
Frontiers in Public Health 01 frontiersin.org

Dynamic variations in and 
prediction of COVID-19 with 
omicron in the four first-tier cities 
of mainland China, Hong Kong, 
and Singapore
Xiaohua Ni 1, Bo Sun 2,3, Zengyun Hu 2,4,5,6*, Qianqian Cui 7, 
Zhuo Zhang 4,5,6 and Hua Zhang 8

1 College of Public Health, Zhengzhou University, Zhengzhou, China, 2 Shenzhen Institute of Advanced 
Technology, Shenzhen University Town, Shenzhen, China, 3 Shenzhen Institute of Advanced 
Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China, 4 Research 
Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China, 
5 University of Chinese Academy of Sciences, Beijing, China, 6 State Key Laboratory of Desert and Oasis 
Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China, 
7 College of Mathematics and Statistics, Ningxia University, Yinchuan, China, 8 College of Geography and 
Remote Sensing Sciences, Xinjiang University, Urumqi, China

Background: The COVID-19 pandemic, which began in late 2019, has resulted 
in the devastating collapse of the social economy and more than 10 million 
deaths worldwide. A recent study suggests that the pattern of COVID-19 cases 
will resemble a mini-wave rather than a seasonal surge. In general, COVID-19 has 
more severe impacts on cities than on rural areas, especially in cities with high 
population density.

Methods: In this study, the background situation of COVID-19 transmission is 
discussed, including the population number and population density. Moreover, a 
widely used time series autoregressive integrated moving average (ARIMA) model 
is applied to simulate and forecast the COVID-19 variations in the six cities. We 
comprehensively analyze the dynamic variations in COVID-19 in the four first-
tier cities of mainland China (BJ: Beijing, SH: Shanghai, GZ: Guangzhou and SZ: 
Shenzhen), Hong Kong (HK), China and Singapore (SG) from 2020 to 2022.

Results: The major results show that the six cities have their own temporal 
characteristics, which are determined by the different control and prevention 
measures. The four first-tier cities of mainland China (i.e., BJ, SH, GZ, and SZ) have 
similar variations with one wave because of their identical “Dynamic COVID-19 
Zero” strategy and strict Non-Pharmaceutical Interventions (NPIs). HK and SG 
have multiple waves primarily caused by the input cases. The ARIMA model has 
the ability to provide an accurate forecast of the COVID-19 pandemic trend for 
the six cities, which could provide a useful approach for predicting the short-
term variations in infectious diseases.Accurate forecasting has significant value 
for implementing reasonable control and prevention measures.

Conclusions: Our main conclusions show that control and prevention measures 
should be dynamically adjusted and organically integrated for the COVID-19 
pandemic. Moreover, the mathematical models are proven again to provide an 
important scientific basis for disease control.

KEYWORDS

COVID-19, omicron, dynamic variations, ARIMA, prediction

OPEN ACCESS

EDITED BY

Reza Lashgari,  
Shahid Beheshti University, Iran

REVIEWED BY

Enhong Dong,  
Shanghai University of Medicine and Health 
Sciences, China  
Tianxin Xiang,  
The First Affiliated Hospital of Nanchang 
University, China  
Ana Clara Gomes da Silva,  
Universidade de Pernambuco, Brazil

*CORRESPONDENCE

Zengyun Hu  
 huzengyun@ms.xjb.ac.cn

RECEIVED 25 May 2023
ACCEPTED 11 September 2023
PUBLISHED 10 October 2023

CITATION

Ni X, Sun B, Hu Z, Cui Q, Zhang Z and 
Zhang H (2023) Dynamic variations in and 
prediction of COVID-19 with omicron in the 
four first-tier cities of mainland China, Hong 
Kong, and Singapore.
Front. Public Health 11:1228564.
doi: 10.3389/fpubh.2023.1228564

COPYRIGHT

© 2023 Ni, Sun, Hu, Cui, Zhang and Zhang. 
This is an open-access article distributed under 
the terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Original Research
PUBLISHED 10 October 2023
DOI 10.3389/fpubh.2023.1228564

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2023.1228564%EF%BB%BF&domain=pdf&date_stamp=2023-10-10
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1228564/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1228564/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1228564/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1228564/full
https://www.frontiersin.org/articles/10.3389/fpubh.2023.1228564/full
mailto:huzengyun@ms.xjb.ac.cn
https://doi.org/10.3389/fpubh.2023.1228564
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2023.1228564


Ni et al. 10.3389/fpubh.2023.1228564

Frontiers in Public Health 02 frontiersin.org

1. Introduction

In late 2019, coronavirus disease 2019 (COVID-19), the disease 
caused by severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), was first reported; subsequently, a pandemic ensued and was 
characterized by person-to-person transmission and asymptomatic 
patients (1, 2). For at least half a year, COVID-19 rapidly spread 
worldwide over more than 200 countries and regions. To address the 
rapid spread of COVID-19, the World Health Organization (WHO) 
declared it a pandemic. As of March 17, 2023, 760,360,956 confirmed 
cases and 6,873,477 deaths from COVID-19 have occurred globally.1

In 2023, the COVID-19 pandemic is still far from over (3). The 
pattern of COVID-19 will present as a mini-wave rather than a 
seasonal surge (4). During the past few years of the pandemic, 
because of virus mutations in special populations (e.g., older 
individuals, infants and populations with basic diseases), 
COVID-19 has been constantly transmitted worldwide (5, 6). The 
SARS-CoV-2 variants include the alpha variant of concern 
(B.1.1.7), beta variant (B.1.351), gamma variant (P.1), delta variant 
(B.1617.2) and Omicron variant (B.1.1.529), all of which are 
characterized by changes in transmission speed and virus virulence 
(7–9).2 Since the first discovery of the omicron mutant strain in 
South Africa in November 2021, it has spread rapidly worldwide 
and become the dominant strain in many countries and regions 
(7). The reduced pathogenicity and virulence of omicron mutant 
strains, characterized by an analysis of hospitalized patients during 
the peak of omicron infection in South Africa, showed a shortened 
incubation period in the population, mostly asymptomatic and 
mild cases, and a reduced risk of hospitalization and death (10). 
The immune escape ability is rapidly increasing, and omicron can 
escape more than 85% of the 247 human neutralizing antibodies 
screened. Different mutations have different effects on different 
classes of antibodies (11). The omicron strain significantly 
increases the risk of reinfection, which predicts that more 
susceptible individuals in the population with the omicron strain 
may cause a larger peak in the outbreak. Faster transmission, easier 
transmission through surfaces and aerosol media, and the omicron 
variant can exhale large amounts of neo coronavirus aerosol from 
patients themselves (12).

Due to the huge impacts that COVID-19 exerted on social 
economics and human lives worldwide, a large number of prevention 
and control measures have been employed in different countries (7, 
13–15). Because the accurate simulation and prediction of infectious 
diseases can provide the scientific basis for adopting reasonable 
measurements, many COVID-19 models have been established to 
investigate disease variations and related impact factors and to predict 
future trends (16–19). Among these models, ARIMA and SARIMA 
models have been widely applied to analyze the linear, nonlinear and 
seasonal characteristics of COVID-19 (20–22). Gaetano Perone 
compared the use of the ARIMA, ETS, NNAR, TBATS, and hybrid 
models for predicting the second wave of COVID-19 hospitalizations 
in Italy, and the results demonstrated that hybrid models can better 
capture linear, nonlinear and seasonal models (23, 24) and accurately 

1 https://covid19.who.int/

2 https://www.who.int/en/activities/tracking-SARS-CoV-2-variants

predict the risk of ending of a new coronary pneumonia outbreak and 
a second rebound using the SARIMA model (24). The ARIMA model 
is useful for the prediction of COVID-19 in Brazil and India and can 
also provide a reference for epidemic prevention and control and 
policy development in other countries (25).

Variations in the pandemic have led to changes in the control and 
prevention measures in different countries or cities over time. Due to 
multiple different complex factors, such as socioeconomic factors (e.g., 
population transmission, gross domestic product and medical 
resource level), control and prevention measure factors (e.g., 
nonpharmaceutical interventions (NPIs) and vaccines), and natural 
environmental factors (e.g., temperature, precipitation and humidity), 
the corresponding COVID-19 time series display different temporal 
characteristics (e.g., linear trend and multiple waves). In other words, 
analyzing and exploring the temporal variations in COVID-19 can 
illustrate the background impact factors in different countries and 
cities. Therefore, it is very important and significant to compare trends 
in the COVID-19 pandemic between different countries and cities; 
such comparisons can reveal efficient and valuable control and 
prevention measures for fighting future infectious diseases. Wang (26) 
compared dynamic variations in COVID-19 using a general disease 
dynamic model across 88 global countries encompassing population 
transmission (i.e., contact rates), disease detection capacity (i.e., 
detection rates) and immune loss rates. Using an innovative approach 
named “Yi Hua Jie Mu,” they identified one of the key parameters to 
predict the future changes in COVID-19 and compared the differences 
among countries with different climate regions. Chen (2) performed 
a cross-country core strategy comparison in four different countries 
(i.e., China, Japan, Singapore and South Korea) in the early period of 
the COVID-19 pandemic. China, Singapore, and South Korea adopted 
the containment strategy, and Japan adopted the mitigation strategy. 
Their results showed that the mitigation strategy was inferior to the 
containment strategy (27).

However, there are only a few comprehensive analyses of the 
whole COVID-19 period from 2020 to 2022. In particular, the studies 
comparing COVID-19 between different cities are limited, especially 
in the Omicron transmission period. Therefore, in this study, we focus 
on six different cities or countries with different cultures, population 
structures and control and prevention measurements, including 
Beijing (BJ), Shanghai (SH), Guangzhou (GZ), Shenzhen (SZ), Hong 
Kong (HK) and Singapore (SG). The research questions were as 
follows. (1) What are the transmission characteristics of the six cities 
during the period of 2020–2022, especially in the Omicron 
transmission period? (2) Does a time series analysis model exist to 
simulate and predict COVID-19 transmission with Omicron virus?

To address the above questions, we will first comprehensively 
explore the transmission characteristics of COVID-19 in the six cities 
during the period of January 2020–December 2022. Then, using the 
autoregressive sliding average method to predict the trend of the new 
coronavirus pneumonia epidemic can effectively use historical cases 
to build a prediction model, which has the characteristics of strong 
short-term prediction ability and simple operation. ARIMA models 
are widely used for the prediction and early warning of infectious 
diseases. The ARIMA model will be employed to simulate and predict 
the disease transmission trends for the six cities during the Omicron 
periods, which can lead to a better understanding of the different 
variations and provide important scientific bases for research on other 
infectious diseases.
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2. Datasets and methods

2.1. Datasets used in this study

In this study, the datasets of the six cities are composed of 
socioeconomic datasets and population datasets from the period of 
2012–2021 and COVID-19 pandemic datasets from the period of 
2020–2022. The socioeconomic datasets include the GDP and medical 
resource level, and the population datasets include the total 
population, population transmission, population with ages smaller 
than 18 years and larger than 60 years, which are downloaded from the 
National Bureau of Statistics of China,3 Census and Statistics 
Department, Hong Kong, China4 and the Department of Statistics 
Singapore.5

The COVID-19 pandemic datasets of the six cities include the 
daily new confirmed cases, cumulative confirmed cases, imported 
cases and cumulative removed cases from 2020–2022. The disease 
datasets of the five cities (i.e., Beijing: BJ, Shanghai: SH, Guangzhou: 
GZ, Shenzhen: SZ and Hong Kong: HK) are sourced from the National 
Health Commission of the People’s Republic of China,6 and the 
Singapore COVID-19 datasets are from the World Health 
Organization.7

2.2. Methods

Autoregressive integrated moving average (ARIMA) models were 
developed by Box and Jenkins (28) and are widely used time series 
models for simulation and prediction studies (29–33). The basic form 
of the ARIMA model is ARIMA (p, d, q), where the nonnegative 
integers p and q are the orders of autoregressive and moving average 
polynomials, respectively, and d is the nonseasonal differencing 
required to make data stationary. An ARIMA (p, d, q) model can 
be expressed using lag polynomial L as the following equation:
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where ε j is a random error at time j , ϕi, and θ j are the coefficients.
In general, the ARIMA model can capture both nonseasonal and 

seasonal patterns of time series. There are three steps to forecast the 
time series: model identification, parameter estimation, and diagnostic 
checking of the model. In the first step of model identification, the 
stationarity and seasonality of the time series are determined, which 
need to be modeled before parameter estimation. The augmented 
Dickey-Fuller (ADF) test is used to detect whether the time series is 
stationary. If the p values of the ADF test are less than 0.05, the time 
series is stationary. If the time series is nonstationary, an 
autocorrelation function (ACF) plot is used to judge it as stationary 
with the differencing transformation, and the parameter d is 

3 http://www.stats.gov.cn/sj/

4 https://www.censtatd.gov.hk/sc/

5 https://www.singstat.gov.sg/

6 http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index.shtml

7 https://covid19.who.int/data

determined. Seasonality can be  obtained by taking seasonal 
differencing and regenerating ACF and partial autocorrelation 
function (PACF) plots.

For ARIMA model identification, ACF and PACF plots are also 
helpful to determine the values of the parameters of p and q. The most 
commonly used method (i.e., maximum likelihood) is employed to 
estimate the parameters of the appropriately selected model. In the 
end, the overall adequacy of the model is checked by the Ljung and 
Box test (34). In this study, the R 4.0.5 version is applied to construct 
the ARIMA model for simulating and predicting the COVID-19 
pandemic time series. Generally, for the simulation of the time series 
models, the time series period will be divided into two parts which are 
the training data with the 70 percentages of the whole data and the 
testing data with the residual 30 percentages. In the ARIMA (p, d, q) 
model, 70% of the time series are selected as the training set, and the 
residual 30% of the time series are the test set for the six cities which 
are same as our previous study (13).

To assess the model’s performance, the correlation coefficient 
(CC), absolute error (AE), root mean square error (RMSE) and 
distance between indices of simulation and observation (DISO) are 
employed as in previous studies (7, 13, 26, 35, 36). The DISO index is 
a comprehensive assessment of multiple models, which is a merge of 
different statistical metrics with dimensions from 1 to n (37–39). In 
2022, it was formally named CCHZ-DISO, which can be readily and 
widely applied to any subject of science due to its simplicity and 
flexibility advantages (38). The DISO equation is provided as follows.

For two time series, A and B, with a length of n, we assume that 
the observation time series is A = (a1, a2,…, an), and the simulated time 
series is B = (b1, b2,…, bn). Then, the evaluated metrics CC, AE, RMSE, 
and DISO have the following forms.
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where NAE and NRMSE are normalized by the averaged values of the 
observed time series.

3. Results

3.1. Temporal characteristics of 
COVID-19 in four first-tier cities

During the COVID-19 years from 2020 to 2022, the control and 
prevention measures of mainland China focus on “to prevent the 
coronavirus from spreading within the city/region or beyond,” “to 
prevent the coronavirus from re-entering the country to cause a new 
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epidemic,” and the “Dynamic Zero COVID-19 Strategy,” which mainly 
include lockdown, wearing masks, COVID-19 vaccines and social 
distancing. After the three-year fight against COVID-19, mainland 
China has accumulated rich experience, which can be employed in the 
control and prevention of similar infectious diseases in the future. 
According to the COVID-19 pandemic development trends of the 
four first-tier cities of mainland China, each has its own variation 
characteristics (Figure 1).

As the capital of China, the COVID-19 trend BJ has a general 
stable variation on most days except for the outbreak caused by the 
omicron (Figures  1A,B). There are about six mini-waves of the 
COVID-19 with the largest daily new confirmed case number of 1,285 
only in the sixth wave in November 29, 2022 (Table 1). Specifically, 
after the five local confirmed cases were observed on January 20th, 
2020, the COVID-19 trend in BJ entered the early stage of local 
diffusion in early February. The pandemic had a stable situation, and 
the largest daily confirmed caseload was 36, which could not lead to 
the development of a large wave of COVID-19 cases. On January 15th, 
2022, the first local omicron case was confirmed in BJ. Then, an 
increased wave was observed from April to May. Therefore, for BJ, the 
time period from April 22nd, 2022, to May 28th, 2022, is selected for 
the ARIMA model and analyzed in the following section (Figure 2A).

As the most important foreign trade center in mainland China, 
SH had the largest population transmission. Except the low-level 
oscillation in most times, only three epidemic waves are observed with 
the largest daily new case number of 5,489  in April 28th, 2022 
(Table 1). The first observed COVID-19 case in SH was observed on 
January 20, 2020. At the early stage, some confirmed cases were 
reported each day in SH. The outbreak of COVID-19  in SH was 
observed on March 1st, 2022, and the local daily caseload increased 
from 96 to 326 on March 29th (Figure 1D). In April, the COVID-19 
pandemic in SH became highly developed with respect to confirmed 
cases, and the number of asymptomatic cases rapidly increased. From 

the end of March to May 12th, the local cumulative number of cases 
was more than 60,000, which is approximately four times the total 
confirmed cases in China in 2021 (15,243 cases). However, the more 
concerning aspect is the drastic increase in the number of 
asymptomatic cases, with a number exceeding 1,000 after March 24th. 
During the period from April 4th-April 26th, the daily number of new 
asymptomatic cases was as high as 10,000 for 20 consecutive days. As 
a super large international city, SH had the most input confirmed cases 
among all of China. Moreover, most of the confirmed cases were 
caused by the Omicron BA.2 and BA.2.2 variants; these variants cause 
more than 4 times the number of case than the Delta variant. Based 
on the transmission characteristics of the Omicron variant in SH, the 
time period from April 1st, 2022, to May 12th, 2022, will be examined 
in the ARIMA model (Figure 2B).

In GZ, COVID-19 infectious diseases continuously increased 
from January 2020 to November 2022. In this period, there are four 
waves (Figures 1E,F). After November 2022, the COVID-19 outbreak 
increased. Combined with the high population density, high 
population transmission and complex spread chains, the infection 
disease diffusion risk and the difficulty of its control increased 
significantly. In the latest outbreak, the largest daily new case number 
is 1,645 at November, 23, 2022 (Table 1). According to the transmission 
characteristics in the 3 years, the COVID-19 time series from 
November 1st, 2022, to December 1st, 2022, will be examined in the 
ARIMA model (Figure 2C).

SZ has 16 ports and is thus one of the most entry-exit cities in 
China. As an economic center and international city, it attracts a large 
number of young people. Overall, during the COVID-19 period of 
2020–2022, there are four epidemic waves: (1) the first wave is from 
January, 24, 2020 to February, 16, 2020 with the largest daily new 
confirmed cases value of 60; (2) the second wave is from February, 12, 
2022 to March, 30, 2022 with the largest daily new confirmed cases 
value of 70; and (3) the third wave is from August, 23, 2022 to 

FIGURE 1

Confirmed cumulative cases (CCC) and daily new cases (DNC) of the four first-tier cities of mainland China: Beijing (BJ) (A) and (B), Shanghai (SH) 
(C) and (D), Guangzhou (GZ) (E) and (F), and Shenzhen (SZ) (G) and (H) during the period of 2000–2022.
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September, 18, 2022 with the largest daily new confirmed cases value 
of 69; and the fourth wave is from November, 9, 2022 to December, 
17, 2022 with the largest daily new confirmed cases value of 146 
(Figures  1G,H; Table  1). After the first wave was brought under 
control, nearly 600 days passed with only sporadic increases and no 
widespread epidemic. The interval between the second wave and the 
third wave was short, and there were local small wave variations under 
most situations, which is similar to most mainland cities. Due to its 
high rate of young people, the death rate was small. The COVID-19 
Omicron wave started on July 12th, 2022. In this study, the disease 
transmission period from August 20th, 2022, to November 1st, 2022, 
will be examined in the ARIMA model (Figure 2D).

3.2. Temporal characteristics of 
COVID-19 in HK and SG

HK has a population of more than 7.33 million and is one of 
the regions with the highest population density, with a land area of 
1,113 km2. There are five epidemic waves with the largest daily new 
confirmed cases value of 79, 876 in March 3rd, 2022 (Table 1). On 
January 23rd, 2020, the first COVID-19 case was detected in Hong 
Kong, and then, the disease was transmitted in the following years. 
In general, Hong Kong has experienced five waves of the 
COVID-19 pandemic in the past 3 years (Figures 3A,B). The first 
wave lasted for approximately 1 month, and the second wave lasted 

TABLE 1 The statistical characteristics of the epidemic waves of the six cities during the period of 2020–2022.

Epidemic wave BJ SH GZ SZ HK XG

First

Period 2020.1.20–2020.2.22

2020.1.20–

2020.2.17

2020.1.24–

2020.2.16

2020.1.24–

2020.2.17 2020.2.16–2020.4.20

2020.2.15–

2020.10.3

Duration 33 27 23 24 65 232

Max 29 27 38 60 82 1,426

Max date 2020.2.2 2020.1.30 2020.2.1 2020.1.31 2020.3.29 2020.4.20

Start to max 13 10 8 7 42 65

Second

Period 2020.2.26–2020.3.31

2020.3.12–

2020.4.19

2021.5.26–

2021.6.18

2022.2.12–

2022.3.30 2020.6.16–2020.10.14

2021.8.23–

2021.12.20

Duration 34 38 23 46 120 119

Max 32 52 18 71 149 5,324

Max date 2020.3.23 2020.4.19 2021.5.30 2022.3.16 2020.7.30 2021.10.27

Start to max 26 38 4 32 44 65

Third

Period 2020.6.11–2020.7.6

2022.2.16–

2022.6.5 2022.4.2–2022.5.9

2022.8.23–

2022.9.18 2020.10.15–2021.5.27

2021.12.21–

2022.5.2

Duration 26 109 37 26 224 132

Max 36 5,489 39 69 115 26,032

Max date 2020.6.13 2022.4.28 2022.4.13 2022.9.3 2020.11.29 2022.2.22

Start to max 2 71 11 11 45 63

Fourth

Period 2022.1.10–2022.2.8

2022.10.2–

2022.12.17

2022.11.9–

2022.12.17 2021.12.8–2022.5.23 2022.5.3–2022.6.16

Duration 29 76 38 166 45

Max 23 1,645 146 79,876 6,442

Max date 2022.1.29 2022.11.23 2022.12.4 2022.3.3 2022.5.18

Start to max 19 52 25 85 15

Fifth

Period 2022.4.17–2022.6.29 2022.5.24–2023.1.28

2022.6.17–

2022.8.29

Duration 73 249 73

Max 83 29,207 16,870

Max date 2022.5.22 2022.12.31 2022.7.13

Start to max 35 221 26

Sixth

Period 2022.10.1–2022.12.4 2022.8.30–2022.1.6

Duration 64 129

Max 1,285 11,934

Max date 2022.11.29 2022.10.18

Start to max 59 49
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for approximately 2 months. The third wave started in early 
November 2020 and lasted for no more than 2 months. In January 
2021, the fourth wave was an outbreak lasting at least 5 months. 
Compared to the fifth wave, the first four waves had few confirmed 
cases, and the COVID-19 pandemic was still stable, mainly due to 
the “dynamic COVID-19 zero” strategy.

However, after the number of confirmed cases was out of control 
at the end of 2021, the COVID-19 Omicron variant began to circulate, 
and it spread to the whole society after only 1 month. The severe fifth 
wave started in February 2022, and the daily number of new confirmed 
cases reached its maximum in March before decreasing to 200–300 
cases in May. Subsequently, the COVID-19 pandemic fluctuated. Since 
September 26th, 2022, the daily new confirmed cases have been 
approximately 5,000 since the adjustment of the control and 
prevention measures (Figure 3B).

From 2020 to 2022, SG has experienced four stages, each 
highlighting the global situation at the time as well as the country’s 
strategies to fight the COVID-19 pandemic. Six epidemic waves are 
observed with the largest daily new confirmed cases value larger than 
1,200 (Table 1). The four stages are (1) early days of fog (January–March 
2020), (2) fighting a pandemic (April 2020–April 2021), (3) rocky 
transition (May 2021–November 2021) and (4) learning to live with 

COVID-19 (December 2021-Present) (https://www.gov.sg/article/
covid-19-white-paper White Paper on Singapore’s Response to COVID-
19: Lessons for the Next Pandemic) (Figures 3C,D). The total cumulative 
confirmed COVID-19 cases exceed 2 million, which accounts for 
approximately 50% of the total population (i.e., 5.45 million at the end 
of 2022). After the first confirmed cases were reported on January 23rd, 
2020, the pandemic started to spread in March. To fight against COVID-
19, NPIs and COVID-19 vaccines were used in tandem. After reaching 
the projected goal of the vaccines, the number of confirmed COVID-19 
cases largely increased with approximately five waves, and each wave 
persisted for approximately 3–4 months. The serious outbreak wave was 
caused by the COVID-19 Omicron variant, with 26,032 new cases daily. 
Adequate medical resources and a high vaccination rate play a key role 
in COVID-19 control in SG.

3.3. Simulation and prediction of 
COVID-19 in the four first-tier cities in 
mainland China

In this section, the cumulative number of confirmed COVID-19 
cases in the four first-tier cities in mainland China are simulated and 

FIGURE 2

The CCC (confirmed cumulative cases) used in the ARIMA models for BJ (A), SH (B), GZ (C), and SZ (D), where the data with black lines are the training 
set and the data with blue lines are the test set.
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predicted by the ARIMA model. The time series periods of the four 
cities are as follows: from April 22nd, 2022 to May 2022 for BJ; from 
April 1st, 2022 to May 12th, 2022 for SH; from November 1st, 2022 to 
December 1st, 2022 for GZ; and from August 20th, 2022 to November 
1st, 2022 for SZ (Figure 2). The training set is 70% of the total number 
of time series, and the remainder of the time series is the test set for 
all four cities.

According to the ADF test (i.e., white noise test and unit root test), 
the original time series of all four cities are not stationary, with ADF 
values and p values of (−2.3049, 0.4561) for BJ (−2.8156, 0.2594) for 
SH, (1.3957, 0.8026) for GZ, and (1.3957, 0.8026) for SZ. After the 
difference, the time series becomes stationary, and the difference 
orders are d = 1,2,2,1 for BJ, SH, GZ, and SZ, respectively (Figure 4).

According to the ACF and PACF results (Figure 5), the test from 
the low order to high order and the AIC criteria, the ARIMA models 
of the four cities are finally set as ARIMA (1,1,0), ARIMA (0,2,0), 

ARIMA (2,4,6), and ARIMA (1,1,0) for BJ, SH, GZ, and SZ, 
respectively.

Figure 6 displays the QQ plots of the residual time series; they are 
distributed around the diagonal line, which indicates that the residuals 
of the original are normally distributed. Moreover, the residuals are 
distributed around zero, and the autocorrelation and partial 
autocorrelation fall within the confidence interval, which indicates 
that the ARIMA model residuals are white noise time series, and 
we can use the ARIMA model to predict the COVID-19 variations.

According to Figure 7 and the accurate evaluation results revealed 
by the CC, AE, RMSE, and DISO, the ARIMA models of the four cities 
can effectively capture the COVID-19 variations and have a high 
accuracy in predicting the cumulative confirmed cases (Table  2). 
Specifically, the CC values between the observed time series and the 
prediction time series are 0.99, 1, 1, and 0.98 for BJ, SH, GZ, and SZ, 
respectively. The DISO values are 0.03, 0.08, 0.02, and 0.03. The MAE 

FIGURE 3

Confirmed cumulative cases (CCC) and daily new cases (DNC) of Hong Kong (HK) China (A) and (B), and Singapore (SG) (C) and (D) during the period 
of 2020–2022.
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values are −0.02, 0.05, 0.01, and 0.01 for the four cities. The NRMSE 
values are 0.02, 0.06, 0.01 and 0.01. The smallest relative error of BJ, 
SH, GZ, and SZ are −0.001, 0.001, 0.004, and − 0.0005 with the 
observation data vs. prediction data of 2,975 vs. 2,972, 59,068 vs. 
59,128, 24,820 vs. 24,909 and 4,110 vs. 4,108 (Figure 7).

3.4. Simulation and prediction of 
COVID-19 in HK, China, and SG

We used the ARIMA model to simulate and predict the cumulative 
number of COVID-19 cases in HK, China and SG. The corresponding 
COVID-19 periods focus on the Omicron transmission period, i.e., 
from September 14th, 2022, to November 26th, 2022, in HK and from 
August 23rd, 2021, to November 27th, 2022, in SG (Figure 8).

For HK, the total number of cumulative case time series is 74 days, 
where the cumulative cases over 54 days are the training set and the 
remaining time series are the test set. For SG, the total number of 
cumulative case time series is 462 days, where the cumulative cases over 
340 days are the training set and the remaining time series are the test set.

After the ADF test, differenced time series, ACF and PACF test, 
the ARIMA models of HK and SG were finally determined to 
be ARIMA (2,1,0) and ARIMA (0,2,0). Using the ARIMA models, 
we obtained the prediction results of the cumulative confirmed cases 
for HK and SG, as shown in Figure 9. The temporal variations in the 
cumulative confirmed cases of HK and SG are well captured by the 
ARIMA models. The statistical metrics of CC, RE, RMSE and DISO 
are quantitatively evaluated for the models’ performances (Table 2). 
The CC values are 1 and 0.99, the NRE values are 0 and 0.13, the 
NRMSE values are 0.01 and 0.15, and the DISO values are 0.01 and 
0.20 for HK and SG, respectively. For the overall performance, the 
DISO values are 0.01 and 0.2 for the two cities. The smallest relative 
errors of HK and SG are nearly to zero with the observation data vs. 

prediction data of 439,251 vs. 439,253 and 1,702,392 vs. 1,703,019 
(Figure 9).

3.5. Comparison of COVID-19 in China and 
other countries

During the past 3 years, all the countries have their own COVID-19 
transmission characteristics, and the special prevention and control 
strategies based on their COVID-19 pandemic variations and their social-
economic characteristics (e.g., economic levels, medical resource level, 
population number). Hence, it is necessary to have a comparison of 
COVID-19 pandemic between China and other countries.

“Dynamic COVID-19 Zero” strategy and strict NPIs are through 
the whole COVID-19 pandemic prevention and control in China in 
the past years, which are the highly efficient measurements and make 
great contributions for the fight against the COVID-19 in the world. 
It is suggested that China, SG and South Korea with the containment 
strategy are better than Japan with the mitigation strategy (27). 
Although India adopted the containment strategy as China, a rapid 
increase in daily new cases and a high mortality were observed due to 
the unstrict measurements (40). Denmark and Norway employed the 
same COVID-19 strategy from containment to suppression and 
Sweden is from containment to mitigation (41). The mechanism 
of “Dynamic COVID-19 Zero” strategy is assessed by a compartmental 
model which highlights the importance and efficiency of the 
containment of the COVID-19 epidemic (42).

In fact, we  should learn the lessons toward a more effective 
response to other public health emergencies in future. For example, a 
healthier and safer society requires that countries develop and employ 
the coherent and context-specific national strategy, which can improve 
the governance of public health emergencies, minimize fragmentation 
and tackle upstream structural issues (43).

FIGURE 4

The differenced time series of the four cities with the difference orders of d  =  1,2,2,1 for BJ, SH, GZ and SZ (A), (B), (C) and (D), respectively.
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4. Discussion

4.1. Differences in the COVID-19 pandemic 
transmission backgrounds of the six cities

In general, it is known that infectious disease transmission 
characteristics are caused by different complex environmental factors, 
including social environmental factors (e.g., GDP, population number, 
NPIs and medical resources) and natural environmental factors (e.g., 

temperature, precipitation, humidity, and wind). The COVID-19 
pandemic variation trends of these six cities also result from complex 
environmental factors, which are the major backgrounds of disease 
transmission and outbreak and are under control. Moreover, the 
environmental factors differ across these six cities.

Specifically, the total populations of the six cities at the end of 2021 
were 21.88 million for BJ, 24.89 million for SH, 18.81 million for GZ, 
17.68 million for SZ, 7.41 million for HK, and 5.64 million for SG. The 
corresponding population densities of the six cities were 1,334 per 
km2, 3,925 per km2, 2,512 per km2, 6,484 per km2, 7,060 per km2 and 

FIGURE 5

The ACF and PACF results for BJ (A) and (B), SH (C) and (D), GZ (E) and (F), and SZ (G) and (H).
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FIGURE 6 (Continued)
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8,357 per km2, respectively. The percentages of the population aged 65 
and over in the six cities were 14.2, 26.9, 13.33, 3.22, 19.56 and 12.03%, 
respectively. SH has the most severe aging, followed by HK; such aging 
leads to substantial challenges for COVID-19 control and prevention, 
especially during the omicron transmission period.

Vaccination can largely decrease the infection rate and severity 
rate and greatly reduce the mortality rate, especially for key 
populations (e.g., older adult people and those with underlying 
diseases such as COVID-19), which is one of the most efficient 
measures to control and prevent infectious diseases (44). As of January 
2, 2023, the total number of COVID-19 vaccinations exceeded 3.47 
billion, and 89.6% of the population older than 60 years will have 
received one vaccine dose. The COVID-19 vaccination rate in HK is 
as high as 94.4%. However, the very low vaccine rate of older adult 
people in HK caused a high mortality rate during the fifth wave. 
Singapore has one of the lowest mortality rates, which is due to its high 
vaccine rate and enriched medical resources (45). In the past three 
years, the total confirmed case number of SG was higher than 2.18 
million, and the mortality number was only 1707, with a percentage 
of 0.0783%. In March 2022, 92% of the population received the 
vaccination, and more than 70% of the population received the 
booster dose in Singapore. The other contributors to the achievements 
in COVID-19 control and prevention in SG are highly efficient 
medical resource integration with patients, which is similar to China.

4.2. Mathematical models related to the 
simulation and prediction of COVID-19

Mathematical models can predict how infectious diseases progress 
to have the likely outcome of an epidemic and help to provide scientific 
information for public health interventions (26, 46, 47). Since the 
outbreak of the COVID-19 pandemic, mathematical models have 
become a crucial and important approach to accurately understand 
the transmission characteristics and mechanisms in controlling 
COVID-19 (48), which usually include time series models (e.g., 

generalized additive models, autoregressive integrated moving average 
models, and artificial neural network models) (49–51), and dynamic 
models (e.g., ODE: ordinary differential equation models, PDE: partial 
differential equation models and statistical equation models) (52–57).

Time series models have their own advantages in modeling the 
prevention and control of infectious diseases, with many featuring 
ease of use and fast performance for rapid diagnosis in the early 
stages of an outbreak. These models are less affected by parameter 
changes because they are driven by historical data and statistics. 
However, the natural transmission characteristics and clinical 
features of the disease are not considered in most time series 
models. The dynamic models derived by the ODE and PDE models 
are constructed according to the disease transmission mechanisms 
and diffusion characteristics in different types of populations. When 
the initial values and parameter values are set, the dynamical 
models have the advantages of assessing the nonlinear transmission 
characteristics, the interactions of the different populations and the 
contributions of the key parameters. However, some uncertainties 
will exist in the parameter estimation. Hence, hybrid models based 
on time series models and dynamic models will be a new trend in 
disease projection.

As one of the most widely used time series models, ARIMA is 
easily used and not strict on the time series, which usually can have 
an accurate short projection for the disease variations. During the 
COVID-19 pandemic period, there are numerous works about the 
simulation and prediction of this disease by time series models. 
ARIMA is one of the widely models in the COVID-19 analysis. For 
example, Ceylan (2020) suggested that ARIMA models are significant 
in predicting the prevalence of the COVID-19 pandemic (58). For 
some highly complex nonlinear time series, it is difficult to simulate 
and predict the disease variations by the ARIMA model. Therefore, in 
this study, we select the cumulative confirmed case time series to 
construct the ARIMA models for the six cities. For the daily new 
confirmed case time series or other infectious diseases, new models 
will be employed to explore the more complex characteristics of the 
diseases in our future research.

FIGURE 6

The residual correlation results of the original time series for the four cities: BJ (A), SH (B), GZ (C), and SZ (D).
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In addition, other time series models are also applied in simulating 
and predicting the COVID-19 variations (e.g., NARNN: nonlinear 
autoregression neural network; LSTM: long-short term memory). 
After the comparison of ARIMA, NARNN and LSTM, suggested that 
LSTM was the most accurate model (30). A family autoregressive 
models are used to analyze the real world time series data of confirmed 
and recovered COVID-19 cases based on two-piece scale mixture 
normal distribution (59). They found that the proposed algorithm 
outperforms other standard autoregressive time-series models. A 
hybrid deep learning method-Bayesian optimization model is applied 
to predict the COVID-19 confirmed cases (60). They pointed that the 
combination of multiple models can provide a more accurate 
prediction result than an individual linear or nonlinear model. 
Therefore, the hybrid models or the combinations of multiple models 
will provide efficient approaches to predict the disease time series. 
We will leave these for our other future analyses.

4.3. Two limitations of this study

The dynamical variations and predictions of the COVID-19 with 
Omicron in the six cities are comprehensively analyzed in this study. 

The basic characteristics of the COVID-19 transmissions are obtained. 
Moreover, the primary simulation and prediction of the cumulative 
confirmed cases are well explored by the ARIMA model. However, 
there are two limitations in this study which constrained the well 
understand of the COVID-19 transmissions.

The first limitation is the dataset. In general, the more datasets, the 
more characteristics of the COVID-19 can be obtained. In this study, 
daily new confirmed cases, cumulative confirmed cases, imported 
cases and cumulative removed cases of the six cities are used to reveal 
the COVID-19 transmission characteristics. But if other important 
datasets can be  included the more detail characteristics of the 
COVID-19 will be obtained, which can help us to well understand the 
pandemic in the six cities. For example, the detail quarantine strategies 
and the wearing mask proportion datasets can provide detail 
information for the COVID-19 transmission and also provide 
important information for the simulation and prediction. The 
COVID-19 vaccine type, COVID-19 vaccine proportion and 
vaccination times play a key role for understanding the COVID-19 
transmission and constructing the COVID-19 models.

The second limitation of this study is the simulation and 
prediction model. Although the ARIMA model can capture the 
characteristics of the cumulative confirmed cases and have accurate 

FIGURE 7

The prediction results of the ARIMA models for BJ (A), SH (B), GZ (C), and SZ (D).

TABLE 2 The evaluation results of the ARIMA models for six cities/country.

City/Country Time period CC MAE RMSE DISO

BJ 2022-5-19 2022-5-28 0.99 −0.02 0.02 0.03

SH 2022-5-1 2022-5-12 1.00 0.05 0.06 0.08

GZ 2022-11-22 2022-12-1 1.00 0.01 0.01 0.02

SZ 2022-10-14 2022-11-1 0.98 0.01 0.01 0.03

HK 2022-11-7 2022-11-26 1.00 0.00 0.01 0.01

SG 2022-7-29 2022-11-27 0.99 0.13 0.15 0.20
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simulation and prediction, the daily new cases are not simulated and 
predicted. Therefore, two or more models will be employed to predict 
the other COVID-19 variables in the future study, such as the dynamic 
models constructed by the ODE and hybrid models by the dynamic 
models and time series models.

5. Conclusion

In this study, a comprehensive analysis of the COVID-19 
pandemic variations in the four first-tier cities of mainland China, 
Hong Kong, China and Singapore from 2020 to 2022 was 
conducted. The population number, population density, and 
medical resources are discussed from 2012 to 2021, which are the 
major background of COVID-19 transmission. Moreover, a widely 
used time series model ARIMA is applied to simulate and forecast 
the COVID-19 variations in the six cities. The major conclusions 
are as follows.

 1. The six cities have their own temporal characteristics, which 
are determined by the different control and prevention 
measures. The four first-tier cities of mainland China (i.e., BJ, 

SH, GZ, and SZ) have similar variations with one wave because 
of the same “Dynamical COVID-19 Zero” strategy and strict 
NPIs. Hong Kong and Singapore have multiple waves primarily 
caused by the input cases.

 2. NPIs, high vaccination rates and highly efficient integrated 
multiple measures play key roles in controlling COVID-19 
pandemic transmission, such as avoiding community 
communication and protecting vulnerable populations.

 3. The ARIMA model has the ability to provide an accurate 
forecast of the COVID-19 pandemic tendency for the six cities, 
which could provide a useful approach to predict the short-
term variations in infectious diseases. Accurate forecasting has 
significant value for adopting reasonable control and 
prevention measures.

Our main conclusions show that control and prevention measures 
should be dynamically adjusted and organically integrated for the 
COVID-19 pandemic. Moreover, the mathematical models are proven 
again to provide an important scientific basis for disease control. 
These are valuable experiences, and the knowledge accumulated in 
recent years can enable us to better fight against future infectious 
diseases in the world.

FIGURE 8

The cumulative confirmed COVID-19 cases used in the ARIMA models for HK (A) and SG (B), where the data with black lines are the training set and 
the data with blue lines are the test set.

FIGURE 9

The prediction results of the ARIMA models for HK (A) and SG (B).
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