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Background: Type 2 diabetes mellitus (T2DM) is a commonly observed metabolic

anomaly globally, and as of the present time, there’s no recognized solution. There

is an increasing body of evidence from numerous observational studies indicating

a significant correlation between gut flora and metabolic disease progression,

particularly in relation to T2DM. Despite this, the direct impact of gut microbiota

on T2DM isn’t fully understood yet.

Methods: The summary statistical figures for intestinal microbiota were sourced

from the MiBioGen consortium, while the summary statistical data for T2DM

were gathered from the Genome-Wide Association Studies (GWAS) database.

These datasets were used to execute a two-sample Mendelian randomization

(MR) investigation. The Inverse Variance Weighted (IVW), Maximum Likelihood,

MR-Egger, Weighted Median, and Weighted Models strategies were employed

to assess the impact of gut microbiota on T2DM. Findings were primarily

obtained using the IVW technique. Techniques like MR-Egger were employed to

identify the occurrence of horizontal pleiotropy among instrumental variables.

Meanwhile, Cochran’s Q statistical measures were utilized to assess the variability

or heterogeneity within these instrumental variables.

Results: The outcomes from the IVW analysis demonstrated that the genus

Alistipes (OR= 0.998, 95% confidence interval: 0.996–1.000, and P= 0.038), genus

Allisonella (OR = 0.998, 95% confidence interval: 0.997-0.999, P = 0.033), genus

Flavonifractor (OR = 0.995, 95% confidence interval: 0.993–0.998, P = 3.78 ×

10−3), and genus Haemophilus (OR = 0.995, 95% confidence interval: 0.993–

0.998, P = 8.08 × 10−3) all acted as defense elements against type 2 diabetes.

Family Clostridiaceae1 (OR = 1.003, 95% confidence interval: 1.001–1.005,

P = 0.012), family Coriobacteriaceae (OR = 1.0025, 95% confidence interval:

1.000–1.005, P = 0.043), genus Actinomyces (OR = 1.003,95% confidence

interval: 1.001–1.005, P = 4.38 × 10−3), genus Candidatus Soleaferrea (OR =

1.001,95% confidence interval: 1.000–1.002 P = 0.012) were risk factors for type

2 diabetes. False Discovery Rate correction was performed with finding that

genus.Allisonella, genus.Alistipes, family Coriobacteriaceaeand T2DM no longer

displayed a significant causal association. In addition, no significant heterogeneity

or horizontal pleiotropy was found for instrumental variable.

Conclusion: This MR study relies on genetic variation tools to confirm the

causal e�ect of genus Flavonifractor, genus Haemophilus, family Clostridiaceae1,

genus Actinomyces and genus Candidatus Soleaferrea on T2DM in the gut

microbiome, providing new directions and strategies for the treatment and early

screening of T2DM, which carries significant clinical relevance. To develop new
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biomarkers and better understand targeted prevention strategies for T2DM, further

comprehensive investigations are required into the protective and detrimental

mechanisms exerted by these five genera against T2DM.
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Mendelian randomized study, gut microbiota, type 2 diabetes, causal inference, genetic

variation

1. Introduction

As society progresses and living conditions improve, increased

obesity rates, declining air quality, and an aging population are

risk factors for a range of chronic metabolic diseases. One of

such a globally prevalent disease is diabetes mellitus (DM), which

includes type 2 diabetes mellitus (T2DM) (1). According to several

studies, the global prevalence of diabetes surpassed 460 million

adults in 2019. Furthermore, considering the current growth rate,

projections suggest that the number of individuals living with

diabetes will double by the year 2045 (2). As the prevalence of

type 2 diabetes continues to increase over time, complications

such as systemic macrovascular and microangiopathy can occur

if left untreated (3). This can place enormous economic pressure

on global health systems. Therefore, it is essential to explore

the pathogenesis of type 2 diabetes and the search for more

effective treatments.

Gut flora, the collective term for the vast microbial ecosystem

residing in our intestinal tract, boasts an impressive count of

roughly 40 trillion bacteria and a gene count that exceeds the

human’s by approximately 150-fold (4). Typically, the intestinal

flora, also known as the gut microbiota, maintains a dynamic

and harmonious relationship with both the host body and the

external surroundings. This intricate equilibrium remains constant

over time, reflecting the intricate interplay between the gut

microbiota, the human host, and the surrounding environment.

Nevertheless, any disruption to this balance could lead to

compromised host functions. It’s reported that nearly 95% of all

health conditions have some link to gut flora (5). This connection

extends beyond gastrointestinal and metabolic disorders, as the

gut flora is also implicated in various systemic ailments, including

neurological, respiratory, cardiovascular, and cancerous diseases

(6–11). The communication between the gut microbiota and the

host primarily occurs through various small molecular metabolites.

These metabolites, including but not limited to short-chain fatty

acids, bile acids, tryptophan, and amino acids, play a significant

role in influencing the progression of diseases. They serve as crucial

messengers in conveying signals and exerting effects on the overall

health and wellbeing of the host organism (12).

Recent studies have shown that in addition to poor dietary

habits and impaired islet function, intestinal flora disorders

may also contribute to T2DM (13), and that there are some

probiotics in the intestinal flora that can effectively control blood

glucose in patients with T2DM (14). Controlling for confounding

factors like age, gender, and lifestyle in previous observational

studies has been challenging, leading to less reliable and accurate

experimental outcomes.

The Mendelian Randomization (MR) employed in this

study serves as a tool for epidemiological scrutiny, which

gauges the link between genetic variants and outcomes

such as disease manifestation or mortality, based on genetic

alterations tied to exposure elements. Essentially, it utilizes genetic

information as a conduit to investigate the causal relationship

between exposure and outcomes. MR is a potent instrument

for making causal deductions, effectively circumventing the

confounding bias often seen in traditional epidemiological

research (15). In the context of this study, we employed

Single Nucleotide Polymorphisms (SNPs) as the instrumental

variables. By employing these SNPs, we were able to establish a

comprehensive mapping of the intricate relationship, shedding

light on the potential mechanisms underlying the development

of type 2 diabetes in relation to the characteristics of the

gut microbiota.

2. Methods

2.1. Data sources

In our research, we conducted two-sample MR analyses,

designating gut microbiota as the exposure and type 2 diabetes

as the outcome variable. The exposure data was sourced from

MiBioGen (https://mibiogen.gcc.rug.nl/), a consortium that

aggregates 16s ribosomal RNA (rRNA) gene sequencing and

genotyping information from 18,340 participants across 24

countries, including nations like the US and Canada. This

was performed on 131 gut microbiota genera exhibiting

mean abundances exceeding 1%, as per recent observational

investigations (12). According to a recent article summarized the

intestinal flora that may be associated with type 2 diabetes (13–15),

we opted for 6 families and 14 genera that are potentially linked

with type 2 diabetes to serve as an exposure factor in this MR study

(refer to additional documents 1 for more specifics). Our results

stem from consolidated data sourced from the IEU Open GWAS

database (https://gwas.mrcieu.ac.uk/datasets/ukb-b-13806/). The

data includes a European population with a comprehensive sample

size of 462,933, encompassing 2,972 individuals diagnosed with

type 2 diabetes and 459,961 control subjects. The total number

of SNPs was 9,851,867. The patients participating in the database

were ethically approved. By utilizing freely available data for our

research and publication, we successfully circumvented potential

ethical concerns and other potential conflicts of interest. Our study

leverages open-source data, thereby ensuring its freedom from any

ethical dilemmas or competing interests.
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FIGURE 1

The flow chart outlines the study design and the process of Mendelian randomization (MR) analysis. SNP stands for single nucleotide polymorphism,

which serves as the instrumental variables. IVW represents inverse-variance weighted, a method employed in the analysis.

2.2. Experimental design

In an effort to explore the cause-and-effect link between

intestinal microflora and T2DM, a bi-sample Mendelian

Randomization study was implemented, leveraging data from

the MiBioGen consortium and the compiled dataset from GWAS.

The instrumental variables (IVs) were initially subjected to a

screening process. For an IV to be utilized in MR, it had to

meet three primary assumptions: (1) Correlation: the SNPs were

robustly linked to exposure; (2) Exclusivity: the SNPs did not

correlate with the outcome; (3) Independence: the SNPs showed no

association with confounding factors (16–18). A pooling process

was conducted for SNP loci with P < 1 × 10−5, establishing a

linkage disequilibrium (LD) with r2 < 0.05 and a genetic distance

of 10MB, then SNPs with small P-values were chosen after echo

sequence SNPs were eliminated. This process ensured that IVs

fulfilled assumption (1). The potency of the IVs was gauged by

calculating the F statistic, using the formula:

F=

β2
exposure

SE2exposure

where in β denotes the effect size of the SNP on exposure and SE

represents β’s standard error.

An F statistic >10 was considered indicative of insignificant

weak instrumental bias. Subsequently, data were extracted from

both databases and compiled such that the impact values for

exposure and outcome corresponded to the same effect allele. The

identified SNPs linked with each genus underwent analysis via

various statistical methods to deduce causal associations between

gut flora and T2DM across the 6 families and 14 genera. Finally,

to fulfill MR assumptions (2) and (3), SNPs directly linked

to confounding factors and outcomes were excluded using the

phenoscanner website (http://www.phenoscanner.medschl.cam.ac.

uk/). Figure 1 offers a flow diagram outlining the study design and

the MR analysis procedure.

2.3. Statistical analysis

Within the framework of this research, a diverse array of

methodologies was employed to explore the potential causal

relationship between the gut microbiota and T2DM. These

techniques encompassed an assortment of approaches, including

but not limited to inverse variance weighted (IVW), Simple mode,

MR-Egger regression, weighted median (WM), and weighted

model (WME). The utilization of these multiple approaches

allowed for a comprehensive investigation into the prospective

causal linkages between the intestinal microflora and the
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occurrence of T2DM. Primarily, the IVW method was utilized as

a leading causal effect estimator in MR research, demonstrating

robust causal relationship detection and high testing efficacy

(19). However, the specific requirement of the IVW method is

that genetic variation influences the target outcome solely via

exposure under study. In the context of the MR-Egger method, an

intercept term is considered, and its presence is utilized to assess

pleiotropy. If the intercept term approaches zero, the MR-Egger

regression model aligns closely with IVW. But, if the intercept term

substantially diverges from zero, it indicates the possible existence

of horizontal pleiotropy among these IVs (19). The weighted

median method (WME) serves as a complement to MR-Egger,

offering unbiased estimations even when up to 50% of the weights

derive from invalid instrumental variables (20). Given that multiple

tests enhance the probability of type I errors, a false discovery rate

(FDR) correction was applied.

2.4. Sensitivity analysis

To confirm the dependability of our outcomes, we performed

sensitivity checks to gauge the sturdiness of the results, possible

biases (like genetic pleiotropy and data diversity), and the impact

of particular instrumental variables on the result variable (21).

The MR-Egger approach was utilized to evaluate the existence of

multiple-testing issues within the data, while the Cochran Q test

was employed to inspect for disparities among IVs, where larger

discrepancies signaled increased heterogeneity. The leave-one-out

technique was implemented to determine the impact of a singular

SNP on the outcome. This was accomplished by sequentially

excluding SNPs and then computing the combined effect of the

remaining SNPs, thereby gauging the extent of influence and

stability. In the context of this research, various techniques were

employed to explore the potential causal relationship between

the characteristics of the gut microbiota and the development of

type 2 diabetes. These methodologies included the utilization of

inverse variance weighted (IVW), Simple mode(SM), MR-Egger

regression, weighted median (WM), and weighted model (WME)

approaches. By leveraging this diverse set of methodologies, we

were able to comprehensively investigate the prospective causal

association between the intestinal microflora and the emergence

of type 2 diabetes. To present the results, the outcomes were

expressed as odds ratios (OR) accompanied by their corresponding

95% confidence intervals (95% CI). Statistical significance was

determined by a p< 0.05. All statistical computations for this study

were performed using version 4.3.0 of the R software, developed

by the R Foundation for Statistical Computing in Vienna, Austria.

Specifically, the MR study was conducted using the TwoSampleMR

package (version 0.5.6), which proved to be a valuable tool in

our analyses.

3. Results

3.1. Strength of genetic instruments

In our efforts to discern the causal influence of gut

microbiota on T2DM, we amalgamated SNPs following

a genome-wide significance criterion (P < 1 × 10−5),

established a linkage disequilibrium cutoff at 0.05, and

set a consolidation window at 10Mb. We also eliminated

palindromic sequences. Each instrumental variable (IV) boasted

an F-statistic exceeding 10, signifying the absence of weak

instrumental bias. Further details can be found in additional

documents 2.

3.2. Association of intestinal flora with
T2DM

We found two families and six genera to be causally associated

with T2DM using MR methods, as shown in Figures 2, 3,

Supplementary Table 1. After FDR correction and exclusion of

SNPs directly associated with body fat percentage, body weight, and

T2DM (rs1689282, rs8130320, rs6494306), IVW results showed

genus Flavonifractor (OR = 0.995, 95% CI: 0.993–0.998, PFDR
=0.040), genus.Haemophilus (OR = 0.995, 95% CI: 0.993–0.998,

PFDR =0.038), family.Clostridiaceae1 (OR = 1.003, 95% CI:

1.001–1.005, PFDR = 0.048), genus.Actinomyces (OR = 1.003,

95% CI: 1.001–1.005, PFDR = 0.038), genus.Candidatus Soleaferrea

(OR = 1.001, 95% CI: 1.000–1.002, PFDR = 0.038) were still

causally associated with T2DM. In contrast, genus.Allisonella (OR

= 0.998, 95% CI: 0.997–0.999, PFDR = 0.111), genus.Alistipes

(OR = 0.998,95% CI: 0.996–1.000, PFDR =0.127), and family.

Coriobacteriaceae (OR = 1.0025, 95% CI: 1.000–1.005, PFDR
= 0.124) were no longer causally significantly associated

with T2DM.

3.3. Sensitivity analyses

The Cochran Q test indicated no heterogeneity within the

instrumental variables, as the P-values for both the IVW and

MR Egger analyses surpassed 0.05. Moreover, the multi-allelic

assessment revealed no heterogeneity in the instrumental variables

as the P-value for all seven genera exceeded 0.05 (Table 1). The

leave-one-out exploration did not identify any SNPs significantly

influencing the correlation between the gut microbiome and

T2DM, as depicted in Figure 4.

4. Discussion

In this study, we executed a bi-sample Mendelian

randomization (MR) investigation, using data from the

MiBioGen consortium and the consolidated GWAS

dataset, to appraise the cause-and-effect relationship

between particular intestinal microflora and T2DM. We

identified two genera as protective factors for T2DM,

namely genus.Flavonifractor and genus.Haemophilus;

and three genera as risk factors for T2DM, namely

family.Clostridiaceae, genus.Actinomyces, and genus.

Candidatus Soleaferrea.

Numerous recent studies have consistently reported a strong

correlation between gut microbiota and type T2DM (13, 22–

24). Specifically, one study has identified ∼ 60,000 molecular
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FIGURE 2

The scatter plots above illustrate the causal association between gut microbiota and T2DM. The light blue, light green, dark blue, green, and pink

lines correspond to the Inverse Variance Weighted, Simple Mode, MR-Egger, Weighted Median, and Weighted Model methods, respectively.

markers associated with diabetes through conducting a genomic

association analysis of 345 genera in the gut flora. This underlines

the disparities in gut microbial makeup at the molecular level

between individuals with diabetes and those without the disease

(23). In this study, we identified genus.Flavonifractor as a

protective factor for T2DM. genus.Flavonifractor is an important

species affecting gut health and its abundance is negatively

correlated with obesity (25). Another related study reported that

genus.Flavonifractor is a butyrate producer (26). Butyrate is a

type of Short-Chain Fatty Acid (SCFA), which is an organic

carboxylic compound containing 1-6 carbon atoms. The human

body is primarily abundant with acetic acid (C2), propionic acid

(C3), and butyric acid (C4) as part of its SCFA composition

(27). These SCFAs have a regulatory role in various systems such

as gastrointestinal, neurological, endocrine, and hematological.

Numerous studies suggest that SCFAs have a crucial role in

preserving intestinal health and improving the outcomes of many

non-communicable illnesses, including cancer (28). It has been

found that SCFAs stimulate the release of glucagon-like peptide

1 (GLP-1) and peptide tyrosine-tyrosine (PYY) in rat and mouse

models (29). GLP-1 encourages insulin production, improves

insulin sensitivity, inhibits gastric emptying, and reduces gut

motility; PYY modulates gut motility, slows gastric emptying,

enhances satiety, and lessens food consumption (30). SCFAs can

also ameliorate insulin resistance by fostering the synthesis and

release of PYY and GLP-1 in the intestinal epithelial gland cells
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FIGURE 3

Forest plot of the causal association between gut microbiota and T2DM.

TABLE 1 MR estimates for the association between gut microbiota and T2DM.

Exposure Outcome Number of SNPs MR-Egger regression Heterogeneity analyses

Intercept P_intercept Method Q Q_pval

genus.Allisonella Diabetes mellitus type 2 8 −1.86× 10−4 0.71 MR-Egger 1.53 0.96

IVW 1.69 0.97

genus.Flavonifractor 3 1.04× 10−3 0.66 MR-Egger 0.98 0.32

IVW 1.32 0.52

genus.Haemophilus 4 2.63× 10−4 0.73 MR-Egger 0.11 0.95

IVW 0.26 0.97

family.Clostridiaceae 7 5.86× 10−5 0.91 MR-Egger 5.36 0.37

IVW 5.37 0.50

family.Coriobacteriaceae 8 −2.34× 10−4 0.70 MR-Egger 7.69 0.28

IVW 7.49 0.36

genus.Actinomyces 4 9.24× 10−4 0.32 MR-Egger 1.16 0.55

IVW 2.80 0.42

genus.Candidatus Soleaferrea 10 −3.27× 10−4 0.62 MR-Egger 6.36 0.61

IVW 6.62 0.68

(31, 32). Studies on mice demonstrated that butyric acid treatment

lowers fasting blood glucose and insulin levels while improving

insulin sensitivity (32).

For the other four genera identified in this study besides

genus.Flavonifractor, relevant studies also support the results of

this study. One research study noted a reduced presence of

the genus Haemophilus in the intestines of patients diagnosed

with T2DM (33). Significantly, genus Haemophilus, a bacterium

harmful to humans, can lead to primary septic infections.

Recent research has found its existence is linked to oral,

head and neck, pancreatic, and stomach cancers (34–36). In

several clinical and animal studies, T2DM has related to

chronic inflammation (37–39). The genus Candidatus Soleaferrea

is linked with intestinal inflammation and persistent low-level

inflammation. The initiation of the immune system, leading to

an inflammatory response, is linked with the development of

T2DM, thereby establishing that genus Soleaferrea is a T2DM risk

factor. In mouse models, Clostridiaceae1 may be critical to the

abnormal metabolism observed in type 2 diabetes (40). Genus

Coriobacteriaceae and genus Actinomyces were relatively elevated

in abundance in T2DM patients. In summary, the results from

previous studies are consistent with the conclusions reached in

this study.

It is well known that T2DM cannot be completely cured

under the current medical conditions, so it is crucial to

prevent the occurrence of T2DM. Several reports have shown

that intestinal dysbiosis and a decrease in short-chain fatty

acid-producing bacteria increase the risk of type 2 diabetes

mellitus (13, 41). According to the results of this MR study,

we can implement secondary prevention for people exposed

to T2DM risk factors (42). Specifically, we can carry out

targeted screening of intestinal flora in people exposed to

T2DM risk factors, such as the elderly or obese people,

in order to detect diseases early and establish treatment

mechanisms. Through screening, we urge them to maintain good

dietary habits, regularly use appropriate probiotic supplements to
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FIGURE 4

Leave-one-out plots for the causal association between gut microbiota and T2DM.

maintain the balance of Gut microbiota, and maintain normal

Short-chain fatty acid metabolism to effectively prevent type

2 diabetes.

Traditional observational studies measure environmental

exposure factors that are associated with behavioral,

social, and psychological factors, resulting in bias. MR,

however, is not affected by these confounding factors.

Relative to other methods, MR has less measurement error

in relation to its effects, and data from the GWAS are

relatively easy to obtain and less costly when conducting

MR analyses.

5. Limitations

Initially, it’s important to consider that allele frequency and

disease prevalence can differ across various populations, hence,

population stratification could introduce a confounding element

in Mendelian random analysis, especially if the study population is

diverse (43). Secondly, the information on SNPs in T2DM patients

sourced in this study was derived from a European populace, hence

it may not be universally applicable to all ethnicities. Detailed

demographics such as age and gender were also not provided.

Lastly, it’s essential to note that MR is capable of identifying
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genera having a causal link between the presence of certain gut

flora and T2DM, however, it doesn’t delve deeper into the specific

biomolecular mechanisms.

6. Conclusions

To summarize, this two-sample MR study’s findings offer

genetic proof that the existence of genus Flavonifractor, genus

Haemophilus, familyClostridiaceae1, genusActinomyces, and genus

Candidatus Soleaferrea in our intestines is causatively linked

to T2DM’s onset. This is clinically significant as it provides

fresh avenues and novel strategies for T2DM’s treatment and

early detection. Nonetheless, additional research is required to

clarify the specific protective and detrimental mechanisms of

these five genera against T2DM. Moreover, considering this study

was only conducted on a European population, future studies

should incorporate multi-ethnic, multi-age, and gender-specific

MR research to arrive at comprehensive conclusions.
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