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Evidence suggests that agricultural workers are at higher risk of insulin resistance 
(IR), but few studies have investigated IR in solar greenhouse workers, who are 
exposed to higher concentrations of agricultural risk factors than traditional 
agricultural workers. A prevalence study was conducted in a greenhouse vegetable 
farm in China. In total, 948 participants were enrolled in this study. Among them, 
721 participants were allocated to the greenhouse worker group (G group), and 
227 participants were assigned to the field worker group (F group). The TyG index, 
which is an indicator to evaluate prediabetes (IR), was calculated by the formula: 
TyG index  =  ln [fasting triglycerides (mg/dL)  ×  fasting plasma glucose (mg/dL)/2]. 
To evaluate the associations of TyG index alternation with solar greenhouse and 
field work, multiple linear regression (MLR) and logistic regression models were 
performed. The TyG index in the G group (8.53  ±  0.56) was higher than that in the 
F group (8.44  ±  0.59) (p  <  0.05). Solar greenhouse work was positively associated 
with an increased TyG index in both the multiple linear regression model [β  =  0.207, 
(0.006, 0.408)] and the logistic regression model [OR  =  1.469, (1.070, 2.016)]. IR 
was associated with the solar greenhouse work. However, the determination of 
agricultural hazard factors needs to be further strengthened to improve exposure 
assessment.
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1. Introduction

Solar greenhouse cultivation is a technology that originated in 
the 13th century and has since evolved into a commercial-scale 
operation. With an estimated 496,800 hectares of greenhouse 
vegetable production in 2019 (1), 80% of which is located in 
China, Spain, the Republic of Korea, Japan, Türkiye, Italy, 
Morocco, and France (2), solar greenhouses enhance productivity 
and ensure a year-round supply of high-quality agricultural 
products. However, this technology has not necessarily been 
accompanied by sound occupational practices, leading to higher 
levels of pesticide and chemical fertilizer residues than on 
traditional open-field farms (2). As a result, solar greenhouse 
workers are exposed to high concentrations of these chemicals 
over long periods (3), resulting in health issues such as 
reproductive disorders (4), chronic kidney disease (5), respiratory 
symptoms (6, 7), neurological symptoms (8, 9), and skin 
irritation (10).

Insulin resistance (IR) is a state of decreased sensitivity and 
responsiveness to insulin concentrations (11) that occurs before a 
person is diagnosed with type 2 diabetes mellitus (T2DM) (12). 
At least 86 million adults are affected by IR in the U.S. alone, with 
high rates of undiagnosed cases (13). Increasing evidence suggests 
that IR is at the crossroads of metabolic syndromes (MetS) (e.g., 
obesity, diabetes mellitus, hypertension, and cardiovascular 
disease) in humans, affecting insulin-regulated pathways and 
many organs once IR is elevated (14–17). The World Health 
Organization has included IR in its criteria for the diagnosis of 
MetS (18). However, the IR status of solar greenhouse workers has 
not been determined, even though the risk factors in solar 
greenhouses are high.

Exposure to heat and pesticides has been shown to affect 
insulin sensitivity and the prevalence of T2DM (19, 20) in the 
general population. Pallubinsky et  al. reported that passive 
moderate heat exposure improved glucose metabolism and insulin 
sensitivity in overweight humans (20). Exposure to 
organophosphorus pesticides (OPs) affects the formation of 
glycation end products, accumulation of lipid metabolites, 
activation of inflammatory pathways, and oxidative stress, and 
ultimately causes IR and T2DM (21). The concentration of 
pesticide chemical residues, temperature, and other risk factors in 

the solar greenhouse is higher than in the field farm. This study 
hypothesizes that solar greenhouse workers are likely to be  at 
increased risk of IR compared to field workers due to higher levels 
of pesticides and chemical residues, temperature, and other risk 
factors in the solar greenhouse. This study used the triglyceride-
glucose (TyG) index, a parameter derived from triglyceride (TG) 
and fasting blood glucose (FBS) levels that has been proven to be a 
convincing and reliable indicator of IR (11). The TyG index has 
been established as a hallmark of T2DM, even several years before 
the onset of diabetes (22). Hence, this study evaluated whether the 
prevalence of IR was higher among solar greenhouse workers than 
among field workers. Both solar greenhouse workers (greenhouse 
worker group) and field workers (field worker group) living in the 
same area were recruited for this cross-sectional study. 
Furthermore, the association between solar greenhouse work and 
field work with IR was explored. The findings of this study may 
provide clues to the risk of IR and hypotheses for future 
prospective epidemiologic research in agricultural communities.

2. Methods

2.1. Study design and questionnaires

A prevalence study program, known as the Solar Greenhouse 
and Field Workers Study (SGFW study) (9), was conducted in 
northwestern China among individuals involved in solar 
greenhouse vegetable cultivation or field farming. Solar greenhouse 
and field workers were enrolled in this study, all of whom 
participated in the routine health check program organized by the 
local government (5, 6, 9). Solar greenhouse workers and field 
workers lived in the same area, no more than 5 km apart, and the 
two groups of workers shared the same dietary habits. The main 
tasks of the field workers and solar greenhouse workers were to 
cultivate corn, vegetables, and other crops, with other activities 
ranging from sowing to harvesting. The workers in the solar 
greenhouse group worked more than 8 h per day on average, and 
the workers in the field group also worked more than 8 h per day 
during busy farming seasons. The study protocol was approved by 
the Medical Ethics Committee of the National Center for 
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Occupational Safety and Health, National Health Commission of 
the People’s Republic of China.

This study enrolled a total of 975 participants who met the 
following inclusion criteria: (i) had lived in the area for at least 1 year; 
(ii) were 18 years of age or older; (iii) were not pregnant if women; (iv) 
were engaged in either solar greenhouse work [the solar greenhouse 
worker group (G group)] or crop production [in the field worker 
group (F group)]; (v) had undergone blood biochemical testing. 
Participants who had been diagnosed with diabetes (n = 27) were 
excluded to avoid the potential impact of diabetes treatment on 
relevant serum biomarkers. Diabetes was defined as self-reported 
diabetes or FBS ≥ 7.0 mmol/dL according to the diagnostic criteria for 
diabetes (the Chinese Guidelines for the Prevention and Treatment of 
Type 2 Diabetes, 2020 Edition). Finally, a total of 948 participants were 
included in this study, with 721 participants in the G group and 227 in 
the F group, respectively.

A structured questionnaire was used to collect information on 
participant characteristics, including demographic characteristics 
(age, gender, weight, height, educational status), habits (smoking 
habits, alcohol consumption habits), and pesticide use. Trained 
interviewers conducted the questionnaire. Body mass index (BMI) 
was calculated by the formula: BMI = weight (kg)/ height squared 
(m2). The questionnaire included inquiries about 10 types of pesticides 
commonly used in plantation agriculture, and further details can 
be found in Supplementary Table S1.

2.2. Triglyceride-glucose index

After an overnight fast, 3 mL of blood samples were collected from 
each participant, and TG and FBS were measured using a Tecom 
TC6010L automatic analyzer (Tecombio, China) and Tecom 
diagnostic reagent following standard experiment procedures 
provided by the manufacturer. The TyG index was calculated as ln 
[fasting TG (mg/dL) × FBS (mg/dL)/2] (23). Based on the median TyG 
index, participants were divided into a low TyG index group (TyG 
index ≤8.49) and a high TyG index group (TyG index >8.49).

2.3. Statistical analysis

The data were managed using Epidata 3.1 and analyzed using 
SPSS 24.0 (SPSS Inc., Chicago, IBM). The Shapiro–Wilk test (S-K test) 
was used to test the normality of the data. For normally distributed 
data, the mean ± standard deviation was used to express the results. To 
test for differences in categorical parameters, the chi-squared (χ2) test 
or Fisher’s exact test were used, while the Student’s t-test and Wilcoxon 
rank-sum test were used to test for differences in continuous 
parameters between groups.

To determine the difference in prediabetes indicators (TyG index 
and TyG index categories) between the two groups, multiple linear 
regression (MLR) and logistic regression analysis models were 
performed. Univariate MLR was adjusted for factors of groups, gender, 
age, BMI, smoking status, alcohol consumption status, and number of 
pesticide types used, respectively. Multivariate MLR was further 
adjusted for group, gender, age, BMI, smoking status, and alcohol 
consumption status, which have been reported or tested to 
be associated with the TyG index in previous studies (24, 25). Logistic 

regression analyses were also performed and adjusted for the same 
variables (group, gender, age, BMI, smoking status, and alcohol 
consumption status) as multivariate MLR. Subgroup analysis was 
performed using stratified multivariate MLR analyses. Statistical 
significance was defined as α < 0.05 for two-tailed value of ps.

3. Results

3.1. General demographic characteristics

General demographic characteristics are presented in Table 1. The 
average age, BMI, and drinking habits of the two groups were not 
significantly different (all p > 0.05). Age categories, gender, education 
level, and smoking habits showed significant differences (all p < 0.05). 

TABLE 1 Characteristics of the greenhouse workers (G group) and field 
workers (F group).

Characteristics G group F group value of p

n (%) 721 (76.1) 227 (23.9) –

Gender n (%) 0.004**,b

Men 299 (41.5) 70 (30.8)

Women 422 (58.5) 157 (69.2)

Age (years old) 47.81 ± 8.98 47.74 ± 9.74 0.924a

≤ 45 years old 314 (43.6) 80 (35.2) 0.027*,b

> 45 years old 407 (56.4) 147 (64.7)

BMI (kg/m2) 23.72 ± 3.46 24.11 ± 3.24 0.137a

< 24.0 kg/m2 408 (55.3) 119 (52.4) 0.441b

≥ 24.0 kg/m2 336 (44.7) 108 (47.6)

Current smoker, n (%) 199 (27.6) 44 (19.1) 0.013*,b

Alcohol user, n (%) 162 (22.5) 39 (17.2) 0.077b

Education n (%) 0.001**,b

Primary school or less 288 (39.9) 85 (37.4)

Junior high school 339 (47.0) 89 (39.2)

High school or above 94 (13.1) 53 (23.4)

Number of solar 

greenhouses

2.08 ± 1.11 – –

Working age (years) 13 (8–18) 24 (16–30) 0.001**,c

Number of types of 

pesticides used

6.62 ± 2.56 3.36 ± 2.04 < 0.001**,a

TG (mmol/L) 1.51 ± 1.04 1.41 ± 0.95 0.237a

FBS (mmol/L) 4.95 ± 0.57 4.88 ± 0.59 0.095a

TyG index 8.53 ± 0.56 8.44 ± 0.59 0.033*,a

TyG index category 0.107b

Low TyG index group 356 (49.4) 126 (55.5)

High TyG index group 365 (50.6) 101 (44.5)

BMI, body mass index. TyG index, triglyceride-glucose index. FBS, fasting blood glucose. 
TG, triglyceride.
*p < 0.05, **p < 0.01.
a t-test.
b Chi-squared test.
c Mann–Whitney U test.
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The proportion of men, workers with low education levels, and smokers 
was higher in the G group compared to the F group. The solar greenhouse 
workers had a lower working age and used more pesticides compared to 
traditional field workers. The greenhouse worker group owned an 
average of 2.08 ± 1.11 solar greenhouses and used an average of 6.62 ± 2.56 
types of pesticides, which was significantly higher compared to the F 
group (p < 0.05). The types of pesticides used by the two groups are 
shown in Supplementary Table S1. The use of eight types of pesticides 
(acetamiprid, imidacloprid, streptomycin, chlorothalonil, carbendazim, 
propamocarb hydrochloride, procymidone, and avermectin) was more 
prevalent in the G group compared to the F group, whereas paraquat and 
glyphosate pesticides were used less (all p < 0.05).

3.2. Triglyceride, glucose, and TyG index

Table 1; Figures 1A,B show that no significant differences in FBS and 
TG levels were found between the G and F groups (both p > 0.05). The 
mean TG concentration was (1.51 ± 1.04) mmol/L in the greenhouse 
worker group and (1.41 ± 0.95) mmol/L in the field worker group. The 
mean FBS concentration was (4.95 ± 0.57) mmol/L in the greenhouse 
worker group and (4.88 ± 0.59) in the field worker group. However, the 
TyG index in the G group (8.53 ± 0.56) was higher compared to that in 
the F group (8.44 ± 0.59) (p < 0.05). The proportion of participants with 

a high TyG index was 50.7% in the G group and 44.5% in the field worker 
group, but this difference was not significant (p > 0.05).

3.3. Group differences in the TyG index

To explore the differences in the TyG index between the 
greenhouse workers and field worker groups and to identify key 
influencing factors, multiple statistical analyses were conducted 
(Figures 2–4). The results of the MLR showed that the TyG index was 
positively associated with solar greenhouse work [β = 0.178, 95% CI: 
(0.030, 0.325)] compared to field work (Figure  2). Additionally, 
variables such as age over 45 years and BMI over 24.0 kg/m2 were 
positively associated with an increased TyG index compared to 
controls [β = 0.323, 95% CI: (0.197, 0.449), β = 0.097, 95% CI: (0.080, 
0.114), respectively] (Figure 2). However, the associations between the 
TyG index and 10 different types of pesticides were not statistically 
significant (all p > 0.05) (Supplementary Table S2). After adjustment 
for confounders reported in the literature (groups, gender, age, BMI, 
smoking status, and alcohol consumption status), the positive 
association between TyG index and solar greenhouse work remained 
robust in the MLR [β = 0.209, 95% CI: (0.069, 0.349)] (Figure 3).

We categorized the TyG index into two groups based on the median 
value and found that the workers in the G group had a higher risk of 

FIGURE 1

Column diagram and stacked bar chart of TG, FBS, TyG index, and TyG index category between greenhouse worker and field worker groups. 
(A) Column diagram of TG levels between the two groups. (B) Column diagram of FBS levels between the two groups. (C) Column diagram of TyG 
index levels between the two groups. (D) Stacked bar chart of TyG index category. *p  <  0.05. TyG index, triglyceride-glucose index; FBS, fasting blood 
glucose; TG; triglyceride.
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having a TyG index greater than 8.49 compared to the F group 
[OR = 1.469, 95% CI: (1.070, 2.016)] (Figure 4). Additionally, age over 45 
[OR = 1.447, 95% CI: (1.100, 1.902)] and a BMI of 24.0 kg/m2 or higher 
[OR = 3.488, 95% CI: (2.667, 4.563)] were identified as risk factors for a 
TyG index greater than 8.49 when compared to the control group.

The subgroup analysis further explored the influence of other 
covariables on the association between the TyG index and solar 
greenhouse workers and field workers. The results showed a 
consistent pattern, as illustrated in Figure  5. The TyG index was 
positively associated with solar greenhouse work, regardless of the 
subgroups. The effect of the TyG index on the greenhouse worker 
group was significant among men [women: β = 0.228, 95% CI 
(−0.019, 0.476); men: β = 0.209, 95% CI (0.043, 0.375)], those with a 
BMI < 24 kg/m2 [< 24 kg/m2: β = 0.214, 95% CI (0.024, 0.458); ≥ 24 kg/
m2: β = 0.208, 95% CI (−0.001, 0.427)], non-smokers [current 
smokers: β = 0.270, 95% CI (−0.075, 0.616); non-smokers: β = 0.189, 
95% CI (0.039, 0.338)], and non-drinkers [drinkers: β = 0.252, 95% 
CI (−0.083, 0.587); non-drinkers: β = 0.205, 95% CI (0.052, 0.358)]. 
However, the associations of the TyG index with solar greenhouse 
work were consistent in the two age subgroups [18–45 years old: 
β = 0.241, 95% CI (0.024, 0.458); ≥ 45 years old: β = 0.184, 95% CI 
(0.002, 0.366)].

4. Discussion

In this cross-sectional epidemiologic study, we found that the TyG 
index was higher in the G group compared to the F group. As far as 
we  know, this is the only study to report the problem of IR and 
prediabetes among solar greenhouse workers. The current findings 
suggest that the solar greenhouse work was associated with an 

increased risk of IR and prediabetes, which should be  of guiding 
significance to exploring occupational worker protection.

There are no reports on the relationship of the solar greenhouse 
work with IR, prediabetes, diabetes mellitus, or MetS, although studies 
have been conducted among general farmers, which showed they are 
probably at increased risk of IR, diabetes mellitus, and MetS compared 
to the general population (20, 26, 27). Raafat et al. reported that farmers 
had mean values of insulin resistance (3.19 ± 0.17) higher compared to 
the general population (1.15 ± 0.04) in Egypt (27), while another study 
reported that the prevalence of IR (defined as a TyG index above 4.52) 
was 33.7% in Brazilian farmers (26). The prevalence of diabetes was 
9.3% among the rural population in the Republic of Korea, which was 
higher than that of the general population (8.8%) (28). In this study, 
we found that the risk of IR was associated with solar greenhouse work.

Evidence suggests that exposure to pesticides is associated with IR 
in rural populations (19, 26, 27). For example, Bai et al. reported that 
di-2-ethylhexyl phthalate (a type of OPs metabolite) was positively 
associated with HOMA-IR (0.18, 0.08–0.28) and IR (HOMA-IR > 2.6) 
(1.76, 1.17–2.64) (19). Pesticide exposure assessment was not fully 
performed in this study. The solar greenhouse workers used on average 
(6.62 ± 2.56) types of pesticides, more than the field workers (3.36 ± 2.04). 
Exposure to pesticides may be a possible cause of the increased TyG 
index. OPs exposure induced lipid disorders, an increased TyG index, 
and free fatty acid synthesis. Dyslipidemia is a key step to IR by activating 
serine kinases such as protein kinase C and c-jun N-terminal kinase, 
leading to the inhibition of IRS-1 activity (12, 18). In addition, the 
environmental temperature in the solar greenhouse is above 25°C, 
reaching 35°C or more at noon. Heat stress exposure is a potential 
protective factor for prediabetics. Animal and human studies have shown 
that heat stress promotes a series of signaling mechanisms (e.g., muscle 
hypertrophy, angiogenesis, mitochondrial biogenesis, and glucose 

FIGURE 2

Results of the univariate MLR analysis of the TyG index. Variables of groups (G group and F group), gender, age, BMI, smoking status, and alcohol 
consumption status were adjusted in the analysis.
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FIGURE 4

Risk factors for elevated TyG index levels using logistic regression analysis. Variables of groups (G group and F group), gender, age, BMI, smoking status, 
and alcohol consumption status were adjusted in the analysis.

FIGURE 3

Results of the multivariate MLR analysis of the TyG index. Variables of groups (G group and F group), gender, age, BMI, smoking status, and alcohol 
consumption status were adjusted in the analysis.
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metabolism) by increasing tissue temperature and enhancing energy 
turnover (20, 29, 30). While the results showed that the protective effects 
of environmental heat stress exposure may not be sufficient to offset the 
impact of an elevated TyG index on solar greenhouse workers, the results 
of the subgroup analysis consistently demonstrated a positive relationship 
between the TyG index and solar greenhouse work in all subgroups. 
These findings suggest that individuals with higher TyG index values are 
more likely to be engaged in solar greenhouse work, irrespective of 
subgroup characteristics. Notably, significant associations were observed 
between the TyG index and solar greenhouse work among specific 
subgroups. Among men, the effect of the TyG index on the greenhouse 
worker group was significant, with higher TyG index values associated 
with an increased likelihood of engaging in solar greenhouse work, 
which was consistent with the previous report (27).

These findings highlight the importance of the TyG index as a 
potential indicator for identifying individuals who are more likely to 
be involved in solar greenhouse work. However, further research is 
warranted to explore the underlying mechanisms and potential causal 
relationships between the TyG index and occupational choice in 
different subgroups. Additionally, considering the cross-sectional 
nature of this study, future longitudinal studies are needed to establish 
a temporal relationship between the TyG index and occupational 
preferences in different populations.

To the best of our knowledge, this is the only study to report that 
solar greenhouse workers have an increased risk of IR compared with 
field workers. However, our study still has limitations. First, the 
information on genetic factors, family history of diabetes mellitus, and 
hypoglycemic drugs was not adjusted as confounders. Genetic variants 
involved in the pathogenesis of diabetes mellitus are associated with 
IR (31), which indicates that it is necessary to explore the associations 
of solar greenhouse work with IR and genetic predisposition in the 
future. Second, the exposure assessment of the occupational 
environment and dietary habits, such as pesticides, temperature, and 
food types, was not fully conducted. This made it difficult to quantify 
the contribution of occupational activity and dietary habits in the 
greenhouse to the increase in the TyG index. Third, it was not possible 

to make temporal causality inferences between solar greenhouse work 
and increased risk based on the TyG index in a cross-sectional study.

This study reported on the association of IR with solar greenhouse 
work. Furthermore, the risk of IR was higher in the workers who were 
obese and 45 years of age and older than in the controls. These findings 
suggest that the group of solar greenhouse workers has a higher risk 
of prediabetes compared to the general farmer population. 
Occupational hygiene practices programs should be implemented to 
reduce the risk of prediabetes among solar greenhouse workers.
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