s.l.m 253,777 610,19 ab./km2

VERONA 45°26′19″N 10°59′34″E 59 m s.l.m. 257,264 1,293,3 ab./km
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both xi  < xj and yi  < yj are verified. If neither of these couples of 
conditions holds, the pairs of observations are said to be discordant. 
With this nomenclature the Kendall’s correlation coefficient is 
defined as:

 

τ =







 −

number of
concordant pair

number of
disco dant pair

 

 

 

r  
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
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
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

n
2  
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where n is the number of data points. The Kendall’s correlation 
coefficient ranges between −1 and + 1.

Intuitively, if the agreement between the rankings of the two 
quantities is perfect (the disagreement is perfect), the Kendall’s τ has 
value 1 (the coefficient has value −1). For two independent variables, 
the value of the Kendall’s τ approximates zero. An explicit equation to 
calculate the Kendall’s correlation coefficient is:

 
τ =

−( )
−( ) −( )<∑2

1n n
x x y yi j i ji j sgn sgn

 
(3)

To summarize, the Spearman’s and Kendall’s correlation 
coefficients are purely statistical indicators (79). The Spearman’s ρ 
quantifies only monotonic dependencies between quantities, whereas 
the Kendall’s τ is more general.

3.2.2. System dynamics indicators based on 
recurrence plots

Different indicators, devised to investigate the dynamics of 
complex systems, can be  derived from recurrence analysis (80). 
Recurrent behavior, ranging from periodicities to irregular cyclicities, 
is a distinct aspect of most natural processes. Seasonal variations are 
an example of quite regular phenomena, whereas heart beat intervals 
can vary more substantially. The recurrence of states in phase space 
has been recognized since a long time as a fundamental property of 
deterministic dynamical systems. It is an aspect particularly relevant 
for the understanding of nonlinear and chaotic dynamics.

One of the most effective tools to investigate recurrent behaviors 
are the so-called recurrence plots (RPs) (80). An RP is the plot of a 
matrix, which describes how phase space trajectories visit the same 
regions in phase space. Mathematically an RP is the visualization of a 
recurrence matrix:

 
RP R i j Nij i j i j

m= − −( ) ∈ ∈Θ  || || , , , ,,y y y 0
 (4)

where Θ is the Heaviside function, N is the number of samples, 
“m” the dimension of the embedded phase space, || ||°  is a norm,   is 
a suitably chosen threshold and the i and j subscripts indicate two time 
points (80). When the distance of phase space values at times i and j 
is smaller than the threshold, the Heaviside function assumes the 
value of one; otherwise it is zero.

To investigate the relation between two variables, the task of the 
present work, it is possible to extend the concept to the cross 
recurrence plots (CRPs), which compare the dynamical behavior of 
two time series embedded in phase space (81):

 
CRP R R i j Nij

xy
i j i j

m n= − −( ) ∈ ∈ ∈Θ  || || , , , , ,,x y x y 0
 (5)

where xi and yi indicate the two time series (the rest of the notation 
is the same as the one of Equation 4).

Visually, RPs mostly present single dots and lines; the lines can 
be parallel to the main diagonal (line of identity, LOI) or vertical/
horizontal. Lines parallel to the main diagonal are called diagonal lines 
and are the most important for the objectives of the present study. 
Indeed, the diagonal lines represent the phase space trajectory 
segments running parallel for some time; in CRPs, they therefore 
indicate the periods of simultaneous recurrence behavior of the two 
signals considered. Consequently, the diagonal lines provide 
information about the similarity of the systems’ behavior in phase 
space. The properties of CRPs include the nonlinear effects between 
the signals analyzed and therefore these tools are a very good 
complement to the more traditional Spearman’s and Kendall’s 
correlation coefficients (81).

When performing a pairwise comparison for a set of time series, 
the difficulty resides in setting the value of the threshold  . A common 
value for all pairs may not be  a good solution to capture the 
similarities. Also, there are no general criteria to set different values 
for each pair while ensuring at the same time a uniform treatment for 
all pairs. A solution is to use a fixed recurrent rate for all pairs allowing 
  to adjust for each pair (80). The recurrence rate is defined by 
the relation:

 
RR

T
CRPij

t t
ij

t
T

t
T= == ∑∑1

2 11 1 221
,

 
(6)

The properties of RP are quantified in terms of specific indicators 
by the sub-discipline called recurrence quantification analysis (RQA) 
(80). In the perspective of the present work, the main advantage RQA 
is that it can provide concise, quantitative information, including 
nonlinear effects, even for short and non-stationary data, when other 
methods either fail or are simply impossible to apply. In this approach, 
the following RQA indicators have been used:

A. Determinism (DET)
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lP l

lP l
l l
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l
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=

=

∑
∑

min

1  

(7)

where l  denotes the length of a diagonal line (it means the number 
of recurrent points in it), lmin  is the minimum length considered for 
the diagonal structure and P l( ) is the histogram of the diagonal line 
lengths. DET represents the fraction of recurrent points forming 
diagonal structures and it accounts for the predictability of the system.

B. Average diagonal line length (L)

 

L
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P l
l l
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l l
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min  

(8)

L is interpreted as the mean prediction time as it is the average 
time that two segments of a trajectory are close to each other.
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C. Entropy of diagonal lines (ENT)
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ENT  is a complexity measure of the distribution of diagonal lines, 
with low values for uncorrelated noise and high values for complex 
dynamic evolution.

4. Italy: statistical analysis in the 
temporal and frequency domain

A systematic analysis of the data described in Subsection 3.1 has 
been performed. The time evolution of the infections and the potential 
correlates is shown in Figure 5 for all the cities in the DB. The signals’ 
evolution in the temporal domain confirms the observations already 

mentioned about the behavior of the time series. The effect of the 
temperature is evident and consistent; the decrease of the temperature 
in winter corresponds to an increase in the number of cases in 
all cities.

However, temperature alone cannot account for all the aspects of 
the infection evolution. A systematic analysis of the trends in all the 
Italian cities analyzed indicates that the outburst of the COVID-19 
cases can occur in phase with the temperature increases, decrease, 
and even remains stationary. Acceleration of morbidity can take off 
in different cities at significantly different levels of absolute 
temperature. Such an insufficient influence of the temperature on the 
COVID-19 consequences can be appreciated also by considering the 
fast Fourier transform (FFT) of the signals, reported in Figure 6 for 
some representative cases (the FFTs for all the cities in the DB are 
reported in Appendix B). The Fourier analysis reveals that the high 
frequency variations in wind intensity and pollutants are more 
similar to the ones of the new infections than those of the temperature 
in practically all climatic regions investigated. The situation motivates 

FIGURE 5

Time evolution of the number of infected people and the various candidate correlates for all the most representative cities investigated.
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considering the trends of the COVID-19 cases with the evolution of 
the air quality and wind. On the other hand, simple visual inspection 
and frequency analysis are not sufficient to understand the involved 
interconnections between these complex variables. A more advanced 
statistical analysis is indispensable.

A first global statistical view of their relations can be derived by 
inspection of Figure 7, in which the average Spearman’s and Kendall’s 
correlation coefficients, between the main weather and air quality 
indicators (temperature, wind, humidity, and particulate) and the 
number of COVID-19 cases, are reported. The standard deviations 
are also shown in the right column and the corresponding 95% 
confidence interval can be calculated as usual by multiplying the 
standard deviation by 1.96 (82). The Spearman’s and Kendall’s 
correlation coefficients for the individual cities are reported in 
Appendix C.

Inspection of Spearman’s ρ and Kendall’s τ reveals that the 
temperature is indeed the variable most correlated with the number 
of COVID-19 cases; the virus infection is higher (or more prevalent) 
at lower temperatures. However, humidity, particulate, and wind 
present correlation coefficients not much inferior to that of the 
temperature and are typically very similar to each other. It is worth 

noting that, as shown in the right table of Figure 2, the variances of 
the correlation coefficients are very low. This means that the 
obtained correlations are statistically significant. Indeed their 
confidence levels is above 95% as calculated with traditional 
statistical tools (82). This conclusion has been confirmed by the 
analysis of the p-values, with the usual null hypothesis assumption 
of no effect of the various candidate quantities on the number of 
infections (82).

The most interesting environmental variable is probably the 
wind, which is not highly correlated with the temperature and has a 
strong negative correlation coefficient with the number of infections. 
Higher wind intensities probably tend to reduce the virulence of the 
contagion by reducing the density of particulate matter (65). 
Humidity has strong positive correlation coefficient with the number 
of new cases but it is also highly anticorrelated with temperature. This 
is most likely due to the effect of precipitations on both humidity and 
temperature. Unfortunately, there are insufficient data on rainfalls to 
allow performing a sound statistical analysis for the period 
investigated in the present work but it is well known that 
precipitations have the combined effect of increasing humidity and 
decreasing the temperature. It is therefore reasonable to conclude that 
in reality the correlation between humidity and infections is a 
spurious effect, determined by the strong correlation with the 
temperature (and the strong influence of the temperature on the 
number of cases). This interpretation of the statistical analysis is 
corroborated the observation of the fast virus dynamics at the end of 
summer. A shown in the plots of Figure 3, at the end of August and 
in September there are often the first signs of an increase in the 
number of new infections due to an increment in the particulate, 
when the humidity does not show any consistent increase yet. In any 
case, it is important to corroborate the previous observations with the 
alternative approach of the recurrence analysis as described in the 
next section.

5. Italy: dynamical analysis with 
recurrence plots

The observations and the analysis of the correlation coefficients, 
presented in the previous section, suggest that other environmental 
factors, in addition to the temperature, can play a significant role in 
the spread of the disease. Indeed wind velocity, humidity, and 
particulate matter have correlation coefficients statistically significant 
and comparable to that of temperature. The results of the recurrence 
analysis tend to confirm such a picture. It should be  mentioned 
though that, contrary to the case of the statistical indicators of the 
previous section, a normalized version of the RQA indicators is not 
available. Therefore, it is not possible to attribute a specific meaning 
to their numerical absolute values. Conclusions have to be derived 
from their relative amplitude and from their standard deviations.

The number of infections and the temperature are the two 
variables characterized by the higher level of concomitant recurrences. 
Humidity, particulate, and wind have a lower but very significant level 
of all the RQA indicators. These trends are consistently reflected by all 
the indicators and are therefore to be considered solid. An example is 
shown in Table 2, which reports the average length of the diagonal 
lines for all the nine cities in the database. This is the most intuitive 

FIGURE 6

Fast Fourier transform of the quantities in the database for three 
representative cities.
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FIGURE 7

Top row: Spearman’s correlation coefficients mediated over the nine cities (left) and corresponding standard deviations (right) between the quantities 
in the database. Bottom row: Kendall’s correlation coefficients mediated over the nine cities (left) and corresponding standard deviations (right) 
between the quantities in the database. W, wind; T, temperature; H, humidity; PM, particulate; dI, number of new infections. In the top row, each cell of 
the tables reports the Spearman’s correlation coefficient or the standard deviation of the quantities in the corresponding row and column. In the 
bottom row, each cell of the tables reports the Kendall’s correlation coefficient or the standard deviation of the quantities in the corresponding row 
and column.

TABLE 2 Diagonal line lengths from the joint recurrence plots summarizing the recurrences between the main weather indicators and the number of 
cases for all Italian cities in the DB.

Average Standard deviation

W H T PM dI W H T PM dI

W 0.000 0.702 0.697 0.495 0.766 W 0.000 0.087 0.050 0.037 0.067

H 0.702 0.000 0.741 0.813 0.933 H 0.087 0.000 0.044 0.100 0.054

T 0.697 0.741 0.000 0.801 0.975 T 0.050 0.044 0.000 0.059 0.036

PM 0.495 0.813 0.801 0.000 0.778 PM 0.037 0.100 0.059 0.000 0.051

dI 0.766 0.933 0.975 0.778 0.000 dI 0.067 0.054 0.036 0.051 0.000
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indicator but the others present an analogous behavior as can be seen 
from the complementary tables reported in Appendix D.

The relation between the candidate explanatory variables, 
emerging from RQA, is also consistent with what is found with the 
statistical indicators. Wind and pollutants have almost the same 
influence on the number of cases, strongly indicative of a combined 
influence. Humidity has a high level of recurrence with the 
temperature and therefore it is very likely that the latter has by far the 
larger impact on the contagion.

6. Discussion and conclusions

The analysis reported in the present work about many representative 
Italian cities reveals that the correlation between the outbursts of cases 
and the temperature, even if statistically very important, is insufficient to 
explain all the aspects of the contagion fast dynamics. The wind intensity 
and the presence of pollutants have also a strong correlation and are also 
strongly correlated with the number of cases on rapid timescales. 
Humidity seems also to be a relevant concurring cause of the increased 
virulence but it is very correlated with and presents the same long term 
trend as the temperature. These conclusions are corroborated by analysis 
of the absolute values, of the correlations in both the time domain and 
frequency domain, performed with mathematically independent 
techniques using statistical and dynamical indicators. The standard 
deviations of the obtained quantities are very small and therefore the 
detected influences are to be considered real and not spurious artefacts 
of the data.

Given the limited quality and quantity of the data, it is not possible 
to unravel completely the causal relationships between the 
environmental quantities and the number of infections. However in 
terms of comparison with previous studies, as far as the relationship 
between infections, temperature and humidity are concerned, the 
results of the present analysis are not dissimilar to those obtained in 
similar studies (67). Indeed relative humidity is strongly correlated 
with the temperature. Therefore, it is impossible to determine to what 
extent it is an independent cause of SARS-CoV-2 increased virulence. 
On the contrary, the effects of the wind and pollutants on SARS-
CoV-2 virulence in Italy seem to be significantly clearer than what one 
would deduce from the most comprehensive meta-analytic study on 
the subject and most of the references therein (53, 68). Moreover, the 
analysis techniques deployed can resolve also the rapid evolution of 
the influence of the wind on air quality and the virulence of the virus.

A possible interpretation of the experimental evidence is 
emerging. An explanation of the mechanism of the contagion consists 
of considering the air pollutants an important vehicle for the outdoors 
spread of the virus. Lower temperatures, tending to induce people to 
dwell more in poorly ventilated settings, then increase the outdoor 
transmission in a sort of amplification. Fresher winds can alleviate the 
problem by dispersing the pollutants and the contaminated aerosols 
(61). Of course, the details of the transmission mechanisms facilitated 
by the pollutants have to be further investigated.

If the interpretation just proposed were even remotely valid, it 
would contrast some serious misconceptions about SARS-CoV-2 
seasonality, which have been used by economic interests on question 
public health measures such as driving reopening or non-intervention 
(83). On the contrary, the influence of pollutants raises serious 
questions about the pressure on people to return to their place of work 

in urban areas even if not necessary. It should indeed be considered 
that transport is a major contributor to air pollution (84). First, the 
exhaust of combustion engines produces a lot of particulate among 
the variables most correlated with the outbreaks of the epidemic. 
Moreover, urban traffic can have a very deleterious effect not only by 
increasing the amount of pollutants but also by causing re-suspension 
and diffusion of particulate (84). Home working should therefore 
be  much more encouraged whenever possible and supply chains 
management devoted more attention (85).

In terms of generality, it is reasonable to expect that the 
obtained results should be representative at least of all the other 
countries of the Mediterranean area if not also of central Europe. 
Indeed, there is no reason to believe that the situation would 
be significantly different in other nations with a temperate climate. 
The public health recommended policies are also expected to 
be  equally valid for all these other countries. However, there is 
strong evidence of the infection seasonality being different in 
tropical countries, where outbreaks often peak in wet seasons (86). 
Such a difference could be  linked to pollen inhalation but will 
require additional studies.

From a data science point of view, the main recommendation would 
be a better collection of the data (and this applies, even of if to a different 
degree, to all countries). Since assessing the influence of the environment 
on the spread of the SARS-CoV-2 is a very complex multi-causal 
problem, the quality and quantity of the available information are crucial. 
For example, a more uniform collection of the data over the entire week, 
including the weekends, would already improve significantly the situation 
by providing more and cleaner entries. Higher time resolution would 
allow deploying more advanced data analysis techniques. In this 
perspective, to disentangle the effects of the main variables determining 
the air quality, the authors plan to investigate the potential of causality 
detection techniques already deployed in other fields (87). Improvements 
in causal inference are then expected to allow achieving significant 
progress also in the predictive capability of dynamical and regression risk 
models (88, 89).
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