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As the growing population of individuals residing or working in deep underground 
spaces for prolonged periods, it has become imperative to understand the 
influence of factors in the deep underground environment (DUGE) on living 
systems. Heping Xie has conceptualized the concept of deep underground 
medicine to identify factors in the DUGE that can have either detrimental 
or beneficial effects on human health. Over the past few years, an increasing 
number of studies have explored the molecular mechanisms that underlie the 
biological impacts of factors in the DUGE on model organisms and humans. 
Here, we present a summary of the present landscape of biological and medical 
research conducted in deep underground laboratories and propose promising 
avenues for future investigations in this field. Most research demonstrates that 
low background radiation can trigger a stress response and affect the growth, 
organelles, oxidative stress, defense capacity, and metabolism of cells. Studies 
show that residing and/or working in the DUGE has detrimental effects on human 
health. Employees working in deep mines suffer from intense discomfort caused 
by high temperature and humidity, which increase with depth, and experience 
fatigue and sleep disturbance. The negative impacts of the DUGE on human health 
may be induced by changes in the metabolism of specific amino acids; however, 
the cellular pathways remain to be elucidated. Biological and medical research 
must continue in deep underground laboratories and mines to guarantee the safe 
probing of uncharted depths as humans utilize the deep underground space.
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1. Introduction

As resources in the earth’s superficial layers become scarce, many counties have initiated 
efforts to explore and exploit the deep-underground space (1, 2). Deep coal mining has occurred 
in Poland, Germany, the United Kingdom, Japan, and France since the 1980s, and currently, 55 
coal mines have reached depths of over 1,000 m in China (3, 4).

Gaining insights into the effects of deep underground environment (DUGE) factors on 
living systems is essential for understanding the nature of the deep underground space and 
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implementing measures to protect the health of the humans that use 
the deep underground space (5). In 2018, Heping Xie advocated the 
need for deep underground medicine (DUGM), a multidisciplinary 
approach to exploring the physiological, pathological and 
psychological impacts of factors in the DUGE on humans (5). DUGM 
will identify detrimental factors in the DUGE and facilitate the 
development of efficient and secure methods to harness factors that 
are beneficial for life.

Research on factors in the DUGE is conducted in deep 
underground laboratories (DULs). Cosmic ray is reduced in DULs 
created under a rock overburden exceeding 1,000 m of water 
equivalent, creating a unique environment that allows investigations 
into rare occurrences in the fields of astroparticle physics and neutrino 
physics (6, 7). More recently, scientists have developed an interest in 
the biological impacts of low background radiation (LBR) on living 
organisms nurtured in DULs (6, 8). Currently, 12 DULs worldwide are 
engaged in biological research to elucidate the influence of factors in 
the DUGE on living systems (Figure 1).

Multiple experiments in DULs have revealed the notable 
detrimental impact of LBR in single-celled organisms (9). Since Prof. 
Xie proposed the concept of DUGM, an increasing number of DULs 
have extended their studies to multicellular organisms and started to 
explore the intricate molecular mechanisms that underlie the 
biological impacts of LBR (10, 11). Other studies are focused on the 
impact of factors in the DUGE on human physiological and 
psychological health. Here, we  present a summary of the current 
landscape of biological and medical research in DULs and propose 
promising avenues for future investigations in this field.

2. Characteristics of the DUGE

To effectively comprehend the biological impacts of DUGE on 
living organisms, it is necessary to describe the various environmental 

factors present, including radiation, temperature, humidity, and air 
pressure. The total background radiation level in DULs is 5–10 times 
lower than above-ground laboratories (Table 1). Natural background 
radiation comprises γ radiation, neutrons, muons, and radon gas. In 
DULs, γ radiation originates from nuclear decays of 222Rn and 220Rn 
and their daughter products in the rocks and atmosphere (21); 
neutron flux is usually low, resulting from the decay of uranium and 
thorium in rocks and building materials (22); muons are produced by 
the interaction of cosmic radiation with the Earth’s atmosphere, with 
the rocky cover of the DULs providing effective shielding (23).

One further contribution to the natural background radiation 
comes from radon decay products. Radon is a naturally occurring 
radioactive gas generated by the decay of uranium in rocks and soil, 
and its decay releases α particles into the air (24, 25). And the hermetic 
nature of underground mines allows for the significant accumulation 
of radon, which not only increases the natural background radiation 
but also has detrimental effects on the health of workers involved 
in  deep underground operations (26, 27). The World Health 
Organization has reported that radon gas was the second most 
significant cause of lung cancer after smoking (28). Besides, Rage and 
Richardson found that the incidence rate of lung cancer among deep 
underground uranium miners showed a positive correlation with 
cumulative radon exposure (29, 30). Therefore, it is necessary to focus 
on the levels and fluctuations of radon gas in the DUGE.

In addition to radiation, the temperature, humidity, and air 
pressure in the deep underground differ from above ground. Watson 
et al. (31) measured temperature change with increasing depth in 
mines and showed that temperatures increase by 3–5°C for every 
100 m of depth in the deep underground. Relative humidity and air 
pressure also rise with increasing depth (32). Our previous studies 
found that the humidity exceeds 90% at a depth of 600 m in the 
Erdaogou mine of Jiapigou Minerals Limited Corporation of China 
National Gold Group Corporation (CJEM) and the China Pingmei 
Shenma Group (CPSG) mine, which exceeds the acceptable maximum 

FIGURE 1

The location of DUGLs conducting biological research. SIMP, Simplon pass; WIPP, waste isolation pilot plant; CJEML, Laboratory of Jiapigou Minerals 
Limited Corporation of China National Gold Group Corporation; CJPL, Chinese Jinping Deep Underground Laboratory; DUSEL, Dusseldorf 
Underground Laboratory, United States; LNGS, the Gran Sasso National Laboratory; DULB-4900, the Baksan Neutrino Observatory; CPSG, China 
Pingmei Shenma Group; CNRS, Center National de la Recherche Scientifique; ANDES, Argentina Agua Negra Extremely Deep Underground Laboratory; 
and SNOLAB, Sudbury Neutrino Observatory Laboratory.
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relative humidity for humans (70%) (33, 34). Carbon dioxide and 
oxygen concentrations in the CJEM and CPSG are similar to above 
ground, due to appropriate ventilation (33, 34).

3. Biological research in the DUGE

Natural background radiation has influenced the evolution of 
life on Earth for almost 4  billion years (7, 35). The “linear 
no-threshold” (LNT) model presumes that every exposure to 
radiation comes with an increased biological risk, and posits that 
there is no safe level below which harmful effects are not 
experienced (36, 37). Nevertheless, an expanding body of studies 
have contradicted the existing model and suggested that the dose–
response relationship of cells and tissues under low radiation may 
not follow a linearity. Examples of phenomena that may deviate 
from the dose–response relationship include adaptive response and 
the bystander effects in cell populations (38). The former refers to 
the phenomenon where cells acquire resistance to the same or even 
higher doses of radiation after prior exposure to low doses of 
radiation (39, 40). The bystander effect suggests that cells exposed 
to low doses of radiation can affect non-irradiated cells through 
intercellular communication, which results in genomic instability 
and cellular damage (41). Current understanding of the biological 
effects of low radiation and LBR is limited. DUL provides a stable 
long-term chronic LBR environment, which contributes to refining 
the dose–response relationship of the LNT model and elucidating 
its underlying mechanisms (13, 42). At present, some DULs are 
conducting research on the biological effects of LBR in various 
organisms, including (i) unicellular organisms such as V79 cells, 
Shewanella oneidensis, and Deinococcus radiodurans and (ii) 
multicellular organisms such as Drosophila melanogaster, 
Caenorhabditis elegans, and Lake Whitefish. Research is focused on 
impacts of LBR on the growth, cellular functions, and phenotypes 
of the model organisms (Table 2).

3.1. LBR affects the growth of organisms

In 1964, Eugster indicated that when the cyanobacterium 
Mastigocladus laminosus was cultivated in the Simplon tunnel, it 
experienced mortality within a matter of week (8) (Figure 2). Planel 
et al. (43), Smith et al. (9), Kawanishi et al. (56), and Castillo et al. (44, 

45) showed significantly reduced growth rates of single-celled 
organisms cultured in DULs for 3–10 days. In comparison to parallel 
populations that were cultured above the ground; however, the growth 
rates of the single-celled organisms cultured in the DULs could 
be rescued by introduction of an exogenous radiation source that 
simulated natural background levels (9, 56). Liu confirmed this 
phenomenon when studying growth rates of mammalian cells for 
4–7 days in the CJEM (46, 47). Castillo et al. conducted a research that 
revealed no impact on the growth rates of Shewanella oneidensis when 
cultured in the Waste Isolation Pilot Plant (WIPP) for 4 days in New 
Mexico (45, 51). Satta et al. (48) found that V79 cells displayed normal 
growth rates when cultured in a DUL for 9 months, and Wadsworth 
et  al. (13) elucidated that growth rates of Bacillus subtilis and 
Escherichia coli were not affected after 7 days of incubation in a 
DUL. Castillo et al. (49) discovered that V79 cells cultured for 23 days 
under LBR in the WIPP had a higher and more variable number of 
cells and more heterogeneous cell populations compared to cells 
grown above ground.

In recent years, research in the deep underground has extended 
to multicellular organisms. Morciano et  al. (52) cultured the 
multicellular organism Drosophila melanogaster for 9 months in a 
DUL and found an increased lifespan but decreased fertility of adult 
males and females. Drosophila melanogaster cultured for five 
generations showed a stress response and chromosomal damage 
induced by exposure to LBR. This phenomenon had a cross-
generational effect (53). Van Voorhies et al. (11) found that egg-laying 
rates and larval growth were increased in Caenorhabditis elegans 
exposed to LBR for 8 months compared to those observed under 
normal background radiation levels. Pirkkanen et al. (10) showed no 
significant differences in hatching time or survival rates in lake 
whitefish reared in SNOLAB (2 km underground) for 4 months and 
on the surface; however, embryos raised underground were larger. 
The authors speculated that higher radon levels underground 
(100–150 Bq/m3) may potentially account for the notable increase in 
body size observed in embryos reared within the SNOLAB 
facility (57).

Although the different organisms maintained in LBR might 
exhibit different changes in growth, the single-celled organisms 
presented with growth inhibition in short time might be confirmed. 
Whereas, a few researches about multicellular cultures and longtime 
observation for single-celled organisms under LBR environment 
limited to get a solid conclusion, emphasizing the need for more 
precise long-term investigations (58).

TABLE 1 Components of background radiation in deep underground laboratories.

Laboratory name Depth γ flux Muon flux 
(cm−2 s−1)

Neutron flux 
(cm−2 s−1)

Radon 
(Bq  m−3)

Reference

WIPP 650 m 8.27 * 10−9Gy/h 4.77 * 10−7 6 * 10−8 7 (12)

Boulby 1,100 m 0.128 (cm–2 s–1) 4.5 * 10−8 1.7 * 10−6 (E. 0.5 MeV) 2.4 (13, 14)

SNOLAB 2,000 m 8.2 * 10−4 (m−2 min−1) 3 *10−10 9.3 * 10−6 120 (15)

LNGS 1,400 m 20nSv / h 3 * 10−8 3.78 * 10−6 50–120 (16)

CNRS 1,700 m 0.301 or 0.622 (cm–2 s–1) 4.7 * 10−9 5.6 * 10−6 15 (17)

DULB-4900 1,800 m 0.02Gy/h 3.0 * 10−9 3.8 * 10−7 0.85 (18)

CJEM 1,470 m 0.04 μSv/h NA NA 148 (19)

CJPL 2,400 NA 2*10−10 2.69 * 10−5 34–133 (20)
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3.2. LBR affects the function of organelles

Mitochondria are organelles surrounded by a double-membrane 
system that provide energy for the activities of eukaryotic cells (59). 

Mitochondrial reactive oxygen species (ROS) generated during both 
physiological and pathological conditions have the potential to inflict 
cellular damage (60, 61). Liu et al. found that mitochondrial volume 
increased and mitochondria were largely devoid of cristae in V79 cells 

TABLE 2 The different biological effects of low background radiation on different organisms.

Reference Laboratory Depth (m) Time Value of 
radiation 

dose (LBR vs. 
CBR; nGy/h)

Cultures Impact

(8) SIMP 2,000 A few weeks Not stated Mastigogladus I. Died

(43) CNRS 200 + 5 cm lead 10 days 11.4 vs. 188.4 Paramecium 

tetraurelia

Growth↓

(9) WIPP 650 75 h 2 vs. 31 Deinococcus 

radiodurans

Growth↓, HSP70↑

(44) WIPP 650 72 h 2 vs. 31 Shewanella oneidensis 

Deinococcus 

radiodurans

Growth↓, KatB↑, SOA0154↑, RecA↑, Dps ↓, 

GAPDH↓, and DnaK↑

(45) WIPP 650 77 h 2 vs. 31 Deinococcus 

radiodurans

Growth↓, DnaK↑

(12) WIPP 605 34 h 0.91 vs. 72.1 Deinococcus 

radiodurans

Growth↓, protein synthesis↓

(13) Boulby 1,100 7 days 0.5 vs. 112.5 Bacillus subtilis, 

Escherichia coli

Growth (−)

(46) CJEM 1,470 7 days 40 vs. 150 V79 Growth↓, mitochondrial volume↑, 

hypertrophic ER, ribosomal and 

spliceosomal protein pathway enrichment, 

oxidoreductase↓, UQCRH↑, ATP6V1G1↑, 

and DNA metabolic changes

(47) CJEM 1,470 4 days 40 vs. 150 FD-LSC-1 Growth↓, ribosomal and spliceosomal 

protein pathway enrichment, mitochondrial 

volume↑, hypertrophic ER, UQCRH↑, 

ATP6V1G1↑, and DNA metabolic changes

(48) LNGS 1,400 9 months 22 vs. 122 V79 Growth (−), GST (−), SOD↓, and HPRT 

mutation↑

(49) WIPP 650 23 days 0.91 (LB) vs. 35 (CB) 

vs. 72(UB)

V79 Viability↓, transcription-related genes↓

(50) LNGS 1,400 6 months 3.8 vs. 331.7 TK6 Growth (−), SOD↓, GSH-PX↓, and CAT↓,

(51) WIPP 640 4 days 0.16 vs. 71 Shewanella oneidensis Growth (−), protein synthesis↓

(52) LNGS 1,400 9 months 22 vs. 122 Drosophila 

melanogaster

Lifespan↑; fertility↓

(11) WIPP 650 8 months 15.6 vs. 67.4 Caenorhabditis elegans 

Nematode

Growth↑, egg-laying↑

(10) SNOLAB 2,000 4 months 11.55 vs. 68.04 Lake Whitefish Growth↑

(19) CJEM 1,470 2 days 40 vs. 150 V79 Growth↓, RNA metabolic changes

(53) LNGS 1,400 Five generations 22 vs. 122 Drosophila 

melanogaster

Chromosome breaks↑

(54) LNGS 1,400 8 months 22 vs. 122 V79 SOD, CAT, GSH-PX, GSSG-RX, and GST 

change

(55) LNGS 1,400 10 months 22.8 vs. 94.7 V79 GSH-Px↓, HPRT mutation↑

SIMP, Simplon pass; CNRS, Center National de la Recherche Scientifique; LNGS, the Gran Sasso National Laboratory; WIPP, Waste Isolation Pilot Plant; SNOLAB, Sudbury Neutrino 
Observatory Laboratory; CJEML, Laboratory of Jiapigou Minerals Limited Corporation of China National Gold Group Corporation; LBR, low background radiation; CBR, control background 
radiation; UB, underground background contains K-40; ER, endoplasmic reticulum; UQCRH, ubiquinol cytochrome c reductase hinge; ATP6V1G1, ATPase H+ Transporting V1 Subunit G1; 
SOD, superoxide dismutase; CAT, catalase; GST, glutathione transferase; GSSG-PX, glutathione peroxidase; GSSG-RX, glutathione reductase; and HPRT, hypoxanthine guanine 
phosphoribosyl transferase.

https://doi.org/10.3389/fpubh.2023.1249742
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zou et al. 10.3389/fpubh.2023.1249742

Frontiers in Public Health 05 frontiersin.org

and FD-LSC-1 cells cultured in a DUL compared to above ground (46, 
47) (Figure 3).

As a direct intracellular target of radiation, the endoplasmic 
reticulum (ER) is highly sensitive to changes in the internal 
environment (62). Mild ER stress initiates autophagy to restore ER 
homeostasis and protect cells from damage (63). Liu et al. showed 
that V79 and FD-LSC-1 cells, when cultivated in a DUL, had 
hypertrophic ER, obvious Golgi bodies, and downregulation of 
major ER stress proteins (WFS1, STT3B, CANX, ERP29, and 
HSPA5) compared to cells cultured above ground (46, 47). 
Transcriptomics demonstrated that differently expressed (DE) 
circRNAs in V79 cells cultured in the DUL or above ground were 
predominantly enriched in genes associated with protein processing 
in the endoplasmic reticulum (19).

Ribosomes are essential for protein translation and cell 
proliferation (64). Castillo et al. (51) found a downregulation of 
ribosomal proteins and tRNA genes in S. oneidensis deprived of 
background radiation compared to controls, suggesting a substantial 
decrease in protein translation. A similar observation was conducted 
by Liu et  al. who indicated alterations in protein expression 
associated with the ribosome pathway in V79 and FD-LSC-1 cells 
cultivated in a DUL compared to above ground. KEGG enrichment 
analysis of DE proteins showed that ribosome biogenesis and 
ribosomal proteins (RPS6, RPS14, RPS16, RPL8, RPL23, RPL3, and 
RPS18) played a key role in regulating cell growth in cells cultured 
in the DUL (46, 47).

Spliceosomes are essential organelles that play a pivotal role in cell 
growth by regulating gene expression (65). Liu et al. found that DE 
proteins between V79 and FD-LSC-1 cells and DE LncRNAs between 
V79 cells cultured in a DUL or above ground were significantly 
enriched in the spliceosome pathway (19, 46, 47).

Together, these data imply that mitochondria, the ER, 
ribosomes, and the spliceosome are involved in the stress and 
adaptive responses in cells exposed to LBR. The mechanism 
underlying the role of these organelles in cellular adaptation in a 
DUGE require further research.

3.3. LBR causes phenotypic alterations in 
organisms

3.3.1. Oxidative stress
Most biological research on LBR conducted in DULs has focused 

on cellular oxidative stress. Antonelli et  al. discovered changes in 
antioxidant enzyme activities [superoxide dismutase (SOD), catalase 
(CAT), glutathione peroxidase, reductase, and transferase (GSH-PX, 
GSSG-RX, and GST)] in V79 cells grown in the LNGS (54). Satta et al. 
(48) showed SOD activity was lower in V79 cells grown in LBR, as 
compared to those cultured in a standard environment for 9 months, 
while there was no difference in GST activity. Carbone et al. (50) 
found that SOD, GSH-PX, and CATase were reduced in human 
lymphoblastoid TK6 cells cultured in reduced compared to reference 
environmental radiation conditions. Smith et  al. (9) reported an 
increase in the expression of the heat shock protein 70 (HSP70) in 
primary human lung fibroblasts and bronchial epithelial cells cultured 
in reduced radiation levels compared to background. Fratini et al. 
found a decrease in cellular GSH-Px activity in V79 cells cultured for 
10 months in LBR, in comparison to cells cultured in a reference 
environment. This biological response did not revert in cells brought 
back to the reference-radiation environment for 6 months (55). 
Castillo et al. demonstrated that the oxidative stress-related genes katB 
and SOA0154 and the DNA damage-related gene recA were 
upregulated in S. oneidensis, while dps (DNA protection against ROS) 
and gapdH (ATP synthesis) genes were downregulated in Deinococcus 
radiodurans incubated in the WIPP for 76 h compared to background 
radiation control (44).

Liu et al. performed transcriptomic and proteomic analyses of 
V79 and FD-LSC-1 cells cultured in a DUL compared to above 
ground. Withdrawal of background radiation downregulated proteins 
enriched in oxidoreductase activity and the redox process (46) and 
upregulated ubiquinol cytochrome c reductase hinge (UQCRH) and 
ATPase H+ Transporting V1 Subunit G1 (ATP6V1G1) (46, 47). 
Transcriptomic analysis showed that the DE mRNAs between V79 
cells grown in the DUL or above ground were mainly enriched in 

FIGURE 2

Low background radiation in deep underground laboratories affects the growth of living organisms. The impacts of LBR in the DUGE on the growth 
patterns of single-celled and multicellular organisms.
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redox activity and redox processes, and the DE mRNAs of FD-LSC-1 
cells grown in a DUL or above ground were also enriched in 
SOD-related entities (19).

Together, these data imply that LBR in the DUGE could induce 
oxidative stress in cells. However, the core mechanism and target 
factors remain to be elucidated.

3.3.2. Defense against external factors
Satta et al. (66) found a higher frequency of radiomimetic induced 

recombination in S cerevisiae D7 exposed to recombinogenic doses of 
methyl methanesulfonatre grown in LBR compared to a standard 
environment. A subsequent study showed that V79 cells grown in LBR 
for 9 months exhibited enhanced susceptibility to cycloheximide-
induced apoptosis and had an increased frequency of mutations in the 
hypoxanthine guanine phosphoribosyl transferase (hprt) gene induced 
by γ-ray exposure compared to cells cultivated in normal background 
radiation (48). Similarly, Fratini et al. and Antonelli et al. observed an 
increased rate of spontaneous hprt mutations in V79 cells cultured in a 
LBR environment as opposed to a standard radiation (54, 55). Carbone 
et al. (50, 67) demonstrated that the degree of DNA damage and repair 
and management of ROS balance was different in TK6 cells exposed to 
2Gy X-ray irradiation in a DUL as opposed to a standard environment 
for 6 months. Castillo et al. (44, 45) showed upregulation of dnaK in 
D. radiodurans cultured in LBR compared to background radiation.

Together, these findings imply that LBR may increase the 
frequency of gene recombination and susceptibility of cells to 
damaging factors.

3.3.3. Metabolic responses
Metabolic processes involving DNA, RNA, and proteins control 

cell growth and proliferation. Metabolic processes in organisms 

exposed to LBR are altered. Castillo et al. found that protein synthesis 
was inhibited, reflected by a reduced number of ribosomes and 
downregulation of tRNA, and transcription of HSP genes was 
reduced, in D. radiodurans exposed to LBR environment as opposed 
to a reference environment (12, 51). In another study, Castillo et al. 
(49) used GO analysis to show that transcription-related genes were 
downregulated in V79 cells cultured in a DUL compared to above 
ground. Duan et al. (19) and Liu et al. (68) revealed an altered RNA 
profile compared to control, which may have negative impacts on 
metabolic processes, in V79 and FD-LSC-1 cells grown in LBR in the 
DUGE. Liu et al. performed proteomic analysis of V79 and FD-LSC-1 
cells cultivated in a DUL compared to above ground and 
demonstrated modifications in DNA replication, transcription, 
translation, and protein modification, which may be related to a LBR 
stress response (46, 47). Liu et al. (68) also showed that the TGF-β 
and Hippo signaling pathway and the cell proliferation-related genes 
SMAD, SMAD7, CDH1, EGR1, and BMP2 played key roles in the 
transcriptional regulation of FD-LSC-1 cells grown in an 
LBR environment.

Together, these data imply that living systems can perceive LBR in 
the DUGE and generate stress responses that result in changes to 
metabolic processes involving protein synthesis.

4. Advancing deep underground 
medical research

With the prospect of a growing number of individuals inhabiting 
and working in the deep underground space, some research been 
dedicated to exploring the effect of the DUGE on human pathology, 
psychology, and physiology.

FIGURE 3

Cellular responses to low background radiation in deep underground laboratories. The low background radiation can induce a stress response and 
affect the organelles’ function, defense capacity, oxidative stress, and metabolism of cells.
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In relation to human pathology, Strzemecka et  al. surveyed 700 
people working underground in the Bogdanka coal mine at a depth of 
1,100 m. They revealed that 50% of the miners perceived the microclimate 
in the mine, including high humidity and high temperatures, threatened 
their health (32). Meshi et al. reported that 78.4% of underground miners 
of the Mara gold mine in Tanzania suffered from moderate heat-related 
illness, manifested by high body temperature and hot and dry skin. The 
Mara gold mine is located in the tropics at a depth of 500 m and has an 
ambient temperature of 28.4°C and relative humidity over 58.2% (69). Liu 
et al. described the subjective perceptions and mental state of employees 
working in the CJEM (1,470 m) and CPSG (1,500 m). Moisture and heat 
were the most commonly perceived adverse factors in the deep 
underground spaces (33, 34).

In relation to human psychology, it is known that employees 
working for long periods in shallow coal mines suffer depression and 
anxiety (70–72). Liu et al. investigated the mental state of 496 miners 
who worked for long periods of time at a depth below 600 m in the 
CJEM and CPSG. Workers at both mines reported being easily 
fatigued and having trouble sleeping and waking up early in the 
morning (33, 34). In relation to human physiology, urine 
metabolomics analysis indicates that the DUGE induces specific 
changes in the metabolism of amino acids (L-phenylalanine, 
L-tyrosine, and L-glutamine) in humans (73).

5. Conclusion and perspective 
research in the deep underground

The utilization of deep underground resources and the 
development of deep underground spaces have become a major 
strategy for many developed countries. However, research suggests 
that the unique DUGE could induce a stress response in living 
organisms and be harmful to humans. Currently, knowledge about the 
DUGE is limited, making it difficult to support further development. 
In future, it is necessary to explore the biological impacts of LBR in 
the DUGE on living systems. DULs provide a unique platform where 
the biological effects of various components of radiation (radon gas, 
γ, etc.) and dose responses can be explored. Some data imply that 
mitochondria, the ER, ribosomes, and the spliceosome are responsible 
for a stress response in cells cultured in a LBR environment. However, 
the interconnections and feedback control between organelles and 
underlying molecular mechanisms remain unclear. Interestingly, LBR 
in the DUGE has an inhibitory effect on the proliferation of cancer 
cells, especially radiation-sensitive cancer cells, providing a potential 
new perspective for cancer control.

Some studies have shown that the DUGE affects human pathology, 
psychology, and physiology. Therefore, a comprehensive qualitative 

and quantitative assessment is imperative to accurately characterize 
the factors in the DUGE (rock, humidity, temperature, illumination 
etc.) and their potential advantageous or detrimental impacts on 
humans. Findings may inform strategies that facilitate human 
adaptation and habituation to the DUGE. The long-term consequences 
of exposure to factors in the DUGE in humans must be monitored, 
and cross-disciplinary research between DUGM and various clinical 
disciplines is required to support sustained development and 
utilization of the deep underground space.
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