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Background: The National Center for Biotechnology Information (NCBI) 
Sequence Read Archive (SRA) has amassed a vast reservoir of genetic data since 
its inception in 2007. These public data hold immense potential for supporting 
pathogen surveillance and control. However, the lack of standardized metadata 
and inconsistent submission practices in SRA may impede the data’s utility in 
public health.

Methods: To address this issue, we  introduce the Search-based Geographic 
Metadata Curation (SGMC) pipeline. SGMC utilized Python and web scraping to 
extract geographic data of sequencing institutions from NCBI SRA in the Cloud 
and its website. It then harnessed ChatGPT to refine the sequencing institution 
and location assignments. To illustrate the pipeline’s utility, we  examined the 
geographic distribution of the sequencing institutions and their countries relevant 
to polio eradication and categorized them.

Results: SGMC successfully identified 7,649 sequencing institutions and their 
global locations from a random selection of 2,321,044 SRA accessions. These 
institutions were distributed across 97 countries, with strong representation in the 
United States, the United Kingdom and China. However, there was a lack of data 
from African, Central Asian, and Central American countries, indicating potential 
disparities in sequencing capabilities. Comparison with manually curated data for 
U.S. institutions reveals SGMC’s accuracy rates of 94.8% for institutions, 93.1% for 
countries, and 74.5% for geographic coordinates.

Conclusion: SGMC may represent a novel approach using a generative AI model 
to enhance geographic data (country and institution assignments) for large 
numbers of samples within SRA datasets. This information can be  utilized to 
bolster public health endeavors.
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Introduction

Outbreak response and preparedness require the proactive 
collection of all available public health–related information. To this 
end, the National Center for Biotechnology Information (NCBI) 
Sequence Read Archive (SRA) is a public repository of DNA 
sequencing data (1), providing access to large amounts of genomic 
data generated from organisms representing all branches of life (e.g., 
human, animal, plant, and microbes), as well as metagenomic and 
environmental samples. These data can be  used to study the 
underlying causes of diseases, develop new treatments, track the 
spread of infectious diseases, and support outbreak responses.

Critically, for any dataset within the SRA, the potential for reuse 
or re-analysis to obtain deeper public health insights depends on the 
quality of both the genetic data and the associated metadata. Metadata 
refers to descriptive information that includes sample, experimental 
and/or data processing details (2). Accurate and complete metadata 
are essential for enabling public health authorities to understand the 
context of genetic data and assess possible relevance to public 
health concerns.

The quality of SRA metadata is generally considered to be high, as 
the NCBI makes substantial efforts to ensure completeness, 
consistency, accuracy, and correct formatting. However, like all large 
datasets, the SRA may contain errors and inaccuracies (3). These 
errors may arise from human mistakes (e.g., typographical errors, 
incorrect entries, missing information), technical issues (e.g., faulty 
data submission, transfer, or processing due to issues with the 
software, hardware, or network), and/or lack of standardization (e.g., 
expanded generation of user-defined properties and infrequent use of 
controlled vocabularies during data submission over time) (4, 5). As 
a result, SRA users may encounter absent or erroneous data across 
categories, including missing fields from data sources in the cloud, 
unclear synonyms, spelling variants, and heterogeneous sample data 
specification (2). These potential errors place the burden of 
responsibility on data users to carefully assess metadata quality and 
use the associated genomic data appropriately for public health 
related situations.

A potential gap within SRA datasets that may limit their 
application for public health research relates to the geographic location 
of the sequencing institutions from which the data were obtained. This 
information may not be readily available for every SRA sample but 
could be relevant to public health for several reasons. For example, 
sequencing institutions located in areas with a high burden of 
infectious diseases can play an important role in disease surveillance 
and outbreak investigations by quickly generating high-quality 
genomic data. Additionally, the availability of sequencing institutions 
located in a particular region can impact access to technology and 
resources for local researchers and public health practitioners. 
Moreover, sequencing institutions in a specific geographic region may 
have expertise in the types of diseases and pathogens prevalent in that 
area, with potential to inform the design and implementation of public 
health interventions, while ensuring they are culturally sensitive and 
ethically implemented. Lastly, the identification of laboratories with 
specific pathogens can support containment and inventory activities. 
For example, in the case of polio eradication, accurate identification 
of sequencing institutions that may possess potential polio infectious 
materials significantly enhances our ability to track and monitor the 
presence and transmission of the disease. Furthermore, such capability 

extends to scenarios where institutions unknowingly hold samples 
containing select agents or other high consequence pathogens; 
prompting further investigation by national authorities 
on containment.

To improve the usability of the imperfect SRA metadata for public 
health use, we  developed a Search-based Geographic Metadata 
Curation (SGMC) pipeline that utilizes cloud technology coupled with 
ChatGPT. Newly emerging generative Artificial Intelligence (AI) 
technologies, like ChatGPT, are revolutionizing various fields, 
including public health research (6–8). These systems employ natural 
language processing and machine learning techniques to generate 
human-like text. We then applied this tool to identify the geographic 
location for 2,321,044 randomly selected and non-redundant samples 
in the SRA. Finally, we illustrate how SGMC can be used to uncover 
regional disparities in sequencing capability and support polio 
containment efforts. Although several strategies for curating existing 
metadata are currently being intensively studied (2, 5, 9, 10), to our 
knowledge, this is the first work to (1) determine the geographic 
locations of sequencing institutions in the SRA via cloud and 
ChatGPT, (2) apply the curated location information to elucidate 
disparities in global sequencing capability, and (3) highlight the 
potential application of SRA data for polio containment. Ultimately, 
we hope that this work will inspire further efforts to develop tools for 
enabling the use of publicly available genetic databases for improving 
human health.

Methods

To develop a computational tool for identifying the geographic 
location of any randomly selected SRA dataset, we constructed the 
SGMC pipeline using the SRA in the AWS cloud via Athena as of 
April, 2023 (11), Python v3.10.6, ChatGPT GPT3.5-turbo (12) and R 
v4.0.4 software. Our general workflow is described below and in 
Figure 1, and the source code can be found at https://github.com/
CDCgov/PASS/tree/master/SGMC. This activity was reviewed by 
CDC, deemed not research, not involving human subjects, and was 
conducted consistent with applicable federal law and CDC policy.1

Dataset description

Our dataset included 2,321,044 metadata entries with unique 
accession numbers randomly sampled from the public SRA database. 
A list of all accession numbers for the data used in this study can 
be found on GitHub. The data were checked for redundancy, and none 
was detected. Each metadata entry associated with a genetic dataset is 
broken up into attribute–value pairs, where the attribute specifies the 
metadata type (e.g., center name, sequencing technology, release 
dates), and the values are the corresponding metadata associated with 
that type. In this study, the determination of a sequencing institution 
is based on the value of the “center name” attribute that corresponds 
to a specific accession number found in the SRA metadata.

1 See e.g., 45 C.F.R. part 46.102(l)(2), 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 

U.S.C. §552a; 44 U.S.C. §3501 et seq.
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FIGURE 1

Visual representation of the Search-based Geographic Metadata Curation (SGMC) pipeline and results from the dataset analyzed in this study. The 
components of the SGMC pipeline were highlighted with a light gray shade, while additional analyses were represented through dotted lines and 
boxes.
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Pipeline

Our pipeline is a Python-based information-retrieval application 
that includes four main steps: (1) data retrieval, (2) web scraping, (3) 
institution identification, and (4) location identification.

Data retrieval via AWS cloud API

The Python script retrieves data from the NCBI SRA, which is 
accessed from the AWS via Athena. NCBI SRA metadata are available 
at s3:/sra-pub-metadata-us-east-1. Athena then uses the AWS Glue 
(crawler) service to generate tables from the metadata, allowing us to 
collect “center names” (CN; i.e., the possible institution where the 
sequencing was performed) for each accession number provided in 
a query.

Web scraping

A web scraping method was implemented to obtain additional 
information from the NCBI webpage. During this step, three publicly 
available Python libraries (i.e., requests, BeautifulSoup, and pandas) 
and accession numbers (as unique keys) are used to fetch information 
in the “submitted by” (SB), “BioSample submission” (BS), and 
“BioProject submission” (BP) fields for each SRA accession. This 
process produces HTML-formatted data that were unavailable in the 
AWS Athena SRA metadata. An advantage of using web scraping is 
that it can extract information that may not be directly available in the 
SRA metadata but is available through NCBI’s website. Users can 
choose their favorite tool to retrieve additional information regarding 
the sequencing lab and are not required to use the web scraping 
methods in the pipeline.

Prompt engineering for large language 
models

ChatGPT (i.e., OpenAI GPT-3.5) with default parameters was 
then used as an automated process to assign institution name, 
country, and geographic coordinates (latitude and longitude). 
Specifically, we input the extracted CN, SB, BS, and BP data related 
to each accession number into the ChatGPT model. The SGMC 
pipeline automatically generated and posed questions to 
ChatGPT. These questions not only aimed to discern the institution 
name, country, and geographic coordinates from these data but also 
included filtering and constraining instructions. Recognizing the 
presence of common occurrence filler words and abbreviations 
(e.g., generic database names rather than submitter’s names) in the 
database, we  instructed ChatGPT to manage these and to seek 
alternative answers by filtering through other provided data. This 
ensured a more accurate institution name assignment. The AI 
model’s reliability was further bolstered using a retry mechanism, 
which would attempt up to three times with 60-s intervals if an 
initial request failed. The AI’s responses were appended to a result 
list, and upon reaching a partition size of 1,577 rows, data were 
saved to a file. Decisions around partition size and retry functions 
were driven by factors such as network connection, memory, and 
system performance.

An example of location determination that requires the 
sophistication of ChatGPT is the commonly used abbreviation “CAU,” 
which could be  assumed to refer to Clark Atlanta University in 
Georgia, US. However, in the SRA metadata for accession 
SRR11871784, “CAU” refers to China Agricultural University in 
Beijing, China. Instead of solely relying on “CAU” to determine the 
location, it’s straightforward to instruct ChatGPT to utilize additional 
BioSample metadata associated with the accession. This metadata may 
include the details such as submitter’s name, the full name of the 
institute, or partial information related to geographic location, in the 
CN, SB, BS, and BP fields.

Data analysis and accuracy evaluation

Output from SGMC (i.e., institute name, country, and geographic 
coordinates) was compared to results from manual curation of the 
data submitted to the NCBI from the United States (US), performed 
by subject matter experts (SMEs) at the Centers for Disease Control 
and Prevention (CDC), as the gold standard. Four distinct descriptors 
were assigned to each pairwise comparison of institute, country, and 
coordinates from SGMC and SMEs. “Concordant” (Table  1) was 
defined as the situation in which SGMC identified the same institute, 
country, or coordinates as the manual curation process. Comparisons 
for which the output was not the same were labeled “Discordant.” If 
SGMC was unable to identify the institute, country, or coordinates, 
the SGMC output was labeled “More Information Needed.” The label 
“collaboration” was applied in situations where collaboration across 
institutes was observed during the SRA submission process, and 
SGMC identified one of the collaborating institutes that was not 
chosen by manual curation.

Subgroups or multiple projects from a particular institute were 
merged under a single institute name. For example, CDC/Division of 
Healthcare Quality Promotion, CDC/Division of Bacterial Diseases, 
CDC/Pathogen Discovery and Detection Team, and CDC/National 
Center for HIV, Viral Hepatitis, STD, and TB Prevention were 
combined as CDC. Accessions that could not be identified by SGMC 
(i.e., “More Information Needed”) or were assigned the institute 
NCBI, European Bioinformatics Institute (EBI) (13), or Gene 
Expression Omnibus (GEO) (14) were re-run with the prompt to not 
include any variations of NCBI, EBI, or GEO as the listed institute. R 
was used to create heatmaps for the United States and world to display 
the number of samples submitted by each U.S. state and each country.

Results

Dataset

A flow chart illustrating the extraction and analysis process for the 
metadata analyzed in this study is provided in Figure 1. The original 
dataset included 2,321,044 accession numbers. Of these, 27,140 were 
missing center names and were excluded from further analysis. 
Among 2,293,904 accession numbers with center names, accession 
numbers associated with identifying center name information were 
isolated, and identifying data were condensed to 7,115 unique center 
names. Additionally, 540 more unique center names were extracted 
from 420,377 GEO accessions, resulting in a total of 7,655 unique 
center names. SGMC next employed ChatGPT to enhance the 
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accuracy of the sequencing institution, country of origin, and 
geographic coordinates. This process resulted in confirming 7,649 
refined sequencing institutions with 6 unique center names unable to 
be identified by both ChatGPT and manual curation, leaving a total 
of 7,649 unique and identifiable centers.

Mapping sequencing institutions 
worldwide and in the United States

SGMC was used to map identified geographic locations of 
sequencing institutions on the world and U.S. maps. Samples in this 
dataset were sequenced in 97 countries worldwide, with 42.2% 
(1,001,358) submitted from the United States (Figure 2). Following the 
United States, the United Kingdom and China generated the highest 
number of sequenced samples, 462,164 and 279,322, respectively. 
Almost all countries in North America, Western Europe, and South-
East Asia submitted sequenced samples. However, data were lacking 
from many countries in Africa, Central Asia, and Central America. 
The country with the greatest number of centers submitting data to 
NCBI was China with 2,043 centers, followed by the United States 
with 1,525 and Germany with 445 (Figure 2).

All 50 U.S. states and Washington, D.C. were represented among 
the submitted samples in this dataset. The number of institutions and 
submitted samples varied by state (Figure 3). California had the most 
data submitted to NCBI with 195,144 accessions. Maryland submitted 
the second most with 137,456 accessions, and Massachusetts was 
third, submitting 125,148 accessions. Similarly, California had the 
largest number of centers submitting data to NCBI with 102 centers, 
followed by Maryland and Massachusetts with 56 and 55 centers, 
respectively. In total, 36 states had 1–10 institutions submit to NCBI, 
11 jurisdictions (10 states and Washington, D.C.) contained 11–50 
submitting institutions, 3 states had 51–100 submitting institutions, 
and only 1 state had more than 100 institutes submit to NCBI. Overall, 
these findings highlight the potential for the SGMC pipeline to 
uncover sequencing disparities, both globally and within large 
countries such as the United States.

Stratification of sequencing institutes

Furthermore, proof-of-concept analysis was performed to 
determine whether the data generated by our SMGC pipeline could 

be used for global public heath, focusing on polio eradication efforts. 
Sequencing plays a pivotal role in ongoing polio eradication efforts. 
Therefore, it becomes crucial to identify the geographical locations 
where genetic sequences are being generated, particularly if they are 
originating from labs outside the known Global Polio Laboratory 
Network (GPLN) sequencing facilities (15). By identifying these 
additional sources of sequencing data, we can gain valuable insights 
into the global landscape of sequencing efforts, which aids in 
enhancing surveillance, response strategies, and resource allocation to 
ensure the successful eradication of polio.

The 97 countries with 7,649 sequencing institutes in this dataset 
were stratified into the following categories: tropical countries2 
(n = 39), lower-middle-income and low-income countries3 (n = 21), 
and polio-endemic, outbreak, and at-risk countries4 (n = 14). The 
remainder were not considered tropical, lower-middle-income and 
low-income, or at-risk for polio (Supplementary Figure S1). These 
results suggest that SGMC may be used to produce data that associate 
national disease status at a global scale.

SGMC pipeline evaluations

All SGMC outputs regarding sequencing institutions located were 
manually curated results from SMEs but the accuracy was determined 
based on U.S. data due to better-defined geographic information, easier 
accessibility, and fewer language barriers. The accuracy was evaluated 
based on the institution names, countries, and geographic coordinates 
identified (Table  1). For institution name, no obvious error was 
observed in the SGMC output; 94.8% (614 out of 648) of SGMC 
institution identifications were consistent with human curation, 
whereas 5% of the identifications were inconsistent with SME curation 
due to the involvement of multiple institutes in the SRA submission 
process. Analysis of country identifications based on institution names 
revealed that 93.1% of the SGMC identifications were consistent with 
human curation. Only 0.5% of the country identifications from SGMC 

2 Tropical and non-tropical countries were defined in Phalan et al. (16).

3 High-income, upper-middle-income, lower-middle income and 

low-income countries were defined by United Nations (17) and according to 

World Bank’s Country classification by income (https://datahelpdesk.worldbank.

org/knowledgebase/articles/906519).

4 Polio-endemic, outbreak, and at-risk countries were defined in GPEI (18).

TABLE 1 Accuracy analysis comparing SGMC results with human curation for institutions located in the United States.

Concordanta Discordantb More information 
neededc

Collaborationd

Institution name 614 (94.8%) 0 (0%) 0 (0%) 34 (5.2%)

Country 603 (93.1%) 3 (0.5%) 37 (5.7%) 5 (0.8%)

Geographic coordinates 483 (74.5) 34 (5.2%) 124 (19.1%) 7 (1.1%)

The number outside the parentheses in each table cell represents the entry count within that category, while the number within the parentheses represents the percentage of that count with 
respect to the total count in that row. For example, 614 (94.8%) means that out of 648 institutions, SGMC identified 614 institutes that are the same as those identified through manual 
curation.
aConcordant is defined as the situation in which SGMC identified the same institute, country, or coordinates as manual curation.
bDiscordant indicates disagreement between SGMC and manual curation.
cIf SGMC was unable to identify the institute, country, or coordinates, the output was grouped in the “More Information Needed” category.
dCollaboration describes the situation in which multiple institutes collaborated during the SRA submission process, and SGMC identified a collaborating institute that was not chosen by 
manual curation.
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pipeline were inconsistent with manual curation due to the presence of 
multiple locations worldwide for some centers. In these cases, SGMC 
incorrectly identified the location after being provided the submitter’s 
name. In 5.7% of cases, SGMC was unable to identify any country and 
required additional information, and for 0.8% of cases, the country 

identification was the location for a collaborator who did not perform 
the sequencing. For geographic coordinates, the consistency rate 
decreased to 74.5%, and the inconsistency rate rose to 5.2%. 19.1% of 
geographic coordinates were not able to be identified, and 1.1% of 
coordinates was the location for a collaborator. This pattern is expected 

FIGURE 2

Geographical distribution of the 2,321,044 million samples that were sequenced or submitted globally by each country. Countries that submitted more 
sequencing data are shaded in darker blue, and those with fewer submissions are in lighter blue. Countries that did not contribute any samples are 
white. The number of submitted accessions ranges from zero to 1,001,358 (United States). The size of the circle on each country represents the 
number of institutions that contributed samples, with larger circles indicating a greater number of submitting institutions. Countries that did not have 
any institutions contribute to the data do not have a circle. The number of submitting institutions in each country ranges from zero to 2,043 (China).

FIGURE 3

Geographical distribution of the 1,001,358 samples that were sequenced or submitted only in the United States by each state. States that submitted 
more sequencing data are shaded in darker blue, and those with fewer submissions are in lighter blue. The size of the circle on each state represents 
the number of institutions located in the state that contributed samples, with larger circles indicating a greater number of submitting institutions.
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given that inferring accurate geographic coordinates is more difficult 
than only identifying an institution.

Discussion

Pipeline

Many automated or semi-automated methods aim to standardize 
metadata by clustering or mapping to ontologies (19); however, 
collecting precise metadata about locations remains a laborious and 
error-prone process (2, 4). In this study, SGMC employed a semi-
automated technique that utilizes cloud and generative artificial 
intelligence approaches (i.e., ChatGPT) for the curation and update of 
geospatial metadata from the NCBI SRA. Our results show high 
consistency between SGMC results and human curation, suggesting 
the potential for SGMC to save human efforts, reduce errors, and 
enable scale-up of manual curation processes for improving the 
usability of public data.

By developing the SGMC pipeline, we hope to provide users with 
a flexible tool that can be readily customized to meet the needs of 
different users and studies. For example, the script could be modified 
to retrieve data from different sources or to use alternative natural 
language processing techniques [e.g., Google Bard (20, 21) and Fuzzy 
methods (22)] for data analysis. In addition, the output format of the 
extracted data could be modified to suit the user’s needs.

Data quality

For an accurate understanding of the geographical distribution of a 
given event involving specimen sequencing, it is helpful if location 
metadata are accurate and up to date. Prior to this study, the accuracy 
and completeness of the SRA metadata with respect to sequencing 
submitters’ institutions were unclear. Moreover, not all sequencing 
centers routinely provide this information, and the quality and 
completeness of the metadata can vary depending on the experiment and 
the individual submitter. For example, the geographic location of 
sequencing centers submitting their samples to the SRA can be provided 
in various ways, such as through the name of the institution or the city 
and country where the sequencing center is located.

Of note, the 94% consistency observed between SGMC sequencing 
institution results and those obtained from manual curation suggests 
that the quality of SRA data for U.S. institution identification purposes 
is high. Consistent with this interpretation, we found that within our 
dataset, the rate of missing institution names for SRA accessions was 
very low (<2%).

Public health implication for global 
sequencing capability

One immediate application of using the SGMC pipeline is to 
update understanding of the geographic distribution of sequencing 
centers that are available to share data with the public during a global 
health crisis. Unfortunately, the current dataset reveals an unequal 
distribution of sequencing technologies and resources across the 
world. The global burden of infectious disease is disproportionately 
carried by low- and middle-income countries, whereas advanced 

sequencing techniques for disease surveillance are primarily available 
in wealthier nations (23). Accordingly, some countries appeared to 
be  overrepresented among the submitting sequencing centers 
identified in this study. Our findings suggest this global imbalance 
could be the result of differences in genomic capacity. Specifically, lack 
of sequencing capability (and diagnostic capacity in general) in low- 
and middle-income countries may contribute to their higher disease 
burden and poorer health outcomes.

Public health implications related to 
infectious material containment and 
surveillance

Another immediate application of SGMC is in support of disease 
containment and surveillance. Using polio containment as an example, 
we  note that the potential applications of the public sequencing 
archive outside the scope of the GPLN have been understudied (24, 
25). Datasets within the SRA have the potential to provide additional 
information for strengthening polio surveillance and containment 
efforts outside the GPLN. For example, although most sequencing 
projects do not include poliovirus as a primary target, the incidental 
detection of poliovirus in any of those non-polio samples, e.g., by 
using metagenomic methods, can have a significant impact on public 
health. This is because identification of poliovirus in a polio-free area 
triggers additional surveillance efforts and an urgent outbreak 
response. Consequently, the identification of sequencing institutions 
is highly relevant to containment and surveillance activities. Our 
findings further suggest that use of the SRA for polio containment and 
inventory survey could be more beneficial in countries where more 
samples are sequenced. Importantly, containment efforts for other 
pathogens may also benefit from automated extraction of data in the 
NCBI SRA.

Limitations

This work has several limitations. First, descriptive statistics of 
geographic information for sequencing institutions in the SRA were 
limited to those randomly selected by a specific date in April 2023. 
Given that the SRA database is continually subject to changes or 
updates, re-running the SGMC pipeline in the future may provide new 
insights. Second, it may not always be  appropriate to infer the 
sequencing capability of a particular country or region based on the 
SRA database alone, since some researchers may submit their data to 
repositories not fully connected to the U.S. NCBI [e.g., Genome 
Sequence Archive in China (26)], or they may choose not to share the 
data at all. However, U.S. NCBI is part of the International Nucleotide 
Sequence Database Collaboration (INSDC) (27) alongside the DNA 
Data Bank of Japan (DDBJ) (28) and the European Nucleotide Archive 
(29). Any data submitted to the three databases is accessible from the 
others. Thus, we expect that trends and patterns reported in this work 
reflect general sequencing capabilities on a global scale (30). Third, the 
non-deterministic nature of LLM outputs and the non-static nature of 
public models remain in practice. We  are not concerned in this 
preliminary report because the prompt question was specifically asked 
in a way that minimizes variation or possible answers to the questions. 
Sharing code on GitHub is intended to encourage users to adapt the 
code to their own understanding of non-static datasets. Finally, the 
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SGMC approach is semi-automated, as manual curation is still 
required to confirm results. For example, sequencing collaborators 
usually involved laboratories where sample preparation occurred 
before sending the sample to a sequencing institute. In cases where 
only one location can be used to track the geographic origin of the 
sequencing, additional efforts to gather information from other 
sources may be necessary, and the final decision regarding which 
location to use is subject to human determination. Regardless, 
we anticipate use of cloud-based databases and generative artificial 
intelligence tools, such as ChatGPT, for improved data management 
and productivity in future public health work. However, fully grasping 
the potential risks and limitations of these approaches is necessary to 
acquire a deeper and more precise understanding of the data and how 
they may be applied to the public health domain.

In summary, SGMC may represent a novel approach that employs a 
generative AI model to enhance geographic data (country and institution 
assignments) for large numbers of samples within SRA datasets. This 
information can be utilized to bolster public health endeavors.

Data availability statement

The datasets and code presented in this study can be found in 
online repositories. The names of the repository/repositories and 
accession number(s) can be found at: https://github.com/CDCgov/
PASS/tree/master/SGMC.

Author contributions

KZ: Conceptualization, Data curation, Formal analysis, Funding 
acquisition, Investigation, Methodology, Software, Writing – original 
draft, Writing – review & editing. KF: Data curation, Formal analysis, 
Software, Visualization, Writing – original draft. MM: Data curation, 
Formal analysis, Investigation, Methodology, Software, Writing – 
original draft. DA: Data curation, Methodology, Software, Writing – 
review & editing. KT: Investigation, Writing – review & editing. MO: 
Funding acquisition, Project administration, Resources, Writing – review 
& editing. CB: Conceptualization, Funding acquisition, Investigation, 
Project administration, Resources, Writing – review & editing.

Funding

The study was supported by CDC Office of Advanced Molecular 
Detection incubator project FY23-AMD-195inc and CDC program 
funds for Immunizations and the Global Polio Eradication Initiative.

Acknowledgments

The authors would like to express appreciation to CDC colleagues 
Gauri Adettiwar, Marta Gwinn, Gabriel Leventhal Douglas, Edward 
Ramos, Margaret Rohrbaugh, Margaret Okomo-Adhiambo, Aaron 
Curns, and Annabelle Xiong.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Author disclaimer

The findings and conclusions in this report are those of the 
authors and do not necessarily represent the views of the Centers for 
Disease Control and Prevention. The use of trade names is for 
identification only and does not imply endorsement by CDC or the 
U.S. Government.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpubh.2023.1254976/
full#supplementary-material

SUPPLEMENTAL FIGURE 1
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