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Worldwide, Urinary Tract Infections (UTIs) are an important health problem with 
many cases reported annually, women being the most affected. UTIs are relevant 
because they can become a recurrent condition, associated with different factors 
that contribute to the chronicity of the disease (cUTI). cUTI can be classified as 
persistent (peUTI) when the causative agent is the same each time the infection 
occurs or as reinfection (reUTI) when the associated microorganism is different. 
The purpose of this work was to characterize Escherichia coli isolates obtained 
in two prospective studies of patients with cUTI, to define which of them 
corresponded to peUTI and which to reUTI. A total of 394 isolates of E. coli 
were analyzed by agglutination with specific sera, antimicrobial susceptibility by 
diffusion disc test, and the phylogroups and presence of genes associated with 
virulence by PCR assays. Additionally, in some characterized strains adherence, 
invasiveness, and biofilm formation were analyzed by in vitro assays. The results 
showed that the peUTI strains belonged mainly to the classical UPEC serogroups 
(O25, O75, O6), were included in the B2 phylogroup, carried a great number of 
virulence genes, and were adherent, invasive, and biofilm-forming. Meanwhile, 
reUTI strains showed great diversity of serogroups, belonged mainly in the A 
phylogroup, and carried fewer virulence genes. Both peUTI and reUTI strains 
showed extensively drug-resistant (XDR) and multidrug-resistant (MDR) profiles 
in the antimicrobial susceptibility test. In conclusion, it appears that peUTIs are 
caused principally by classical UPEC strains, while reUTIs are caused by strains 
that appear to be a part of the common E. coli intestinal biota. Moreover, although 
both peUTI and reUTI strains presented different serotypes and phylogroups, 
their antimicrobial resistance profile (XDR and MDR) was similar, confirming the 
importance of regulating prophylactic treatments and seeking alternatives for the 
treatment and control of cUTI. Finally, it was possible to establish the features 
of the E. coli strains responsible for peUTI and reUTI which could be helpful to 
develop a fast diagnostic methodology.
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1 Introduction

With the development of antibiotic therapy in the mid-20th 
century, the clinical impact and devastating effect of infectious 
diseases was controlled. However, the inappropriate use of 
antimicrobials in the treatment of these diseases and their use in areas 
such as agribusiness and others, has been the cause of a significant 
increase of antimicrobial resistant bacteria, causing global population 
to currently face a major public health problem (1). Urinary Tract 
Infections (UTIs) represent a major health problem worldwide (2), 
predominantly more common in women and, although, UTIs occur 
at any stage of life, their highest incidence occurs between the ages of 
15 and 24 years-old and in the post-menopausal period (3). The higher 
frequency of UTI in women has been linked to the proximity between 
the anus and the urethra, a situation that facilitates the contamination 
of the latter by feces (2, 4). Another relevant aspect of UTIs is their 
high rate of recurrence, thus becoming a chronic condition and 
affecting the quality of life due to the condition itself and the emotional 
and psychological effect it entails. In addition to the negative effects, 
their frequency with which cUTIs occur has an impact on the patient’s 
economy, either because of the medical costs or the need to be absent 
from work (5, 6). cUTIs are characterized by recurrent infections, 
which in turn are defined as persistent infections (peUTI), when the 
responsible microorganism is always the same; or reinfection (reUTI), 
in cases where the microorganism is different each time a new UTI 
occurs. To explain the etiology of both models it is pointed out that in 
peUTI, after the initial infection the pathogen establishes itself and 
resides within the epithelium of the urinary tract, avoiding the 
immune response of the host and protecting itself from the effect of 
antimicrobials (7). While the diversity of bacteria related to reUTI 
may be  explained by the lack of genetic information that allows 
bacteria to maintain a stable form within the epithelium of the urinary 
tract, and therefore they can be eliminated more easily. However, 
depending on the patient’s susceptibility, they can be infected again 
through fecal contamination of the urethra by common intestinal 
microorganisms, or by some other mechanisms related to the patient’s 
poor hygienic habits (4). The treatment for both peUTI and reUTI is 
the prescription of antimicrobials, whose constant use alters the 
normal microbiota of the bladder, vagina, and gastrointestinal tract, 
favoring the selection and proliferation of multidrug-resistant strains. 
Escherichia coli is the main bacterial agent associated with UTI and is 
responsible for 70–95% of community-acquired infections and 
approximately 50% of nosocomial UTI cases (8–10). E. coli is a 
bacterium with a genome that presents great plasticity, a fact that has 
favored its great diversity formed by commensal clones that naturally 
colonize the intestine and contribute to the proper functioning of the 
host organism. However, in the evolutionary process, E. coli has 
generated pathogenic clones (pathotypes) that can cause intestinal 
diseases called diarrheogenic (DEC), and others more related to 
infections outside the intestine, the case of UTIs, named extraintestinal 
E. coli (ExTEC). The phenotypic diversity of E. coli is related to the 

composition of the different somatic (O) and flagellar (H) antigens 
expressed by the bacterium; both react to specific sera allowing to 
classify strains in different serogroups (O antigen only) and serotypes 
(both O and H antigens). By this method, some E. coli strains 
associated with UTIs have been designated as classic uropathogenic 
E. coli (UPEC) (11, 12). In the laboratory, we have the complete sera 
scheme to perform the antigenic characterization of E. coli, which 
allows us to know the serogroup and serotype of the bacterium and 
thus define the variety that causes the different types of UTIs. 
Previously, in two prospective studies conducted by our research 
group, urine samples from patients with cUTI were collected and 
analyzed monthly, followed up for a period of seven to 18 months, 
varying depending on the patient. From each positive urine culture, 
10 colonies were selected, identified using biochemical tests, and 
serotyped; the strains were frozen for preservation and subsequent 
characterization (13, 14). The aim of this study was to perform the 
phenotypic and genotypic characterization of some of the E. coli 
strains previously isolated from the already mentioned studies, with 
the interest of analyzing the behavior of the isolates obtained from 
patients with peUTI and reUTI and thus propose strategies for the 
diagnosis, treatment, and potential control of cUTI.

2 Materials and methods

2.1 Bacteria

The study included 394 Escherichia coli isolates obtained from 131 
urine samples from 39 adults and 17 children who participated in the 
two previously mentioned prospective studies of cUTI (13, 14).

2.2 Serotyping of Escherichia coli isolates

Escherichia coli strains were serotyped in a previous work (13, 14). 
In brief, the agglutination assays were performed using 96-well 
microtiter plates and rabbit antisera against O1 to O187 somatic (O) 
antigens and 53 flagellar (H) antigens prepared in rabbits (SERUNAM, 
registered trademark in Mexico, number 323,158/2015) using the 
method described by Orskov and Orskov (15).

2.3 Antimicrobial susceptibility

To assess antimicrobial susceptibility, the disk diffusion method 
was performed following the protocol described by Clinical and 
Laboratory Standards Institute (CLSI) (16). Susceptibility to 34 
antimicrobials (Oxoid, United Kingdom) was assessed for 125 and 269 
isolates from peUTI and reUTI, respectively. Discs impregned with 
ampicillin (AMP) 10 μg, piperacillin (PRL) 100 μg, carbenicillin 
(CAR) 100 μg, mecilanam (MEL) 10 μg, amox-clavulanic acid (AMC) 
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20–10 μg, piperacillin-tazobactam (TZP) 100–10 μg, cefazolin (KZ) 
30 μg, cephalothin (KF) 30 μg, cefamandol (MA) 30 μg, cefepime 
(FEP) 30 μg, cefoperazone (CFP) 75 μg, cefoxitin (FOX) 30 μg, 
ceftriaxone (CRO) 30 μg, ceftazidime (CAZ) 30 μg, furoxime (CXM) 
30 μg, meropenem (MEM) 10 μg, nitrofurantoin (F) 300 μg, aztreonam 
(ATM) 30 μg, gentamicin (CN) 10 μg, amikacin (KA) 30 μg, 
kanamycin (K)30 μg, tobramycin (TOB) 10 μg, streptomycin (S) 10 μg, 
tetracycline (TE) 30 μg, ciprofloxacin (CIP) 5 μg, norfloxacin (NOR) 
10 μg, trimethoprim-sulfamethoxazole (SXT) 1.5/23.75 μg, nalidixic 
acid (NA) 30 μg, sulfonamides (S3) 250/300 μg, trimetroprim (W) 
5 μg, chloramphenicol (C) 30 μg, fosfomycin (FOS) 200 μg, fosfomycin 
trometramol (FOT) 200 μg were used. The results were interpreted 
considering the diameter of the inhibition halo, categorized as 
susceptible (S), intermediate (I) and resistant (R) according to the 
CLSI (16) criteria, the E. coli ATCC 25922 reference strain was used 
as a control. Isolates classified as intermediate were re-classified as 
resistant, multidrug-resistant (MDR) strains were defined as: resistant 
to ≥1 agent in ≥3 antibiotic categories, extensively drug-resistant 
(XDR): resistant to ≥1 agent in all but <2 categories and pandrug-
resistant (PDR) when resistant to all antimicrobial agents used (17). 
For each isolate, a resistance score was calculated, defined as the 
number of antibiotics to which that strain was resistant among the 34 
antibiotics tested (18).

2.4 PCR assays

2.4.1 DNA extraction
DNA extraction was performed according to the manufacturing 

instructions of InstaGene Matrix kit (Bio-Rad, United States).

2.4.2 Phylogenetic analysis
Using the multiplex PCR method described by Clermont et al. 

(19), primers for chuA, yejA, and TspE4.C2 were used to identify the 
phylogenetic group of the different E. coli isolates (A, B1, B2, and D).

2.4.3 Virulence genes
Multiplex PCR (endpoint) was used to analyze the presence of 15 

virulence genes associated with adhesion proteins (fimH, papA, papC), 
toxin production (sat), iron uptake (feoB, ireA, irp-2, sitA, iutA, fyuA), 
capsule synthesis (kpsMT-K1), pathogenicity island I (malX), and the 
enzyme associated with the degradation of antimicrobial peptides 
(ompT). Simplex assays were performed for sat, papA, ompT, iroND, 
malX, and duplex assays for the combinations (1) ibeA, iutA; (2) feoB, 
sitA; (3) fimH, ireA; (4) irp-2, kpsMTII and (5) fluA and fluB. The 
sequences of the primers are listed in Supplementary Table S1, PCR 
assays were performed under the following conditions: final volume 
10 μL, reaction mixture consisting of 1.0 μL DNA, 0.4 μL (10 μM) of 
each primer, 5 μL (2X) PCR Master Mix (Thermo Scientific. 
United  States). Amplification was performed using a MiniAmp 
thermal cyclerTM (Applied Biosystems., United States) according to 
the following conditions: denaturation step for 2 min (95°C); 
amplification of 30 cycles for 30 s (95°C), annealing temperature for 
30 s, 1 min at 72°C and a final extension step for 7 min at 72°C 
(Supplementary Table S1). PCR products were analyzed by 
electrophoretic run using agarose gels (1.2%), stained with ethidium 
bromide (0.01%), and were visualized using a Cleaver Scientific TTD 
model OmniDoc Gel Documentation System (United Kingdom) 

ultraviolet light transilluminator. A virulence score was calculated for 
each isolate, defined as the number of virulence genes present in the 
strain with respect to the 15 genes analyzed (18).

2.5 In vitro assays

Some of the studied E. coli strains were selected to evaluate their 
in vitro properties in terms of adherence, invasiveness, and biofilm 
formation capacity to subsequently identify if there was a correlation 
between these properties and the cUTI type.

2.5.1 Adherence to cells
For this assay, 72 strains isolated from 37 urine cultures belonging 

to 12 patients with reUTI and 7 with peUTI who presented a positive 
urine culture for >3 months were selected. The presence of genes 
associated with fimbrial adhesins was the selection criterion for the 
E. coli strains used in this assay. The procedure described by Cravioto 
et al. (20) was used with some modifications. Briefly, 1 mL (2.5×105) 
of HEp-2 cells in suspension (ATCC CCL-23) was plated in a 24-well 
tissue culture microplate (Costar® United States) containing sterile 
13 mm slides (Nunc Brand Products® United States) and Minimum 
Essential Medium (MEM) (Invitrogen. United States), supplemented 
with 10% Fetal Bovine Serum (FBS) (EquiLab, Canada). Cells were 
incubated for 24 h at 37° C in a 3% CO2 atmosphere, upon reaching 
90% confluence the medium was removed and washed three times 
with sterile Phosphate-Buffered Saline (PBS) (1x), the bacterial 
inoculum was prepared from a previous culture (grown overnight) by 
adjusting the suspension to a concentration of 3.0 × 108 CFU/mL in 
MEM without FBS and antibiotic, and supplemented with 100 μL of 
10% D-mannose, 1 mL of this was added to each well. The plates were 
incubated for 3 h at 37°C in 3% CO2 atmosphere, at the end of this 
time the medium with bacteria was removed and wells were washed 
twice with 1x PBS, the cell monolayer was fixed with methanol for 
10 min and finally stained with 1% Giemsa. The number of adherent 
bacteria was counted independently by two persons using a 
microscope (100X), analyzing at least 15 fields of each preparation. 
The result was expressed as the average number of adherent bacteria 
per cell per duplicate assay. The following strains were used to evaluate 
adherence phenotypes: E. coli E2348/69 (localized adherence), E. coli 
87,125 (diffuse adherence), E. coli 49,766 (aggregative adherence) and 
a non-adherent E. coli strain HB101.

2.5.2 Cell invasion
In this assay, 54 strains isolated from 27 urine cultures from 7 

peUTI and 10 reUTI patients who had a positive urine culture for 
more than 3 consecutive months were tested. Shigella boydii 21639 and 
E. coli 1124 were used as positive controls and E. coli HB101 as a 
negative control. For invasion assays, the procedure described by 
Elsinghorst (21) with modifications was used. Briefly, HEp-2 cells 
(ATCC CCL-23) were cultured and infected following the same 
conditions described in the adherence assay. In this assay a first 
incubation of 3 h was performed, the medium was removed from the 
wells and washed three times with sterile PBS to eliminate the bacteria 
that failed to invade, 1 mL of MEM with Gentamicin (100 mg/mL) and 
lysozyme (300 mg/mL) was added, the plates were incubated again for 
3 h at 37°C (22). At the end of the new incubation period the culture 
was washed twice with 1x PBS and the culture was fixed with methanol 
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for 15 min and stained with 1% Giemsa for 20 min. The preparations 
were observed under the microscope and the cells with intracellular 
bacteria were counted. A bacterial quantification test was performed, 
briefly the culture medium was removed and 500 μL of Triton (0.1%) 
was added to each well for 15 min at room temperature to break the 
HEp-2 cells. The suspension obtained was subjected to serial ten-fold 
dilutions and plate count was performed using the drop-plate 
technique (10 μL) on MacConckey agar. The assay was repeated in two 
independent experiments, and the data analyzed was the average of 
invasive bacteria.

2.5.3 Biofilms
The biofilm formation capacity of 80 UPEC strains, 68 selected 

from 10 patients with peUTI and 12 from 3 patients with reUTI, all 
with a follow-up of more than 3 months, and with the presence of 
adherence-related genes, was analyzed. The method described by 
Christensen et al. (23) was used with minor modifications. Briefly, 
bacteria were inoculated in Luria Bertani broth (LB) and incubated at 
37°C with constant shaking (200 rpm) until a 1 McFarland turbidity 
standard suspension (corresponding to 3×108 CFU/mL) of each 
isolate was reached. 50 μL volume of the previous suspension was 
placed in duplicate in 24-well plates (COSTAR, United States), 950 μL 
of MEM was added to each well and incubated at 37°C for 24, 48 and 
72 h. The E. coli CFT073 strain was used as a positive control and 
E. coli HB101 as a negative control; as a blank, a well was used only 
with MEM without bacteria; the process was carried out under the 
same conditions used for the wells with bacteria. After each incubation 
time, the medium was removed from each well, washed twice with 
sterile water and dried at room temperature for at least 30 min. To 
each well, one milliliter of crystal violet solution (1%) was added and 
incubated for 20 min at room temperature. The dye was removed, and 
the wells were washed twice with distilled water. Once dry, one 
milliliter of 96% ethanol was added to each well and mixed using a 
micropipette, biofilm formation was defined by measuring O.D. at 
570 nm using a microplate reader (Spectronic GenesysTM 2). All 
measurements were performed in two independent experiments, 
biofilm formation was classified as strong biofilm formers 
(4DOc < DO), moderate (2DOc < DO≤4DOc), weak 
(DOc<DO≤DO≤2DOc), or non-biofilm formers (DO≤DOc) (24). 
Strains that showed biofilm production were analyzed to identify the 
presence of the fluA (primer F: 5′-aggcaggaggaactgccagt-3′ and R: 
5′-taaatgagggtgggtgcccgtgcc-3′) and fluB (primer F: 
5′-cagccggatctgcc-3′ and R: 5′-actctggtgtttctggctgtt-3′) genes, alleles of 
the Ag43 antigen, following the protocol described by Zalewska-
Piatek et al. (25) and Danese et al. (26).

2.6 Statistical analysis

Statistical analysis was performed using GraphPad Prism 
version 8 software (GraphPad Sotfware, San Diego, CA, 
United States). The prevalence of virulence genes and antibiotic 
resistance patterns were compared between reUTI and peUTI by 
Fisher’s exact test. Virulence and resistance scores between groups 
(classical vs. Non-classical UPEC; Phylogroups; reUTI vs. peUTI) 
were compared by performing Student’s t-test. Additionally, linear 
regression was performed and Pearson’s correlation between 
virulence and resistance scores shown by the strains was 

calculated (18). For all analyses, a value of p < 0.05 was considered 
statistically significant.

3 Results

3.1 Serogroups and serotypes of the 
analyzed Escherichia coli strains

The serology of the 394 strains corresponded to 44 serogroups and 
76 serotypes, 185 (47%) of the strains were included in 10 of the 
classical UPEC serogroups, 134 (34%) belonged to 34 different 
non-UPEC serogroups, 48 (12%) presented rough phenotype (R), and 
28 (7%) of the strains did not agglutinate (ND, non-determined) with 
any of the 187 sera used (Table 1). The correlation between the type of 
UTI and serogroups, it was found that strains with classical UPEC 
serogroups belonged to patients with peUTI (p < 0.05). On the other 
hand, patients with reUTI, the strains belonged preferentially to 
non-UPEC serogroups or were not identified (p < 0.05). A more 
specific analysis showed that 52.5% of the strains belonged to the 
classical UPEC serogroups O25, O75, O8, O6, O1, and non-UPEC O9, 
O11, and O14 (Table 1). The serotype analysis in peUTI patients with 
a follow-up >7 months showed that O25: H4, O75: NM, O6: H1, and 
O9: NM were consistently isolated (p < 0.05). With respect to patients 
with reUTI the serotypes O8: NM, O8: H9, O1: H7, and O25: H4 were 
the most frequently identified. It was interesting to note that strains of 
serotype O25: H4 were isolated from both types of infections, peUTI 
and reUTI.

3.2 Antimicrobial susceptibility

A relevant aspect in UTI is the poor response to antimicrobial 
treatment in a significant number of patients. The sensitivity results 
showed that 378 (96%) strains showed low resistance to mecilinam, 
piperacillin/tazobactam, cefoxitin, meropenem, amikacin, 
nitrofurantoin, chloramphenicol, fosfomycin, fosfomycin/

TABLE 1 Escherichia coli serogroups in patients with peUTI and reUTI.

Serogroup (No. of strains)

reUTI, n  =  269 peUTI, 
n  =  125

Total, 
n  =  394

Classical UPEC

O25(21),O8(15),O1(10),O6(8)

,O16(6),O4(3),O21(3),O22(

3),O75(3)

O25(69),O75(36)

,O6(6)
184 (47%)

Non-Classical 

UPEC

O11(14),O14(12),O28ab(6),

O32(6),O73(6),O174(6),O5

7(5),O76(4),O178(4),O12(3)

,O19(3),O45(3),O84(3),O9

6(3),O101(3),O109(3),O12

0(3),O147(3),O148(3),O15

3(3),O154(3),O170(3),boy8
(3),O17(2),O23(2),O152(2),

O49766(2),O18ac(1),O20(

1),O49(1),O102(1),O168(1)

O9(11) 134 (34%)

Non-defined OR(45),OND(28) OR(3) 76 (19%)
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trometramol. However, a different profile with high resistance to 
the penicillin family (ampicillin, piperacillin, carbenicillin), some 
cephalosporins (cefazolin, cephalotin) and nalidixic acid was 
identified in most strains (Figure 1). Comparative analysis showed 
significant higher resistance (p < 0.05) for carbenicillin, cefazolin, 
cephalotin, ceftazidime, aztreonam, gentamicin, tobramycin, 
ciprofloxacin, and norflozacin in peUTI strains and for 
meropenem, amikacin, streptomycin, trimethoprim-
sulfamethoxazole, sulfonamides, trimetroprim, chloramphenicol, 
fosfomycin, and fosfomycin trometramol in reUTI isolates 
(Figure  1). Classification by resistance type showed that 27% 
(102/378) of the isolates were included in the XDR group and 59% 
(223/378) in MDR, and 14% (53/378) were considered still 
sensitive strains. A Drug-resistance score was used considering the 
total number of antimicrobials to which each isolated presented 
resistance (18). In this regard, UPEC strains from reUTI and 
peUTI did not show significantly different antibiotic resistance 
(p > 0.05) (Figure 2). However, strains isolated from children with 
peUTI were more resistant than isolates from children with reUTI 
(p < 0.05) and the same was observed for peUTI (p < 0.05) and 
reUTI (p < 0.05) in adults.

3.3 Phylogenetic diversity

Phylogenetic analysis of the E. coli strains showed that 96.4% 
(380/394) were included in one of the 4 phylogroups evaluated and 
only in 3.6% (14/394) of the isolates was not possible to define the 
group. Forty-four percent of the strains corresponded to phylogroup 
B2, 27% to A, 14.8% to D and 14% to B1; when performing a 
probability analysis to know the relationship of the phylogroup 
between patients with peUTI versus reUTI it was found that B2 was 
the most common in strains from patients with persistence 
(p < 0.0001) and A in isolates from patients with reinfections 
(Table 2).

3.4 Virulence genes

The assay to identify virulence genes (Figure  3), showed the 
presence of 6 genes (iutA, sitA, fimH, feoB, fyuA, and irp-2) in more 
than 50% of the strains analyzed. fimH, papA, papC (adhesins), sitA, 
fyuA, irp-2 (iron scavengers), kpsMT, and ompT (protectins) and sat 
(self-transported cytotoxin) were identified more frequently in strains 
isolated from peUTI patients (p < 0.05). On the other hand, feoB and 
ireA were observed more frequently in patients with reUTI (p < 0.05). 
To define whether the presence of the genes favors the persistence of 
the bacteria carrying them, virulence score analysis was used. This 
analysis showed that UPEC strains isolated from patients with peUTI 
presented a higher number of virulence genes (p < 0.0001), compared 
to strains from reUTI (Figure 4A); particularly, classical UPEC strains 
showed a higher virulence score regardless of the type of cUTI 
(p < 0.0001) (Figure 4B). Additionally, it was observed that strains 
from group B2 contained a higher number of the virulence genes 
analyzed, than strains included in other phylogroups (B2 vs. A, 
p < 0.0001; B2 vs. B1, p < 0.005; B2 vs. D, p < 0.05) (Figure 4C). UPEC 
strains from peUTI and reUTI showed a significant correlation 
(Pearson’s coefficient = 0.2171; R2 = 0.04, p < 0.0001) between virulence 
and antibiotic resistance scores.

3.5 In vitro assays

To corroborate whether the presence of certain genes was involved 
in the virulence of the strains and in the variety of cUTI (peUTI or 
reUTI) presented by the patients, in vitro tests were implemented to 
analyze the adherence, invasiveness, and biofilm formation of some of 
the bacteria included in the study.

3.5.1 Adherence to cells
Adherence capacity was evaluated in 72 strains from 6 patients 

with peUTI and 3 with reUTI, who were followed up for >3 months. 

FIGURE 1

Drug-resistance prevalence among UPEC isolates from patients with reUTI and peUTI. Ampicillin (AMP), piperacillin (PRL), carbenicillin (CAR), 
mecilanam (MEL), amox-clavulanic acid (AMC), piperacillin-tazobactam (TZP), cefazolin (KZ), cephalothin (KF), cefamandol (MA), cefepime (FEP), 
cefoperazone (CFP), cefoxitin (FOX), ceftriaxone (CRO), ceftazidime (CAZ), furoxime (CXM), meropenem (MEM), nitrofurantoin (F), aztreonam (ATM), 
gentamicin (CN), amikacin (KA), kanamycin (K), tobramycin (TOB), streptomycin (S), tetracycline (TE), ciprofloxacin (CIP), norfloxacin (NOR), 
trimethoprim-sulfamethoxazole (SXT), nalidixic acid (NA), sulfonamides (S3), trimetroprim (W), chloramphenicol (C), fosfomycin (FOS), fosfomycin 
trometramol (FOT). The dotted line marks the 20% resistance threshold. Fisher’s exact test was performed, *p  <  0.05.
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The assay reported 20 (27.7%) adherence to cells with higher 
prevalence in isolates from patients with peUTI 70% (14/20). The 
correlation between adherence and serotype showed that 80% 
(16/20) had the classic UPEC serotypes O25: H4 (10), O75:NM (4), 
O6:H1 (2) and 4 the serotype O11:H25 (non-UPEC). The analysis of 
genes identified in the adherent strains reported the presence of 
fimH (38%), papA (36%) and papC (31%). As previously mentioned, 
fimH and papC were mainly identified in isolates from peUTI 
patients (p < 0.05).

3.5.2 In vitro invasiveness
To evaluate cell invasiveness, 54 strains were selected from peUTI 

and patients with reUTI. The assay showed that 37% of the strains 
were invasive, with a higher prevalence of 12/20 (60%) in isolates from 
patients with peUTI. Association analysis between invasiveness and 
serotype showed that 16 (80%) of the isolates belonged to the classical 
UPEC serotypes [O25:H4 (10), O6:H1 (4), O4:H5 (2)] and 4 (20%) 
the non-UPEC serotypes [O28ab:H4 (2), O45:HND (2)]. The 
quantitative invasiveness assay showed that the number of invasive 
bacteria isolated from peUTI was higher (2.8×103 CFU/mL) than 
those isolated from patients with reUTI (p < 0.05). E. coli O25:H4 
strains were the most invasive (1.2×103-7×103 CFU/mL) reporting a 
logarithm higher than that obtained in Shigella boydii 21,639 (5×102 
CFU/mL) and E. coli 1,124 (3×102 CFU/mL) strains used as controls.

3.5.3 Biofilm formation
Eighty strains isolated from 13 patients with cUTI were selected 

to evaluate biofilm formation, 29 were from 5 patients with peUTI and 
51 from 8 with reUTI. The results reported a minimum absorbance of 
0.2722 and a maximum of 0.6694, with a cut-off point of 0.339. With 
these data it was defined that 29/80 (36%) formed a biofilm classified 
as weak after 72 h of incubation, 12 strains were isolated from 3 
patients with peUTI and 17 from 5 patients with reUTI, with no 
significant differences (p > 0.05). However, when performing the 
relationship between serotypes of the strains it was found that 17 
(59%) belonged to serotypes O25:H4 (8), O4:H5 (5), O6:H1 (4) classic 
UPEC, and 11 (38%) to serotypes O11:H25 (2), O12:NM (4), O45:H 
(5) and one non-defined (ND), the statistical analysis between these 
classic and non-classic groups gives a significant value (p < 0.05). Ag43 
is a membrane protein associated with biofilm formation identified in 
26 E. coli strains, thus it was important to identify the flu alleles related 
to Ag43 expression. Gene analysis showed the presence of fluA and 
fluB in both UPEC-CFT073 and the 80 strains selected for biofilm 
formation, fluB was the most prevalent (83%) in strains that formed 
biofilms (p < 0.05) (Table 3).

4 Discussion

Escherichia coli strains are the most common bacteria isolated 
from urine of patients with acute and cUTI infections. In the cases 
where cUTI is caused by the same microorganism the infection is 
considered a peUTI, while in cases where the isolated microorganisms 
are different to those identified in the previous sample the infection is 
considered a reUTI. To define the characteristics of the E. coli that is 
causing the cUTI the isolate could be characterized by phenotypic 
(serological and biochemical typing) or genotypic (ribotyping, pulsed-
field electrophoresis or MLST) methods (27–31). As previously 
mentioned, our work group has the complete sera scheme to perform 
the antigenic characterization of E. coli, which allows us to define the 
type of cUTI, i. e. peUTI or reUTI.

In two previous studies patients with cUTI were followed up for 
7 to 18 months, where E. coli strains were isolated in approximately 
70% of the samples (13, 14). Serotyping of E. coli isolates from some 
patients with cUTI, showed O25, O75, O6 serogroups (classic UPEC) 
in the different urine cultures evaluated, because the serogroup in each 
patient was the same always, the type of infection was classified as 
peUTI, same observations have been reported by other authors (29, 
32, 33). However, it was interesting to observe in a patient with peUTI 
the identification of the O9 serogroup, not included in the classic 
UPEC pathotype and considered by other authors as 
enterohemorrhagic E. coli (34). This circumstance raises the possibility 
that gene transfer from UPEC to strains such as O9 is taking place in 
the intestine, favoring their survival in new environments such as the 
urinary tract (18, 35). When analyzing the data obtained during 
patient follow-up from it was found that initially the patient only 
presented reUTI, however, after several isolations of different E. coli 
serogroups O9 strains were identified and being isolated in the 
following urine cultures the infection changed to a 
peUTI. Furthermore, the genetic analysis of these O9 strains, showed 
the presence of genes linked to iron uptake (sitA, feoB, and irp2), 
which were also present in greater proportion in the classic UPEC 
strains (O25, O75, and O6). On the other hand, in reUTI cases a 

FIGURE 2

Distribution of the drug-resistance score in UPEC isolates from 
patients with reUTI and peUTI. The bars within each box plot show 
median values. The box covers the 25th percentile to the 75th 
percentile of the data. Bars above and below the box show 1.5 times 
the inter-quartile range. Whiskers show minimum and maximum 
values. Student’s t-test was performed, ns, statistically non-
significant and *p  <  0.05.

TABLE 2 Escherichia coli phylogroups prevalence in UPEC from peUTI 
and reUTI.

Phylogroup peUTI, 
n  =  117

reUTI, 
n  =  263

Total 
n  =  380

p-value

A 0 104 (39.5%) 104 (27%) –

B1 0 53 (20.2%) 53 (14%) –

B2 114 (97.4%) 52 (19.8%) 166 (44%) <0.0001

D 3 (2.6%) 54 (20.5%) 57 (14.8%) –

Fisher’s exact test was performed, only statistically significant p-values are shown.
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greater diversity of serogroups was identified, which in turn were 
different in each urine culture. Apparently different aspects may 
be related to cases of reUTI that favor infection by E. coli from the 
intestinal biota via cross-contamination (36). Although these patients 
can become free of infection when treated with antimicrobials, the 
predisposition to become infected favors a new strain to colonize 
them, causing the reinfection of the condition (37).

The phylogenetic distribution among the study strains was higher 
toward phylogroups B2 and A, this result contrasts with that reported 
by other authors, who mention that extraintestinal E. coli strains 
belong mainly to phylogroups B2 and D (18, 38). However, studies 
conducted in Russia, China, Iran, Portugal, Venezuela, and Mexico, 

reported similar results to those obtained in this study (13, 39–44). 
Phylogenetic variation in UPEC strains may be associated with host 
particularities such as the geographical area, climate and diet type in 
which they inhabit (45). Other predisposing factors such as anatomical 
alterations, metabolic diseases, immune status, and hygienic habits 
would allow gut commensal strains to become opportunistic 
pathogens (46). The results reported here confirmed that phylogroup 
B2 is particularly associated with peUTIs; in this regard, Thänert et al. 
(47) reported the presence of this type of strains preferentially 
associated with peUTIs, suggesting they might be  colonizing the 
urinary tract, the intestine, or both habitats according to their ability 
for adaptation. Likewise, in a study on the virulence of strains 

FIGURE 3

Virulence traits in UPEC isolates from patients with peUTI or reUTI. Fisher’s exact test was performed, ns, statistically non-significant and *p  <  0.05.

FIGURE 4

Escherichia coli isolates from complicated UTI. (A) Virulence genes score in strains from reUTI and peUTI, (B) Classical and Non-Classical UPEC 
groups, and (C) E. coli phylogroups. Student’s t-test was performed, ns, statistically non-significant and *p  <  0.05.
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belonging to phylogroup B2, using a murine model, it was reported 
that urine isolates are more virulent than those from feces (48). 
However, studies in France and Sweden evaluating the intestinal 
microbiota of children and adults, identified phylogroup B2 as 
carrying virulence genes associated with UPEC strains, which would 
corroborate that B2 phylogroup strains, despite being commensal, 
would be able to become extraintestinal pathogens (18, 49).

Virulence plays a very important role in the interaction with the 
host, in UPEC it has been documented that the number of virulence 
factors is proportional to the pathogenic potential and would facilitate 
the colonization of the urinary tract (50–52). In this study, it was 
observed that virulence-related genes of uropathogenic strains were 
more prevalent (mean virulence score: 0.501994 ± 0.1673) among 
strains from patients with peUTI than in those associated with 
reUTI. These genes could be  associated with the ability of E. coli 
strains to resist in the urinary tract since it has been reported that the 
main genes associated with persistence are those related to adherence 
and iron uptake capacity (29, 53). Given the high prevalence of certain 
virulence factors in patients with peUTI, such as adhesins papA, papC, 
and fimH; those associated with iron uptake sitA, fyuA, irp-2, and Sat 
toxin (sat), whose cytotoxic and immunomodulatory effect has been 
associated with the survival and the potential generation of 
bloodstream infections and sepsis in producer strains (54), these could 
be used as a target for diagnosis or vaccine development, as proposed 
by Mobley and Alteri (55). On the other hand, it was observed that 
strains with classic UPEC serogroups and B2 and D phylogroups 
carried the highest number of virulence genes, similar observations 
documented by other authors (50, 56).

In the present work, employing immortalized HEp-2 larynx cell 
line, used as the gold standard to observe adherence patterns of 
diarrheagenic E. coli (57, 58), a low number of UPEC isolates showed 
diffusely adherent phenotype (59–61), although, in other works an 
adherence pattern of aggregative phenotype was reported (62). The 
ability of UPEC strains to adhere and invade bladder epithelial cells in 
the host has been related to the expression of different fimbrial adhesins 
(63). In this work, it was found adherent strains harboring fimH, papG, 
or papA, genes related to type I and type P adhesins, while the rest of 
the identified adherent strains could be associated with other adhesins 
such as type S, Curli and the aggregate-forming pili identified in hybrid 
UPEC/DAEC strains (63–66). In a previous study, we documented that 
E. coli strains could persist >6 months in the urinary tract of patients 
(14), a recent study by Hidad et al. (31) reported that E. coli strains were 
identified in their investigation for more than 1 year. In the present 
study, it was identified that 60% of the invasive strains were isolated 
from peUTI patients, associated with classical UPEC serogroups. 
Andersen et al. (67) reported that these UPEC strains can re-emerge 
from infected cells and invade adjacent cells.

Different studies indicate that cUTI (peUTI and reUTI) are 
associated with biofilm formation and antibiotic resistance (30, 
68–70). In this study, weak in vitro biofilm formation was observed, 
where only 36% of the strains were positive. However, a relevant 
aspect to note is the presence of the b allele of Ag43, related to good 
biofilm formation (71), identified in 83% of the producing strains. 
Although the result contrasts with that reported by other authors 
who mentioned a high percentage of biofilm-forming UPEC strains 
(69, 72), it is likely that the results we obtained are related to the 
technique used, in which we perform energetic washes that could 
be detaching the biofilm.

Antibiotic prophylactic treatment is common in patients with cUTI 
(73), this favors the selection of uropathogenic resistant strains especially 
to those used as first choice (74). Although the CLSI only recommends 
sensitivity to five compounds (cefazolin, sulfonamides, trimethoprim, 
fosfomycin, and nitrofurantoin) for UPEC strains (16), given the 
conditions in our country due to the indiscriminate use of antibiotics and 
the fact that these are enterobacteria, it was decided to test for sensitivity 
to 32 antimicrobials. The results in this regard showed MDR in E. coli 
strains isolated from both reUTI and peUTI, mainly those belonging to 
the penicillin family, cephalosporins, sulfonamides and trimetroprim, a 
similar result reported in other countries (31, 75, 76). However, the E. coli 
from peUTI and reUTI demonstrated >80% susceptibility to certain 
antibiotics (mecilanam, piperacillin-tozobactam, cefoxitin, meropenem, 
nitrofurantoin, amikacin, chloramphenicol, fosfomycin, and fosfomycin-
trometramol), which could be  used empirically, with exceptions, 
according to the Infectious Diseases Society of America (IDSA) criteria 
(77). Relevantly, this MDR capability has also been described in E. coli 
strains from the intestine, the main reservoir of UPEC, and an 
explanation of how this resistance is transmitted between E. coli strains 
to potential UPEC (78). It is because of the rapid spread of MDR bacteria, 
that WHO mentioned E. coli as a critical priority pathogen for the 
development of new treatments (1).

Different authors have mentioned blueberries, D-mannose, 
probiotics or surgical treatments in patients with urinary tract 
complications as potential treatment alternatives (74). In two 
prospective studies conducted previously by our group bacterial 
lysates (autovaccines, i.e., immunostimulants) were used, and the 
remission of the clinical picture and control of the infection for 
periods ranging from 6 to more than 18 months was achieved (13, 14). 
However, improvement was only observed in patients with reUTI, 
which again confirms the presence of some other properties in the 
strains that cause peUTI. Some other alternatives for the treatment 
and control of cUTI should be developed, in the laboratory we are 
working with lysates prepared with the strains that were most 
frequently isolated in the prospective studies carried out. The 
preliminary results obtained in an animal model are encouraging; 
however, there is still a long way to go.

According to the results, the strains isolated from peUTI patients 
are professional bacteria in the generation of cUTI, with genetic and 
phenotypic characteristics of uropathogenic strains, however, the 
strains isolated from patients with reUTI correspond to strains of 
E. coli from the intestinal biota that have acquired part of the genetic 
information that allows them to reach the Urinary Tract and produce 
UTI but do not remain permanently. This is why they can 
be eliminated with antimicrobial treatment; however, due to factors 
related to the host, patients are reinfected but with a different 
microorganism each time, thus generating a reUTI.

TABLE 3 Biofilm formation and genes profile in E. coli isolates from peUTI 
and reUTI.

Gen Biofilm 
producers, 

n  =  29

Non-biofilm 
producers, 

n  =  51

Total 
n  =  80

fluA (Ag43a) 5 (17%) 3 (6%) 8 (10%)

fluB (Ag43b) 22 (76%) 8 (16%) 30 (37%)

fluA/fluB 2 (7%) 1 (2%) 3 (4%)

No genes 0 39 (76%) 39 (49%)
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