
Frontiers in Public Health 01 frontiersin.org

Deep-learning model for 
predicting physical fitness in 
possible sarcopenia: analysis of 
the Korean physical fitness award 
from 2010 to 2023
Jun-Hyun Bae 1, Ji-won Seo 2 and Dae Young Kim 3*
1 Able-Art Sport, Department of Theory, Hyupsung University, Hwaseong, Gyeonggi-do, Republic of 
Korea, 2 Department of Physical Education, Seoul National University, Seoul, Republic of Korea, 3 Senior 
Exercise Rehabilitation Laboratory, Department of Gerokinesiology, Kyungil University, Gyeongsan, 
Gyeongsangbuk-do, Republic of Korea

Introduction: Physical fitness is regarded as a significant indicator of sarcopenia. 
This study aimed to develop and evaluate a deep-learning model for predicting 
the decline in physical fitness due to sarcopenia in individuals with potential 
sarcopenia.

Methods: This study used the 2010–2023 Korean National Physical Fitness Award 
data. The data comprised exercise- and health-related measurements in Koreans 
aged >65  years and included body composition and physical fitness variables. 
Appendicular muscle mass (ASM) was calculated as ASM/height2 to define 
normal and possible sarcopenia. The deep-learning model was created with 
EarlyStopping and ModelCheckpoint to prevent overfitting and was evaluated 
using stratified k-fold cross-validation (k  =  5). The model was trained and tested 
using training data and validation data from each fold. The model’s performance 
was assessed using a confusion matrix, receiver operating characteristic curve, 
and area under the curve. The average performance metrics obtained from each 
cross-validation were determined. For the analysis of feature importance, SHAP, 
permutation feature importance, and LIME were employed as model-agnostic 
explanation methods.

Results: The deep-learning model proved effective in distinguishing from 
sarcopenia, with an accuracy of 87.55%, precision of 85.57%, recall of 90.34%, 
and F1 score of 87.89%. Waist circumference (WC, cm), absolute grip strength 
(kg), and body fat (BF, %) had an influence on the model output. SHAP, LIME, 
and permutation feature importance analyses revealed that WC and absolute 
grip strength were the most important variables. WC, figure-of-8 walk, BF, timed 
up-and-go, and sit-and-reach emerged as key factors for predicting possible 
sarcopenia.

Conclusion: The deep-learning model showed high accuracy and recall 
with respect to possible sarcopenia prediction. Considering the need for the 
development of a more detailed and accurate sarcopenia prediction model, the 
study findings hold promise for enhancing sarcopenia prediction using deep 
learning.
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1. Introduction

Sarcopenia is a severe health problem characterized by a reduction 
in muscle quality and quantity (1–4), leading to a decline in physical 
fitness and strength. The reduced quality of life and diminished 
functionality are the primary concerns associated with sarcopenia (2), 
which can increase societal costs and individual health concerns 
(5–7), thereby highlighting the importance of early prevention and 
treatment for sarcopenia.

A decline in physical fitness has been shown to be highly related 
to the incidence and mortality of sarcopenia (8). Previous studies 
reported that a lower level of absolute grip strength (upper strength) 
(9), lower level of strength on the chair sit-and-stand test (10), lower 
level of flexibility on the sit-and-reach test (11), lower level of 
cardiorespiratory endurance on the 2-min step test (12), lower level of 
balance on the 3-m timed up-and-go (TUG) test (13), and lower level 
of coordination on the figure-of-8 walk test (14) were highly associated 
with the diagnosis and prediction of sarcopenia. However, accurately 
measuring various aspects of physical fitness and understanding how 
they influence each other and contribute to the risk of sarcopenia 
remains a significant challenge in predicting sarcopenia.

Deep neural network (DNN) and machine learning (ML) 
algorithms have been proposed to overcome the challenges in 
accurately predicting sarcopenia using blood markers and skeletal 
muscle images (7, 11, 15–20). On the one hand, an ML model based 
on support vector regression, decision tree, random forest regression, 
or extreme gradient boosting has been used to predict physical fitness 
variables in older adults (15, 17, 20). On the other hand, a deep-
learning-based model has been utilized to analyze computed 
tomography images and predict sarcopenia, and this model has also 
been reported to effectively predict the quality and strength of muscles 
in patients with cancer (21). Furthermore, a previous study developed 
a deep-learning-based sarcopenia prediction model (wide and deep) 
using clinical laboratory markers (22), which demonstrated high 
accuracy (area under curve [AUC] score), as compared with that of 
ML model prediction methods (support vector regression, random 
forest regression, and extreme gradient boosting). Additionally, deep 
learning applications in healthcare are rapidly evolving (23–25), with 
significant advancements in sarcopenia classification models using 
computed tomography (CT) (23). Several studies have used ML 
models to predict sarcopenia using laboratory markers and muscle 
mass measurements or images, without incorporating physical fitness 
variables (24, 26). Therefore, many subjects with sarcopenia are 
required to analyze and predict deep-learning models of the details of 
physical fitness variables.

Physical fitness is regarded as a significant indicator of sarcopenia. 
Nonetheless, previous studies have attempted to predict sarcopenia by 
measuring only the muscle quantity and blood markers without 
physical fitness (7, 11, 15, 18, 22). Applying a deep-learning model 
could provide an accurate approach to predicting sarcopenia by 
analyzing physical fitness and its relationships. Additionally, the 
accurate prediction of sarcopenia is challenging without considering 
physical fitness as blood markers and muscle quantity alone are 
insufficient indicators. Therefore, the present study aimed to develop 
and analyze a deep-learning model for predicting the decline in 
physical fitness due to sarcopenia in individuals with potential 
sarcopenia. This research sought to accurately predict physical fitness 

using a deep-learning model and to propose effective preventive and 
treatment strategies against sarcopenia.

2. Materials and methods

2.1. Dataset

For this type of study, formal consent was not required. The 
dataset was approved by the Research Ethics Committee of Hyupsung 
University (IRB no: 7002320-202303-HR-001), and all methods were 
performed in accordance with the relevant guidelines.

The present study used the 2010–2023 Korean National Physical 
Fitness Award data. The data comprised exercise- and health-related 
measurements in Koreans aged >65 years and were collected from 19 
national fitness centers. The original Korean Fitness Award data were 
collected from Jan 2010 to Mar 2023 (n = 1,545,313), and the first stage 
excluded data from persons aged <64 years (n = 1,416,249). In the 
second stage, data of individuals with >20% missing values (n = 619) 
were excluded along with values > Q3 + 1.5*IQR or < Q1–1.5*IQR (Q, 
quartile; IQR, interquartile range; n = 20,141). The final sample size 
was a 108,304 participants (Figure 1). All participants voluntarily 
participated in the Korean National Physical Fitness Award Project 
through the national fitness center in each region. Body mass index 
(BMI, kg/m2), body fat (BF, %), and waist circumference (WC, cm), 
and physical fitness variables, such as absolute grip strength (kg), chair 
sit-and-stand up (counts), sit-and-reach (cm), 2-min step (counts), 
3-m TUG (sec), and figure-of-8 walk (sec) (7, 11, 18), were all 
measured in Koreans aged >65 years. Specific measurements were 
conducted by trained physical fitness instructors (27) and were 
performed on the basis of the Survey of National Physical Fitness (7, 
11, 18) and Development of National Physical Fitness Certification 
Standards for older adults (7, 11, 18). The analysis environment was 
Apple M1 Max with macOS Ventura 13.4, 32 GB RAM, and NVIDIA 
A100-SXM4-40GB. The analysis program was Google Colaboratory 
(Colab) with a cloud-based platform that offered high GPU for 
computing purposes, which was based on Python 3.10.11 (28).

2.2. Data variables and data collection

In this study, the appendicular muscle mass (ASM, kg) was 
quantified and estimated using high-quality anthropometric formulas 
(4, 6, 29). The ASM (R2 = 0.90, standard error = 1.35 kg) was calculated 
as 0.193*Weight (kg) + 0.107*Height (cm) – 4.157*sex (1 for male, 2 
for female) – 0.037*Age (years) – 2.631 (29). ASM/ht2 was calculated 
as a measure of ASM adjusted for the square of height in meters, and 
the ASM/ht2 value of the 20th percentile was used to define low 
muscle mass, similar to previous studies (1–3). In this study, low 
muscle mass was defined as an ASM/ht2 value of <6.54 for men and 
<5.14 for women. The 20th percentile was subsequently divided into 
two categories: normal (n = 103,546) and potential sarcopenia 
(n = 5,357). The binary dependent (normal vs. possible sarcopenia) 
variable was predicted using independent variables, including BF (%), 
WC (cm), and physical fitness measures such as sit-and-stand up 
(counts), 2-min step (counts), TUG (sec), figure-of-8 walk (sec), 
absolute grip strength (kg), and sit-and-reach (cm). Table  1 
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summarizes all variables of this dataset between normal and possible 
sarcopenia, whereas Figure 1 presents how the data were collected.

2.3. Statistical modeling

2.3.1. Data normalization and sampling
The data were normalized using MinMaxScaler to avoid 

overreliance on certain features while speed learning by restricting all 
variables to a range between 0 and 1. Datasets were also balanced via 
under-sampling using RandomUnderSampler by reducing 
oversampling between “possible sarcopenia” and “normal.”

2.4. Data analysis

2.4.1. Stratified k-fold cross-validation
In this study, the dataset was divided while maintaining the same 

class ratio, which is particularly effective for imbalanced datasets. Five 
equal-size groups (k = 5) were used, and the data were randomly 
shuffled; hence, each model underwent five independent training–
evaluation processes to ensure the reproducibility and reliability of the 
data results. Additionally, the performance metrics obtained from 
these processes were averaged to estimate the final performance of the 
model (30–32).

2.4.2. Model structure and compilation
In this study, a neural network model with four layers was created. 

The initial layer consisted of 64 nodes; for the initial layer, the rectified 
linear unit (ReLU) activation function was implemented as its activation 
function. The input data were organized as an eight-dimensional vector 
to accommodate for datasets with eight independent variables. A 
dropout layer was employed to prevent overfitting; as part of its learning 
process, this layer randomly deactivated 20% of nodes within this layer 
during each iteration to ensure that the model did not overrely on 

specific nodes and to help increase the generalization capability. The 
third layer comprised 32 nodes using the ReLU activation function. 
Finally, an individual node layer was equipped with the sigmoid function 
to produce probabilities between 0 (“normal”) and 1 (“possible 
sarcopenia”), catering specifically to binary classification problems. At 
the compilation stage, binary cross-entropy was utilized as the loss 
function, providing an appropriate measure for binary classification 
problems by quantifying differences between predicted and actual values 
of models. Adam optimizer was selected as the optimization algorithm 
owing to its adaptive learning rate adjustment that could enhance the 
learning speed and overall performance. Accuracy was selected as the 
performance metric for evaluating the precision of classification 
predictions. Subsequently, this model was employed to learn from 
training data at each step, followed by validation data performance 
evaluation. This process was iterated five times using a five-fold cross-
validation methodology (5, 33).

2.4.3. EarlyStopping and ModelCheckpoint
EarlyStopping monitors validation loss and halts the training 

when validation loss does not improve after a certain number of 
epochs (in this study, a patience parameter = 20). This strategy 
prevents overfitting because it stops the training when the performance 
of the validation set starts to degrade. Moreover, the weights of the 
model at its peak performance are restored by setting the best weight, 
thereby ensuring the retention of the best model instead of the final 
one when the training has ceased. ModelCheckpoint also monitors 
validation loss, with the model being saved at each time when 
validation loss decreases during training. This strategy preserves the 
best performing model after the training has been completed (34, 35).

2.4.4. Model training and test
Training data from each fold, as well as validation data, were used 

to train a model (80% of training data, 20% of validation data). The 
training processes were 200 epochs in length, with 16 batches of data 
per training run. During training, EarlyStopping and ModelCheckpoint 

FIGURE 1

This figure indicated how the data collection in this study. From original data from January 2010 to March 2023 was 1,545,313 subjects. This study 
conducted excluded data following the 2.2 Data variables and data collection section. The number of final data collection was 108,304 subjects.
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calls were employed to monitor validation loss during learning 
sessions. Once loaded onto the validation data, it was subsequently 
predicted using this model. Results were outputted as probabilities 
prior to binary classification using a threshold of 0.5% (36).

2.4.5. Model prediction and performance 
evaluation

The model’s performance was visually evaluated using a confusion 
matrix. Receiver operating characteristic (ROC) curves were 
constructed, and the AUCs were calculated. The average performance 
metrics obtained from each cross-validation were determined and 
outputted. Changes in the model’s performance were visualized on a 
graph showing accuracy, precision, recall, and F1 scores obtained from 
cross-validation (37, 38).

2.4.6. Model interpretability and explanation with 
SHAP, permutation feature importance, and LIME

After assessing the model’s performance, SHapley Additive 
exPlanations (SHAP) (39), permutation feature importance (40), and 
Local Interpretable Model-Agnostic Explanations (LIME) (41) were 
employed as model-agnostic explanation methods for evaluating how 
the model’s prediction worked, which provided insights into which 
features contributed the most toward making predictions to enhance 
the transparency and accuracy within models.

3. Results

3.1. Results for all variables between 
normal and possible sarcopenia

All variables showed statistically significant differences between 
normal (n = 102,919) and possible sarcopenia (n = 5,385). For the 

results, a negative t-statistic value suggested that the mean value was 
higher in possible sarcopenia than in normal. Statistically negative 
values were obtained for age (t = −41.67), gender (−48.04), sit-and-
reach (t = −12.38), TUG (t = −24.95), and figure-of-8 walk (t = −22.63), 
indicating that these variables were higher in possible sarcopenia 
(Table 1).

3.2. Results for multicollinearity using 
Pearson’s correlation, variance inflation 
factor, and tolerance

In this study, Pearson’s correlation (r) threshold >0.70, VIF 
threshold ≥5, and tolerance threshold ≤0.01 indicated 
multicollinearity; related features were subsequently removed. 
Pearson’s correlation coefficient of ASM/ht2 was >0.70 for weight and 
gender (Figure  2). The VIF and tolerance values for weight 
(VIF = 158.76, tolerance = 0.006) and gender (VIF = 114.64, 
tolerance = 0.009) were > 5 and < 0.1, respectively. Similarly, VIF and 
tolerance values for BMI (VIF = 162.80, tolerance = 0.006) and height 
(VIF = 90.68, tolerance = 0.011) were >5 and <0.1, respectively 
(Figure  2B). Pearson’s correlation coefficient for the absolute grip 
strength was 0.70; however, the VIF and tolerance values were 3.21 
and 0.311, respectively, suggesting that the absolute grip strength did 
not exhibit multicollinearity. Hence, in this study, weight, height, BMI, 
and gender were excluded as variables due to multicollinearity, and 
ASM was practically quantified using an anthropometric equation 
based on gender, age, weight, and height. Age was excluded from the 
deep-learning model. Therefore, this study included independent 
variables, including BF (%); WC (cm); and physical fitness measures 
such as sit-and-stand up (counts), 2-min step (counts), TUG (sec), 
figure-of-8 walk (sec), absolute grip strength (kg), and sit-and-
reach (cm).

TABLE 1 The results of differences between normal and possible sarcopenia.

Variables Normal (n  =  102,919) Possible sarcopenia 
(n  =  5,385)

t p-value

Age (years) 71.37± 4.77 74.18 ± 5.58 −41.67 0.000

Gender (M = 1/F = 2) 1.57 ± 0.50 1.90 ± 0.30 −48.04 0.000

ASM/ht2 (kg/m2) 6.75 ± 0.98 5.04 ± 0.50 126.59 0.000

Height (cm) 158.58 ± 8.13 151.75 ± 7.14 60.44 0.000

Weight (kg) 62.23 ± 8.39 45.27 ± 3.25 147.76 0.000

Waist circumference (cm) 84.67 ± 7.38 72.80 ± 5.12 116.61 0.000

Absolute grip strength (kg) 25.49 ± 7.79 18.98 ± 5.01 60.69 0.000

Sit and reach (cm) 10.63 ± 8.77 12.14 ± 7.97 −12.38 0.000

Body fat (%) 31.01 ± 7.40 25.80 ± 6.25 50.71 0.000

BMI (kg/m2) 24.73 ± 2.60 19.72 ± 1.61 140.04 0.000

Sit and stand (count) 20.70 ± 5.82 19.46 ± 5.71 15.26 0.000

2-min step (count) 110.43 ± 17.59 105.02 ± 19.23 21.89 0.000

TUG (sec) 6.01 ± 1.11 6.40 ± 1.24 −24.95 0.000

Fig-8 walk (sec) 24.60 ± 4.77 26.11 ± 5.24 −22.63 0.000

This table described the results of differences between normal (n = 102,919) and possible sarcopenia (n = 5,385). All statistical analysis was based on an independent t-test and the statistical ± < 
0.05. ASM/ht2, Appendicular skeletal muscle/square of height; BMI, Body mass index; 2-min step, 2 min step test; TUG, 3-m up-and-go test; Fig-8 walk, Figure-of-8 walk test.
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3.3. Results for the confusion matrix from 
the stratified k-fold cross-validation

Fold-1 had early stopping in 72 epochs (ROC-AUC, 0.95), with a 
train loss value of 0.2940, train accuracy of 0.8738, validation loss 
value of 0.2950, and validation accuracy of 0.8765 (Figure 3A). Fold-2 
had early stopping in 78 epochs (ROC-AUC, 0.94), with a train loss 
value of 0.2919, train accuracy of 0.8773, validation loss value of 
0.3048, and validation accuracy of 0.8649 (Figure 3B). Fold-3 had 
early stopping in 56 epochs (ROC-AUC, 0.94), with a train loss value 
of 0.2957, train accuracy of 0.8755, validation loss value of 0.2997, and 
validation accuracy of 0.8770 (Figure 3C). Fold-4 had early stopping 
in 127 epochs (ROC-AUC, 0.95), with a train loss value of 0.2914, 
train accuracy of 0.8766, validation loss value of 0.2853, and validation 

accuracy of 0.8760 (Figure 3D). Finally, Fold-5 had early stopping in 
71 epochs (ROC-AUC, 0.94), with a train loss value of 0.2921, train 
accuracy of 0.8747, validation loss value of 0.3065, and validation 
accuracy of 0.8709 (Figure 3E). The mean squared error from each 
fold was 0.0911, the mean average error was 0.1813, and average 
ROC-AUC was 0.9445 (Figure 3F).

3.4. Results for the deep-learning model 
from the stratified k-fold cross-validation

As shown in Figure 3F, the deep-learning model was trained and 
evaluated on our dataset using stratified k-fold cross-validation (k = 5). 
Biases in training and validation data were minimized by partitioning 

FIGURE 2

(A,B) described the multicollinearity in Pearson correlation, variance inflation factor (VIF), and tolerance. The Pearson Correlation (r) had a threshold 
over absolute 0.70, and then VIF threshold ≥5 and Tolerance ≤0.01 had multi-collinearity, and then remove the related features. A high density of blue 
color mean highly correlated in individual variables. const, constant of VIF and tolerance; ASM/ht2, Appendicular skeletal muscle/square of height; BMI, 
Body mass index; 2-min Step, 2  min step test; TUG, 3-m up-and-go test; Fig-8 Walk, Figure-of-8 walk test.

FIGURE 3

This figure showed the confusion matrix, AUC curve, and visualizing loss and accuracy for training and validation data in each fold. ROC-AUC, Receiver 
Operating Characteristic Curve—Area Under Curve. (A) Fold-1. (B) Fold-2. (C) Fold-3. (D) Fold-4. (E) Fold-5. (F) Predictive capabilities in the 
performance of classification (fold) models.
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the data into training and verification sets while preserving the overall 
distribution patterns. “Normal” and “possible sarcopenia” were 
differentiated using “0” and “1” as indicators of normality. Our 
performance metrics indicated that the model exhibited an accuracy 
of 0.8751, implying that the model made correct predictions in 87.51% 
of all cases and that the model accurately classified “normal” and 
“possible sarcopenia.” The precision score was 0.8523, indicating a 
high degree of precision in prediction for the positive class (“possible 
sarcopenia”). In other words, 85.23% of the instances predicted as 
“possible sarcopenia” were indeed correctly identified. The recall score 
for the model was 0.9075, highlighting the model’s ability to accurately 
identify a high proportion of actual positive cases. That is, the model 
was able to correctly classify 90.75% of all actual cases of 
“possible sarcopenia.”

The F1-score takes both precision and recall into account and is, 
thus, a useful metric for evaluating the balance between the two, with 
a high F1-score indicating good model performance. The F1-score for 
our model, which is the harmonic mean of precision and recall, was 
0.8790. As our model showed a high score of 87.9%, this model 
therefore exhibited overall high performance in classifying between 
“normal” and “possible sarcopenia.”

3.5. Results for SHAP, LIME, and 
permutation feature importance

The SHAP results indicated that WC, absolute grip strength, and 
BF had a high impact on model output (Figures 4A,B). Small WC, 
low absolute grip strength level, and low BF level were more likely to 
be indicative of possible sarcopenia [Figure 4A (left), with low values 
for features in blue color]. Specific SHAP feature importance values 
are presented in Figure  4A (right); WC showed the highest 
importance, with a SHAP value and prediction value of 0.2170 and 
0.8046, respectively. These results suggested that WC had the greatest 

impact on prediction. The second most important variable was 
absolute grip strength, with an importance value and prediction value 
of 0.1408 and 0.9845, respectively. The third most important variable 
was BF (%), with an importance value and prediction value of 0.1027 
and 0.2690, respectively. The SHAP values and prediction values of 
the remaining variables were as follows: figure-of-8 walk (importance: 
0.0265, prediction: 0.0002), TUG (importance: 0.0176, prediction: 
0.0655), 2-min step (importance: 0.0100, prediction: 0.8836), sit-and-
reach (importance: 0.0082, prediction: 0.9794), and sit-and-stand 
(importance: 0.0078, prediction: 0.1620).

The permutation feature importance results indicated that WC 
exhibited the highest importance in permutations, with an importance 
score of 0,1979 (standard deviation [SD]: 0.0048) (Figure  4B), 
suggesting that it had a significant impact on model predictions. The 
second most important variable was absolute grip strength, with an 
importance score of 0.1067 (SD: 0.0075), whereas the third most 
important variable was BF, with an importance score of 0.0668 (SD: 
0.0070). The permutation importance values of the remaining variables 
were as follows: 0.0075 for figure-of-8 walk (SD: 0.0020), 0.0040 for 
TUG (SD: 0.0017), 0.0038 for sit-and-reach (SD: 0.0015), 0.0037 for 
2-min step (SD: 0.0024), and 0.0024 for sit-and-stand (SD: 0.0020).

The LIME results revealed that WC (cm, 0.46) contributed the 
most to the prediction of possible sarcopenia (Figure 4C). A smaller 
WC exerted the greatest influence on prediction, followed by the 
figure-of-8 walk (sec, 0.07), BF (%, 0.06), TUG (sec, 0.04), and sit-and-
reach (sec, 0.03). These three variables contributed more to prediction, 
as their values increased with possible sarcopenia. Conversely, 
absolute grip strength (kg, 0.03) and sit-and-stand (counts, 0.01) 
contributed less to prediction because as the values of these variables 
increased, the prediction value (normal) decreased. Finally, sit-and-
reach (cm) was shown to make a weak positive contribution to 
prediction within a certain range.

The prediction value of probabilities was 0.89  in possible 
sarcopenia after LIME feature importance [Figure 4C (right)]. The 

FIGURE 4

This figure showed the model-agnostic explainable algorithms from the deep learning model. The (A) explained feature importance from Shapley 
Additive exPlanations (SHAP) in the best model. The blue color mean low level impact on the model, and red coler mean high level impact on the 
model. The (B) explained permutation feature importance in the best model. The (C) explained Local Interpretable Model-Agnostic Explanations (LIME) 
feature importance in the best model and used HyperText Markup Language (HTML). Grip strength, Absolute grip strength; 2-min Step, 2  min step test; 
TUG, 3-m up-and-go test; Fig-8 Walk, Figure-of-8 walk test.
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variables related to “possible sarcopenia” prediction in the model were 
WC (cm), figure-of-8 walk (sec), BF (%), TUG (sec), and sit-and-
reach (cm). The WC of values less than 0.18, which mean original 
values using MinMaxScaler, was 71.49 cm. Its value mean less than 
71.49 cm of WC values to be a possible sarcopenia. The figure-of-8 
walk (sec) of values were over 0.62, which mean 28.45 s in original 
value to be a possible sarcopenia. The range of BF (%) were over 0.34 
and less than 0.46, which mean over 23.96% and less than 29.16% of 
BF to be a possible sarcopenia. The TUG also had over 0.56, which 
mean 6.70 s in original value to be a possible sarcopenia. The sit-and-
reach (cm) had range over 0.57 to less than 0.68, which revealed 
13.91–19.36 cm to be a possible sarcopenia.

4. Discussion

The present study used a deep-learning model to predict sarcopenia 
and evaluated the performance of this model using stratified k-fold 
cross-validation (Figure 3). The average accuracy, precision, recall, and 
F-1 score of our model were 87.51, 85.23, 90.75, and 87.90%, respectively, 
suggesting that this model can accurately distinguish normal from 
sarcopenia cases. In this study, we  employed SHAP, LIME, and 
permutation feature importance methods to analyze feature importance. 
Through this, we found that WC (cm), absolute grip strength (kg), and 
BF (%) had the greatest impact on possible sarcopenia prediction, 
indicating that WC, absolute grip strength, and BF play a significant role 
in predicting possible sarcopenia and may be used to assess sarcopenia. 
Notably, WC emerged as the most important variable in predicting 
possible sarcopenia. These results can be supported deep-learning based 
model had diagnostic sarcopenia (22).

Our study used ASM/ht2 <6.54 (kg/m2) for men and <5.14 (kg/
m2) for women, which supported a similar pattern of cut-off values by 
the Asian Working Group for Sarcopenia (3). While an anthropometric 
equation was used in this study to estimate ASM, the results showed 
a similar pattern to the findings of previous studies using the criteria 
cut-off value (3, 4, 29). The results also supported that a DNN based 
on CT-based skeletal muscle measurement was highly related to 
sarcopenia prediction (14, 23, 25). Based on the previously established 
formula of ASM (29), this study found that the accuracy of the deep-
learning model in predicting sarcopenia was higher when using ASM/
ht2, thus, supporting the potential of using physical fitness measures 
to predict sarcopenia.

In a previous study on data from the Korea National Health and 
Nutrition Examination Survey (KNHANES) conducted from 2008 to 
2011, the dataset also suggested that the DNN had a significant impact 
on physical activity, BMI, and WC using SHAP analysis in the 
sarcopenia prediction model (26). The SHAP feature importance 
(Accuracy 84%) with the DNN model showed that WC and BMI had 
the highest impact on the DNN prediction model with physical 
activity level in daily life (26). Our results also indicated that WC and 
absolute grip strength were the most important features in predicting 
possible sarcopenia, which is a similar pattern of results that are able 
to explain the higher accuracy of the deep-learning model compared 
to that of the ML method.

Moreover, the same dataset of a previous study using Korean 
National Fitness Award from 2015 to 2019 indicated that DNN model 
represented the best performance among physical fitness variables 
(15–17). The study explained that including the grip strength variable 
as a marker of physical fitness improved the prediction of the DNN 

(Accuracy: 78.4%). Our deep-learning model revealed that absolute 
grip strength was the key variable factor in predicting possible 
sarcopenia (Accuracy: 87.55%); the accuracy improved by 9.15% in 
our study because of early stopping and using the model checkpoint 
method, which improved model performance and efficiency (42, 43).

Similar to previous study, our study used the same dataset and our 
deep-learning model was more valid through under-sampling method 
and stratified k-fold analysis (5, 31, 32, 44). The results supported our 
results, which revealed that WC (cm) and absolute grip strength had 
a high impact on the DNN model with SHAP, LIME, and permutation 
analysis (Figure 4). Moreover, WC prediction using models based on 
extreme gradient boosting was significantly important for 
epidemiology (6, 44); hence, our results suggested more details of WC 
with physical fitness and were similar to those of previous studies. 
When compared with our previous study, the result indicated that ML 
with CatBoost Regressor showed a good prediction of grip strength in 
older adults [Mean Squared Error (MSE) = 16.659]; among the seven 
ML models tested, it achieved the highest accuracy. However, in this 
study, the deep-learning model using stratified k-fold validation 
outperformed all others with the lowest MSE value of 0.0911. This 
result substantiated the superiority of the deep-learning approach over 
the ML approach in terms of accuracy (45).

Our study indicated that WC had a high impact on possible 
sarcopenia prediction (Figure 4). This result supported that sarcopenia 
was related to metabolic syndrome in men with normal WC and 
women with high WC and was predicted by abdominal obesity (46). 
Our SHAP and permutation feature importance analysis results also 
supported that WC contributed to the risk of sarcopenia with 
metabolic syndrome (46). The LIME analysis showed that WC had a 
value of less than 0.18 (original value = 71.49 cm) and the BF value 
ranging from 0.34 to 0.46 (original value = 23.96–29.16%) was related 
to possible sarcopenia. This result suggested that high WC and BF 
were significantly related to a lower incidence of sarcopenia (47). 
Moreover, the sarcopenia classification from an anthropometric 
method showed that WC was useful in screening for possible 
sarcopenia (48). This result supported our study, which considered the 
strong association of WC with the anthropometric method to predict 
possible sarcopenia. A previous study, who were in sarcopenia defined 
by the Asian Working Group for Sarcopenia (AWGS), showed only 
women with high WC and BF group had a lower incidence of 
sarcopenia (47). Our study also indicated that lower levels of WC and 
BF highly predicted possible sarcopenia (Figure 4A). When compared 
to the previous study, our study excluded gender variable in the results 
of multicollinearity (Figure 2), and the results of WC and BF from our 
study would change the importance factor within the gender 
difference. Furthermore, the deep-learning-based regression was 
useful for predicting grip strength in the upper strength by reducing 
the risk of musculoskeletal disorders (49). Our SHAP and permutation 
feature analysis results also supported that grip strength was the 
second most important variable for predicting possible sarcopenia. In 
addition, our deep neural prediction model had predicted that 
absolute grip strength had a high impact on predicting a possible 
sarcopenia (50). Grip strength was a valid and easy tool for early 
screening of sarcopenia (15–17, 51) and was highly related to physical 
fitness variables (15–17). Our study also demonstrated that the LIME 
analysis, as shown in Figure 4, indicated that the absolute grip strength 
ranging from 0.39 to 0.52 (original value = 19.71–25.68 kg) was 
associated with the normal group. Table 1 described the absolute grip 
strength in the possible sarcopenia group as 18.89 kg. A previous study 
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described that grip strength (kg) was more diagnostic of sarcopenia 
than the chair stand test (count) (52). Our results are consistent with 
this, showing grip strength to be the second most important variable 
for predicting possible sarcopenia, in comparison to other physical 
fitness variables. However, according to AWGS guidelines, the grip 
strength for diagnosing sarcopenia was less than 28.0 kg for men and 
less than 17.7 kg for women (53). Our results would consider the 
gender difference in absolute grip strength, the importance of grip 
strength in the AWGS criteria would change.

The present study has some limitations. First, the defined possible 
sarcopenia in this study based only on the anthropometric formulas 
(muscle mass only) without considering muscular strength and physical 
function. This fundamentally differs from the diagnostic criteria by 
AWGS, which considers muscular strength and physical function with 
muscle mass. Our findings may not fully reflect the broader aspects of 
sarcopenia as defined by the AWGS criteria. Therefore, this limitation 
should be considered when interpreting and applying the results of our 
study. Further studies are required to analyze direct measurements of 
ASM/ht2 with physical fitness. Second, future research may incorporate 
additional variables, such as physical activity level and nutritional status, 
to improve the accuracy of the estimation results. Third, the deep-
learning model used in this study showed relatively high accuracy, 
precision, recall, and F1 scores; however, these results do not preclude 
the possibility of model overfitting. While various cross-validation 
techniques were employed to mitigate this issue, such techniques cannot 
always completely prevent overfitting. Lastly, the results of this study 
indicated that WC, absolute grip strength, and BF play an important role 
in predicting sarcopenia. However, the measurement of these variables 
typically involves a complex process that requires professional training, 
which may limit their practicality in diagnosing and managing 
sarcopenia. Further research based on the results of this study is required 
to identify other variables that are easier to measure but can still provide 
meaningful information.

In conclusion, the results from stratified k-fold cross-validation 
indicated that our model exhibited high performance, with an average 
accuracy of 87.55%, precision of 85.57%, recall of 90.34%, and F1 score 
of 87.89%. These results suggest that this model can accurately classify 
the majority of normal and possible sarcopenia cases. Additionally, the 
SHAP, LIME, and permutation feature importance analysis revealed 
that WC, absolute grip strength, and BF had the greatest impact on 
model prediction for possible sarcopenia. WC, in particular, was 
deemed to be the most important variable. The deep-learning model 
exhibited high accuracy and recall in sarcopenia prediction, holding 
promise for enhancing sarcopenia prediction using deep learning. 
Nonetheless, there remains a need for the development of a more 
detailed and accurate sarcopenia prediction model. This would provide 
important insights for the prediction and management of sarcopenia 
and can be used in future research in this field.
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