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Background: The impact of seasonal influenza vaccination (SIV) on mortality is

still controversial; some studies have claimed that increasing vaccination coverage

rates is beneficial, while others have found no significant association. This study

aimed to construct a granular longitudinal dataset of local VCRs and assess their

e�ect on pneumonia- and influenza-related (P&I) mortality among Italian adults

aged ≥ 65 years.

Methods: NUTS-3 (nomenclature of territorial units for statistics) level data on SIV

coverage were collected via a survey of local data holders. Fixed- and random-

e�ects panel regression modeling, when adjusted for potential confounders, was

performed to assess the association between local SIV coverage rates and P&I

mortality in older adults.

Results: A total of 1,144 local VCRs from 2003 to 2019 were ascertained. In

the fully adjusted fixed-e�ects model, each 1% increase in vaccination coverage

was associated (P < 0.001) with a 0.6% (95% CI: 0.3–0.9%) average over-time

decrease in P&I mortality. With an annual average of 9,293 P&I deaths in Italy, this

model suggested that 56 deaths could have been avoided each year by increasing

SIV coverage by 1%. The random-e�ects model produced similar results. The

base-case results were robust in a sensitivity analysis.

Conclusion: Over the last two decades, Italian jurisdictions with higher SIV

uptake had, on average, fewer P&I deaths among older adults. Local policy-

makers should implement e�ective strategies to increase SIV coverage in the

Italian senior population.
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1. Introduction

Compared with other age-classes, older adults display a

disproportionately high risk of severe influenza outcomes (1).

Annual vaccination is the best way to prevent seasonal influenza,

and older adults are the primary target group for seasonal influenza

vaccination (SIV) (2, 3).

The effects of SIV on influenza-related endpoints can be

established by evaluating: (i) vaccine efficacy (risk reduction

resulting from vaccination, as measured in randomized controlled

trials); (ii) vaccine effectiveness (risk reduction resulting from

vaccination, as measured in observational studies) and (iii) vaccine

impact (reduction in the incidence of influenza-related outcomes

in a population in which some subjects are vaccinated, as

measured through modeling) (4). Although randomized studies

are the gold standard technique for evaluating vaccine-induced

protection, their external validity may be poor, since some

population strata (e.g., the oldest old, subjects with multimorbidity

or polypharmacy) are usually systematically excluded (5, 6).

In this regard, well-designed observational studies can address

the issue of inclusiveness, thereby complementing experimental

evidence (5). On the other hand, both experimental and

observational studies are usually conducted within a limited time-

span (typically 1–3 seasons) that is characterized by specific

patterns of viral circulation and degrees of vaccine match. For

instance, across the last 18 seasons, overall SIV effectiveness

in the United States (US) ranged from 10% (7) to 60% (8).

From the policy-makers’ perspective, it should be stressed that

VE estimates alone are not a measure of the full population

benefit of SIV and should be interpreted contextually (9). In this

regard, modeling studies on vaccine impact may further support

policy decisions.

The benefits of SIV on mortality in older adults is an

ongoing controversy (10). While several time-series analyses,

which attributed ∼5% of all winter deaths to influenza, failed to

demonstrate a decline in influenza-related mortality on increasing

the vaccination coverage rate (VCR), some cohort studies have

reported a paradoxically high (∼50%) relative reduction in the

total risk of winter mortality. Overestimation of the effect of

SIV may be driven by both the frailty selection bias and the

use of non-specific outcomes, such as all-cause (AC) mortality

(10). Similarly, previous Italian modeling studies (11, 12) have

reached different conclusions. Rizzo et al. (11) did not find a

significant decrease in pneumonia- and influenza-related (P&I) and

AC excess mortality following an increase in SIV coverage rates

over 31 influenza seasons. Despite its long period of observation,

that study (11) did not consider large between-region differences

in both socio-structural dynamics and SIV policies. A later

study by Fallani et al. (12) attempted to overcome the above-

mentioned shortcomings by analyzing a panel dataset in which

21 Italian regions were monitored over 7 seasons. The authors

concluded that each 1% increase in SIV uptake by older adults

was associated (P < 0.001) with a 1.6–1.9% decrease in P&I

mortality. However, while panel data are better able to capture

unobserved effects than the analysis of historical trends (13), the

study by Fallani et al. (12) was limited by its low number of

observations in both time-series and cross-sectional components of

the panel.

The ecological and evolutionary dynamics of infections like

influenza play out over a broad range of interconnected temporal,

spatial and organizational dimensions (14). Influenza modeling

and trend assessment can further integrate the individual-

level experimental and observational evidence by assessing

the average impact of SIV campaigns on the incidence of

influenza-related outcomes when complex spatio-temporal, socio-

economic and policy-related factors are taken into account (14,

15). By establishing a granular space-time dataset, the present

study aimed to assess the locally varying dynamic association

between SIV uptake and influenza-related mortality in the Italian

older population.

2. Methods

2.1. Overall study design

In this ecological study, we adopted an econometric panel data

approach, in which each cross-sectional spatial unit was tracked

over time. The study period was determined by the availability

of outcome data, and covered 17 consecutive years (from 2003 to

2019). Years from 2020 onwards were not considered, owing to the

impact of COVID-19 on both P&I mortality and influenza virus

circulation. The spatial unit considered in the study was a single

Province/Metropolitan City (N = 103/110), which is equivalent to

the lowest Eurostat NUTS-3 (nomenclature of territorial units for

statistics) level (16). Indeed, modeling at a higher level of spatial

granularity allows to capture previously unseen associations or to

uncover finer details of the known relationships. By incorporating

time trend and sufficiently granular spatial components, panel

datasets are able to dramatically increase the sample size and

to identify and measure effects that are not detectable in pure

time-series or cross-sectional data (13).

Data on P&I mortality and potential confounders were taken

from publicly available sources (17–20), while NUTS-3 level VCRs

among individuals aged ≥ 65 years (VCR65+) were established ad

hoc (see below). NUTS-3 data for both outcomes and confounders

were available for all study years. If NUTS-3 VCR65+ data were

not available in a region or not routinely collected, the previous

NUTS-2 level data on VCR65+ (21), outcomes and confounders

were used. Indeed, imputing missing NUTS-3 VCR65+ data (both

missing years and missing provinces) was judged unfeasible.

2.2. Study population

The study population was composed of Italian adults aged≥ 65

years. During the whole study period, SIV was recommended and

fully reimbursed for all subjects aged ≥ 65 years (22).

2.3. Study outcome

The study endpoint was the P&I mortality rate (per 10,000)

among adults aged ≥ 65 years (P&I65+) observed in a NUTS-3

location i during the year t and derived from death certificates

codified according to the international classification of diseases
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TABLE 1 Potential confounders and their definitions.

Group Variable Definition Ref

Socio-economic P75+ Adults aged ≥ 75 years as a proportion (%) of those aged ≥ 65 years 17

P≤14 Children aged ≤ 14 years as a proportion (%) of the total population 17

GDP Gross domestic product (1,000 e) per capita based on purchasing power parity 18

Mort Baseline mortality rate per 10,000 inhabitants 17

Environmental Temp Monthly average temperature (◦C) in the month of January (typically the coldest

month) registered in the chief town of a given location

19

Dens Population density, inhabitants per km2 17

Healthcare Bed Ordinary hospital beds per 10,000 inhabitants 17

HCP Healthcare professionals operating in public and accredited private health facilities

per 10,000 inhabitants

17

Virological H1N1s Dummy variable for seasons, in which seasonal pre-2009 A/H1N1s subtype was

predominant

20

H1N1pdm09 Dummy variable for seasons, in which A(H1N1)pdm09 subtype was predominant 20

H3N2 Dummy variable for seasons, in which A(H3N2) subtype was predominant 20

B Dummy variable for seasons, in which type B was predominant 20

H1N1pdm09/H3N2 Dummy variable for seasons, in which A(H1N1)pdm09 and A(H3N2) subtypes were

co-dominant

20

H1N1s/B Dummy variable for seasons, in which A(H1N1)s and B (sub)types were co-dominant 20

(ICD) (ICD-8: 470–474 and 480–486; ICD-9: 487 and 480–

486; ICD-10: J09–J11 and J12–J18 for influenza and pneumonia,

respectively) (17).

2.4. Study variables and potential
confounders

The Italian Ministry of Health routinely collects and reports

(21) VCR65+ on the NUTS-2 level in 19 Regions and two

Autonomous Provinces of Trento and Bolzano only. To obtain the

more granular NUTS-3 VCR65+ (% of older adults vaccinated), a

search of local datasets, statistical compendiums and other relevant

documents was first conducted. Potential local data holders were

then contacted and asked to provide these statistics for the longest

possible time-span.

The list of potential confounders and effect modifiers was

determined through an internal discussion and previous research

(11, 12). These included independent variables related to socio-

economic, environmental, healthcare and virological domains

(Table 1) (17–20).

2.5. Statistical analysis

The association between P&I65+ and VCR65+ was examined by

applying both fixed-effects (FE) and Swamy-Arora random-effects

(RE) models for unbalanced panels implemented in the plm R

package (23). The model structure may be presented as follows:

log e(P&I65+)i,t = β1×(VCR65+)i,t + Σ[βx×(Confounders)i,t]

+ α(i)+ εi ,t,

for i= 1. . . 110 and t= 2003. . . 2019, where β1 and βx are regression

coefficients; “Confounders” is a set of potential confounders

presented in Table 1; α is the unobserved time-invariant local effect

(in the FE model) or constant intercept (in the RE model); i is a

location; t is a year; ε is the error term.

The degree of imbalance, which was driven by some missing

VCR65+, in the base-case multivariable model was low (γ = 0.92;

ν = 0.93). The main advantage of the FE models is that they take

into account potential bias from omitted time-invariant variables

by eliminating between variation from the estimation. On the other

hand, RE models may be more efficient; however, if individual

effects are correlated with regressors, the RE estimation would be

inconsistent (13, 24, 25). Hausman’s specification test was used to

select between the models (23). For all models, rates that were not

percentages were loge-transformed and interpreted as elasticities

(e.g., the regression coefficient for VCR65+ is a percent change in

P&I65+ associated with a 1% change in VCR65+) (26). Considering

the presence of cross-sectional dependence (Pesaran’s test: P <

0.001) and serial correlation (Breusch-Godfrey/Wooldridge’s test:

P < 0.001), the Driscoll-Kraay robust covariance matrix estimator

was used to establish heteroskedasticity and autocorrelation

consistent (HAC) standard errors (SEs) and associated p-values.

Finally, a sensitivity analysis was conducted in which all NUTS-2

units (N = 379) were excluded.

All analyses were performed in R stat packages v.4.2.2 (R

Foundation for Statistical Computing; Vienna, Austria).

3. Results

NUTS-3 VCR65+ data were obtained for 14 out of 20

Italian regions, and were available for 7–17 seasons. In summary,
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TABLE 2 Summary statistics of the study variables and unadjusted fixed- and random-e�ects models on the association between pneumonia- and

influenza-related mortality among Italian older adults and potential predictors.

Variable n Mean SD Min Max Estimate (HAC
SE) FE model

Estimate (HAC
SE) RE model

P&Ia65+ 1,523 7.7 3.5 1.3 23.1 – –

VCR65+ 1,144 59.3 10.0 29.1 84.7 −0.017 (0.001)∗∗∗ −0.017 (0.001)∗∗∗

P75+ 1,523 49.9 2.8 41.9 56.1 0.058 (0.001)∗∗∗ 0.058 (0.001)∗∗∗

P≤14 1,523 13.3 1.4 9.6 18.2 −0.110 (0.018)∗∗∗ −0.111 (0.017)∗∗∗

GDPa 1,523 25.6 6.3 13.1 50.7 1.676 (0.139)∗∗∗ 1.477 (0.091)∗∗∗

Morta 1,523 106.8 15.6 74.5 153.8 3.339 (0.215)∗∗∗ 3.025 (0.180)∗∗∗

Temp 1,523 5.6 3.4 −7.7 14.3 0.004 (0.004) −0.012 (0.005)∗

Densa 1,523 243.4 250.6 37.1 2083.0 −0.090 (0.476) 0.024 (0.076)

Beda 1,523 34.0 8.5 15.7 73.2 −0.755 (0.101)∗∗∗ −0.574 (0.089)∗∗∗

HCPa 1,523 102.3 28.2 21.7 177.9 −0.103 (0.148) 0.127 (0.095)

H1N1s dummy 1,523 0.1 0.2 0 1 Ref Ref

H1N1pdm09

dummy

1,523 0.1 0.3 0 1 0.080 (0.023)∗∗∗ 0.080 (0.023)∗∗∗

H3N2 dummy 1,523 0.5 0.5 0 1 0.199 (0.021)∗∗∗ 0.199 (0.021)∗∗∗

B dummy 1,523 0.2 0.4 0 1 0.367 (0.028)∗∗∗ 0.367 (0.028)∗∗∗

H1N1s/B dummy 1,523 0.1 0.3 0 1 0.010 (0.030) 0.010 (0.030)

H1N1pdm09/H3N2

dummy

1,523 0.1 0.2 0 1 0.517 (0.027)∗∗∗ 0.517 (0.027)∗∗∗

Bed, ordinary hospital beds per 10,000 inhabitants; Dens, population density, inhabitants per km2 ; FE, fixed-effects model; GDP, gross domestic product (1,000e) per capita based on purchasing

power parity; HAC SE, heteroskedasticity and autocorrelation consistent standard errors; HCP, healthcare professionals operating in public and accredited private health facilities per 10,000

inhabitants; Mort, baseline mortality rate per 10,000 inhabitants; P≤14 , proportion (%) of children aged ≤ 14 years in the total population; P75+ , proportion (%) of older adults aged ≥ 75

years in the population aged ≥ 65 years; P&I65+ , mortality due to pneumonia and influenza in subjects aged ≥ 65 years; RE, random-effects model; SD, standard deviation; VCR65+ , influenza

vaccination coverage rate in subjects aged≥ 65 years.
aRegression coefficients are based on loge-transformed variables.
∗∗∗P < 0.001.
∗P < 0.05.

a total of 1,144 local VCR65+ were included in the analysis

(Supplementary Table 1).

Table 2 summarizes the distribution patterns of both the study

outcome and independent variables. On univariate FE analysis,

each 1% increase in VCR65+ was associated with a 1.7% (95% CI:

1.5–2.0%) average over-time decrease in P&I65+. The unadjusted

RE coefficient was the same. Other statistically significant crude

associations included proportions of ≥ 75-year-olds and children,

baseline mortality, gross domestic product (GDP), average January

temperature, and patterns of circulating viruses (Table 2).

In the fully adjusted analysis (Table 3), the parameter estimates

of both the FE and REmodels were similar, althoughHausman’s test

suggested (P = 0.001) that the RE model was inconsistent. The FE

model showed that each 1% increase in VCR65+ was associated with

a 0.6% (95% CI: 0.3–0.9%) average over-time decrease in P&I65+.

GDP, baseline mortality and proportion of children were positive

predictors of P&I65+. Analogously, as compared with seasonal pre-

2009 H1N1s subtype, seasons (co)dominated by A(H3N2) and B

strains were associated with higher P&I65+. By contrast, each 1◦C

increase in the average January temperature was associated (P =

0.001) with a 1.3% decrease in P&I65+. The FE and RE models

explained 48.2 and 53.4% of variance, respectively (Table 3).

In the sensitivity analysis (Supplementary Table 2), the

regression output was similar, suggesting the robustness of the

base-case model.

4. Discussion

Models are undoubtedly useful tools for structured decision-

making and enable the principal stakeholders to consider the

potential impact of VCRs on pre-defined population health

outcomes. Importantly, models are more useful as tools for

forecasting the likely pattern of disease-specific endpoints that

might emerge under various circumstances over time (27). In this

study, we collected a large amount of local SIV VCR65+ and used

these to populate an econometric model of the impact of SIV over

17 years. Our model showed that each 1% increase in VCR65+

was associated with a 0.6% (95% CI: 0.3–0.9%) average over-time

decrease in P&I65+. During the study period, an annual average

of 9,293 P&I deaths in older adults were reported in Italy (17).

Translated into absolute numbers, our model suggests that an

average of 56 P&I deaths could have been avoided each year by

increasing VCR by only 1%.
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TABLE 3 Multivariable fixed- and random-e�ects models on the association between pneumonia- and influenza-related mortality and Influenza

vaccination coverage rates among Italian older adults.

Variable FE model RE model

Estimate (HAC SE) P-value Estimate (HAC SE) P-value

VCR65+ −0.006 (0.001) < 0.001∗∗∗ −0.007 (0.001) < 0.001∗∗∗

P75+ −0.004 (0.009) 0.66 −0.007 (0.009) 0.45

P≤14 0.091 (0.025) < 0.001∗∗∗ 0.088 (0.020) < 0.001∗∗∗

GDPa 1.043 (0.191) < 0.001∗∗∗ 1.110 (0.113) < 0.001∗∗∗

Morta 2.474 (0.285) < 0.001∗∗∗ 2.060 (0.230) < 0.001∗∗∗

Temp −0.013 (0.004) 0.001∗∗ −0.018 (0.003) < 0.001∗∗∗

Densa 0.045 (0.409) 0.91 0.030 (0.038) 0.42

Beda 0.021 (0.124) 0.87 0.015 (0.105) 0.88

HCPa −0.127 (0.174) 0.46 −0.054 (0.116) 0.64

H1N1s dummy Ref Ref Ref Ref

H1N1pdm09 dummy 0.002 (0.036) 0.96 0.013 (0.037) 0.72

H3N2 dummy 0.106 (0.033) 0.002∗∗ 0.128 (0.031) < 0.001∗∗∗

B dummy 0.129 (0.040) 0.001∗∗ 0.156 (0.038) < 0.001∗∗∗

H1N1s/B dummy −0.037 (0.044) 0.41 −0.016 (0.042) 0.70

H1N1pdm09/H3N2 dummy 0.142 (0.041) < 0.001∗∗∗ 0.182 (0.038) < 0.001∗∗∗

R2 0.482 < 0.001∗∗∗ 0.534 < 0.001∗∗∗

Bed, ordinary hospital beds per 10,000 inhabitants; Dens, population density, inhabitants per km2 ; FE, fixed-effects model; GDP, gross domestic product (1,000e) per capita based on purchasing

power parity; HAC SE, heteroskedasticity and autocorrelation consistent standard errors; HCP, healthcare professionals operating in public and accredited private health facilities per 10,000

inhabitants; Mort, baseline mortality rate per 10,000 inhabitants; P≤14 , proportion (%) of children aged ≤ 14 years in the total population; P75+ , proportion (%) of older adults aged ≥ 75 years

in the population aged≥ 65 years; RE, random-effects model; SD, standard deviation; VCR65+ , influenza vaccination coverage rate in subjects aged≥ 65 years.
aRegression coefficients are based on loge-transformed variables.
∗∗∗P < 0.001.
∗∗P < 0.01.

As mentioned earlier, previous Italian modeling studies (11, 12,

28) on the population-level benefits of increasing SIV VCRs have

reached somewhat contrasting conclusions. A cyclic Serfling-type

model on 31-yearmonthly data (1970–2001) implemented by Rizzo

et al. (11) failed to demonstrate any marked association between

VCRs and P&I/AC excess mortality in adults aged 65–84 years.

Specifically, in the period (1970–1986) of low SIV VCR (< 8%) a

significant (P ≤ 0.002) declining trend in both P&I and AC excess

mortality rates over time was discerned. By contrast, in the period

(1987–2001) of rapidly increasing SIV uptake, the authors found

no evidence of any trend in either P&I (P = 0.36) or AC (P = 0.75)

excess mortality (11). On the other hand, a correlational 12-season

(from 2005/06 to 2016/17) study by Manzoli et al. (28) reported

a significant (P = 0.036) linear increase in the annual incidence

of influenza-like illness (ILI) following the registered decline in

VCR65+. Each one-point increase in VCR65+ was associated with

an 8.6% (95%: 1.0–16.7%) reduction in the ILI attack rate. In other

words, at least 2,690 ILI cases in the Italian senior population

could have been prevented by increasing VCR65+ by 1% (28).

Owing to some methodological similarities, our results are more

similar to the longitudinal FE model by Fallani et al. (12), who

reported a significant inverse relationship between P&I65+ and

VCR65+. However, the adjusted regression coefficient for VCR65+

in our study was about three times lower (−0.006 vs. −0.019),

while the unadjusted (−0.017) regression coefficient approached

that of Fallani’s study (12). This difference is probably ascribable

to the fact that the previous model was not corrected for the

baseline mortality rate, which alone explained 37.1% of variance

in our study. Contrary to our approach, which was based on 1,144

space-time observations, the study by Fallani et al. (12) included

only 147 regression points and was limited to the post-2009

pandemic period. In sum, the inconsistencies in both the present

and past research (11, 12, 28) are apparently driven by themodeling

approach, time period and influenza-related proxy measures used.

First, by incorporating intra-country dynamics, panel models have

advantages over time-series, as they allow for heterogeneity across

spatial units, thereby increasing the reliability of results, may be

more efficient, and suffer less from deficient statistical power (13).

Second, the relative frequency of influenza-related population-wide

indicators may have changed over recent decades. Indeed, evidence

from the US (29) has highlighted that, unlike pneumonia caused by

Streptococcus pneumoniae andHaemophilus influenzae, the rates of

both hospitalization and case-fatality due to pneumonia caused by

influenza virus increased from 2002 to 2011 by 132% (P < 0.001)

and 67% (P < 0.001), respectively. Similarly, during the current

study period of 2003–2019, an increasing trend (Mann-Kendall

trend test: P < 0.001; results not shown) in P&I65+ was reported

in Italy (17). These observations contrast with those from the

earlier time period (1970–2001) investigated in the study by Rizzo

et al. (11). Finally, the sensitivity and specificity of influenza-related
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proxies may have a dramatic impact on SIV effectiveness (4).

Indeed, it has been noted (30) that evaluating the benefits of SIV

at the population level is challenging, since some disease proxies

may lack statistically significant findings.

The main limitation of the present study is that several NUTS-3

observations were missing, especially in southern regions. Ideally,

the 17-year dataset of 103/110 provinces would include 1,751/1,870

space-time records. Moreover, the availability of more granular

VCR data depends on the digitalization of immunization registries,

which has been implemented asymmetrically across Italian regions.

Second, while the FEmodel controls for time-invariant unobserved

variables (e.g., different local policies), we cannot exclude the

presence of time-varying omitted variables. For instance, Fallani

et al. (12) concluded that in addition to the overall benefit of

increasing VCR65+, Italian regions with a higher market share of

the MF59-adjuvanted trivalent SIV showed a further decrease in

P&I65+. However, data on the procurement of single SIV types

are typically available for NUTS-2 level only and these data cover

only a limited time-span. Finally, P&I65+ is not a laboratory-

confirmed endpoint, while laboratory confirmation is the most

specific outcome and is currently considered to be the gold standard

in SIV efficacy and effectiveness studies (4). On the other hand,

among other registry-based influenza-related outcomes [e.g., AC

mortality, which is not recommended for SIV effectiveness research

(4)], endpoints related to influenza and/or pneumonia are among

the most specific and, at the same time, more sensitive than

laboratory-confirmed influenza (31). This means that the P&I65+
outcome would additionally cover cases that are not tested for

influenza and cases of pneumonia initially triggered by influenza

virus, which is the most common complication (32). On the

assumption that 10% of pneumonia deaths are initially caused by

influenza, and that the true effectiveness of SIV is 50%, the expected

effectiveness against mortality due to pneumonia would be only

5% (4). We must therefore acknowledge that the observed effect

estimate is probably underestimated.

In conclusion, following the construction of a granular

longitudinal dataset, this analysis revealed that increasing SIV

VCRs yielded significant population-level benefits. National and

local policy-makers and other stakeholders should implement

effective strategies designed to enhance the community’s demand

for and access to SIV, with the final aim of achieving a minimum

VCR of 75%.
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