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Objective: Checkpoint inhibitors (CPIs) can trigger complications related to 
the autoimmune process such as CPI-triggered diabetes mellitus. The typical 
treatment for CPI-triggered diabetes is insulin, but a detailed therapeutic method 
has not yet been established. To prevent severe symptoms and mortality of diabetic 
ketoacidosis in advanced-stage cancer patients, the establishment of effective 
treatment of CPI-triggered diabetes, other than insulin therapy, is required.

Methods: We present a case of a 76-year-old man with CPI-triggered diabetes 
who was treated with nivolumab and ipilimumab for lung cancer. We  also 
conducted a systematic review of 48 case reports of type 1 diabetes associated 
with nivolumab and ipilimumab therapy before June 2023.

Results: The patient’s hyperglycemia was not sufficiently controlled by insulin 
therapy, and after the remission of ketoacidosis, the addition of a sodium-glucose 
transporter (SGLT) 2 inhibitor, dapagliflozin, improved glycemic control. Most of 
the reported nivolumab/ipilimumab-induced type 1 diabetes was treatable with 
insulin, but very few cases required additional oral anti-diabetic agents to obtain 
good glucose control.

Conclusion: Although SGLT2 inhibitors have been reported to have adverse 
effects on ketoacidosis, recent studies indicate that the occurrence of ketoacidosis 
is relatively rare. Considering the pathological mechanism of CPI-triggered 
diabetes, SGLT2 inhibitors could be an effective choice if they are administered 
while carefully monitoring the patient’s ketoacidosis.
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Introduction

The development of checkpoint inhibitors (CPIs) was a major 
breakthrough for the treatment of various cancers, including 
advanced-stage cancers that were previously considered untreatable 
(1, 2). These drugs restore a deficient anti-cancer immune response by 
blocking cytotoxic T-lymphocyte 4 (CTLA-4) or programmed cell 
death 1 (PD-1) receptor and its ligand PDL-1 (3–5). The introduction 
of CPIs was a paradigm shift in cancer treatment. While these new 
effective treatments are widely used, the number of CPI-triggered 
adverse events is increasing.

CPI-triggered adverse events tend to target endocrine organs such 
as hypophysis, thyroid, and insulin-secreting islets(6, 7).

When islets are affected in CPI-triggered adverse events, a patient 
presents features similar to those of type 1 diabetes(7, 8). CPI-triggered 
diabetes is rare (approximately 1%) but potentially life-threatening(7, 
9–11). Therefore, it requires effective and reliable treatment. In most 
cases, CPI-triggered diabetes is treated with insulin injections as 
suggested by the guidelines(12, 13). However, there are no suggestions 
for the treatment when insulin therapy cannot achieve good 
glycemic control.

In type 1 diabetes, in addition to insulin therapy, the use of 
sodium-glucose transporter (SGLT) 2 inhibitors is suggested as an 
additional treatment in Japan. A recent Dapagliflozin Evaluation in 
Patients with Inadequately Controlled Type 1 Diabetes (DEPICT) 
clinical trial showed the beneficial effect of using dapagliflozin in 
patients with type 1 diabetes inadequately controlled by insulin (14, 
15). In 2019, the Japanese Ministry of Health, Labour and Welfare 
approved dapagliflozin as an oral adjunct treatment to insulin for 
patients with type 1 diabetes. SGLT2 inhibitors are known to have a 
low risk of developing ketoacidosis, but the risk is considered to 
be higher than that of other anti-diabetic agents (16, 17). Because 
CPI-triggered diabetes may present with ketoacidosis, SGLT2 
inhibitors are not considered a treatment option, and insulin treatment 
is the primary treatment. However, because type 1 diabetes and 
CPI-triggered diabetes are both insulin-deficient diseases, the addition 
of SGLT2 inhibitors on top of insulin therapy may provide better 
glycemic control in CPI-triggered diabetes if they are used 
with caution.

Here, we report a case of successful glycemic control by adding an 
SGLT2 inhibitor on top of insulin therapy in a CPI-triggered diabetes 
patient. The addition of SGLT2 inhibitors on top of insulin therapy 
significantly improved the glucose level. The results in the present case 
indicate the possible use of SGLT2 inhibitors for the treatment of 
CPI-triggered diabetes. In addition, we conducted a systematic review 
of published case reports. This systematic review aims to provide a 
comprehensive evaluation of treatment options for CPI-triggered 
diabetes and shed light on potential therapeutic strategies.

Case report

A 76-year-old Japanese man under treatment of PD-1 inhibitor 
(nivolumab) and CTLA-4 inhibitor (ipilimumab) for lung cancer, for 
3 months, presented with casual blood glucose 574 mg/dL and HbA1c 
7.7%. The patient had no history of diabetes, and this marked the 
initial onset of hyperglycemia. His primary cancer, situated in the left 
mediastinum, as well as his supraclavicular lymph node metastasis, 

exhibited signs of regression due to the therapeutic intervention. 
However, multiple metastatic cancers were observed in both lungs. No 
hepatic or adrenal metastasis was observed. No ascites or pleural 
effusion was noted.

The anti-GAD antibody was negative. RBC count was 427 × 104/
μL, creatinine level was 1.12 mg/dL, eGFR was 49 mL/min/1.73m2, 
and potassium level was 5.2 mmoL/L. Other laboratory data are 
provided in Table 1.

The patient was diagnosed with fulminant type 1 diabetes 
provoked by the CPIs. His pre-prandial blood glucose levels ranged 
between 358 and 544 mg/dL, and insulin glargine before bed 
(0-0-0-6 U) plus insulin (Humulin R) sliding scale therapy was 
initiated. By the second day of hospitalization, insulin glargine was 
increased to 8 units (0-0-0-8 U) while the sliding scale therapy was 
continued, yet there was no significant improvement in pre-prandial 
blood glucose levels compared to day 1.

TABLE 1 Laboratory data.

Factor Result Reference 
range

Total protein (g/dL) 7.6 6.1–8.1

Albumin (g/dL) 4.6 4.1–5.1

BUN (mg/dL) 33.1 8.0–20.0

Creatinine (mg/dL) 1.12 0.65–1.07

Sodium (mmol/L) 137 138–145

Chloride (mmol/L) 96 101–108

Potassium (mmol/L) 5.2 3.6–4.8

Amylase (U/L) 65 44–132

ALP (U/L) 116 38–113

AST (U/L) 17 13–30

ALT (U/L) 21 10–42

LD (U/L) 160 124–222

CK (U/L) 75 59–248

Total bilirubin (mg/dL) 0.6 0.4–1.5

Plasma glucose (mg/dL) 574 73–109

CRP (mg/dL) 1.11 < 0.14

White blood cell (X102/μL) 145 33–86

Red blood cell (X104/μL) 427 435–555

Hb (g/dL) 13.8 13.7–16.8

Hct (%) 40.1 40.7–50.1

MCV (fl) 93.9 83.6–98.2

MCH (pg) 32.3 27.5–33.2

MCHC (g/dL) 34.4 31.7–35.3

Platelet (X104/μL) 32.2 15.8–34.8

Neutrophil (%) 84.1 38.5–80.5

Lymphocyte (%) 14.4 16.5–49.5

Monocyte (%) 1.2 2.0–10.0

Eosinophil (%) 0.1 0.0–8.5

Basocyte (%) 0.2 0.0–2.5
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By day 3, the sliding scale was discontinued, and regular 
pre-prandial injection of insulin aspart commenced at a dose of 
12-8-10 U, along with an increase in insulin glargine to 12 units 
(0-0-0-12 U).

On day 4, the dosage of insulin aspart was modified to 12-6-6 U, 
and insulin glargine was further increased to 16 units (0-0-0-16 U), yet 
the patient’s pre-prandial glucose levels persisted high 
(331–435 mg/dL).

Insulin aspart was then increased to 12-6-10 U at day 5 and then 
to 12-8-12 U at day 6. At day 6, insulin glargine was also increased to 
18 units (0-0-0-18 U). However, the patient’s glucose level remained 
high and was difficult to control (pre-prandial glucose levels being 
212–269 mg/dL). Despite the possibility of increasing the basal insulin 
injection, the patient expressed reservations about dose escalation, 
and therefore, after checking that the urine ketone bodies were 
negative, SGLT2 inhibitor, dapagliflozin (5 mg), was added on top of 
the regular insulin therapy. Following the addition of dapagliflozin, 
the patient’s blood glucose level stabilized, maintaining pre-prandial 
blood glucose levels around 135 mg/dL.

Although HbA1c level was recorded at 8.6% upon discharge, it 
demonstrated gradual improvement over time. Dapagliflozin was 
continued, and in the 2-month follow-up after discharge, the HbA1c 
level was 8.3%. The dosage of insulin glargine was reduced to 16 units 
(0-0-0-16), while the insulin aspart dosage was increased to 
18-12-14 U, based on self-monitoring blood glucose (SMBG) results. 
At the 4-month follow-up, the HbA1c level further decreased to 8.2% 
with insulin glargine reduced to 10 units (0-0-0-10 U) and insulin 
aspart reduced to 10-4-8 U. By the 6-month mark, the HbA1c level 
stabilized at 7.6% with the continued administration of dapagliflozin, 
insulin aspart (10-8-8 U), and insulin glargine (0-0-0-8 U).

Methods

The English language written case reports published before June 
2023 were searched using PubMed with the terms “nivolumab,” 
“ipilimumab,” “diabetes,” “diabetes mellitus,” and “PD-1 inhibitor.” A 
total of 48 cases from 41 reports were obtained (18–58). The cases with 
no history of diabetes and using nivolumab, ipilimumab, or both were 
extracted. The information, such as age, sex, tumor type, plasma 
glucose level, HbA1c, islet autoantibodies, and treatment for 
hyperglycemia, was extracted. All the values are described as medium 
(IQR: interquartile range). Statistical analysis was conducted using the 
Mann–Whitney U-test. A p-value of <0.05 was considered as 
significant difference.

The informed consent was obtained from the patient for the 
case report.

Results

The patients collected in this systematic review comprised a 
female/male ratio of 23/25, with an age of 64.5 (49–73.5) years old. 
Tumor types consisted of melanoma in 37% (18/48), non-small-cell 
lung cancer in 27% (13/48), renal cell carcinoma in 14% (7/48), and 
other types in 21% (10/48).

All patients received nivolumab, with 11 patients also receiving 
ipilimumab. The plasma glucose level for all the patients was 571 

(384–743) mg/dL, and the HbA1c level was 7.7 (6.7–8.8) %. The 
plasma glucose levels between nivolumab-treated patients and 
nivolumab + ipilimumab-treated patients revealed no significant 
difference [539 (390–739) mg/dL vs. 603 (355–763) mg/dL, 
respectively]. However, HbA1c level showed a significantly lower level 
in nivolumab + ipilimumab-treated patients [8.0 (7.1–9.1) % vs. 6.9 
(6.6–7.6) %: p = 0.048]. The serum C-peptide level was not reported in 
all cases, but 29 cases reported its level, and 14 cases had levels less 
than 0.1 ng/mL. Glutamate decarboxylase antibody (GADA) was 
present in 27.8% (10/36) of cases, while islet cell antibody was positive 
in 14.3% (4/28) of cases.

All patients were treated with insulin injection therapy for 
hyperglycemia with three patients also receiving additional oral anti-
diabetic treatments. The first patient received an additional DPP4 
inhibitor treatment (specific drug not described), the second patient 
received sitagliptin + acarbose, and the third patient received 
metformin and acarbose. There were no reports of patients receiving 
SGLT2 inhibitor treatment.

Discussion

The prevalence of adverse events in endocrine organs due to CPIs 
has been reported to range from 4 to 30% (59, 60). Among these 
adverse events, CPI-triggered diabetes is exceptionally rare, 
accounting for less than 1% of cases (7). CPI-triggered diabetes 
exhibits features characterized by the sudden onset of high blood 
glucose levels and relatively low HbA1c often accompanied by 
ketoacidosis (8, 10, 59). Our present case aligns with these features as 
it demonstrated both a high blood glucose level and relatively 
low HbA1c.

In animal studies, non-obese diabetic mice showed rapid onset of 
diabetes by blocking the PD-1 and PD-L1 pathway (61–68).

CPI-triggered diabetes shares common characteristics with type 
1 diabetes. Similar to type 1 diabetes, CPI’s adverse effects target 
insulin-producing pancreatic beta cells, leading to insulin deficiency 
and subsequent hyperglycemia (8).

Most CPIs that are known to trigger diabetes belong to the PD-1 
inhibitors, and as far as we  know, there have been no reports of 
diabetes triggered solely by CTLA-4 inhibitors (8, 12). PD-L1 
expression is reported to be  increased in type 1 diabetic patients 
compared to type 2 diabetic patients or healthy controls (20). 
Interestingly, to date, the expression of CTLA-4 in pancreatic islets has 
not been reported. This explains why CTLA-4 inhibitors alone do not 
induce adverse diabetic events. However, combination therapy of 
PD-1 inhibitor and CTLA-4 inhibitor has been reported to increase 
the risk of developing diabetes (69), which is consistent with the case 
in the present report. Although CTLA-4 may not be expressed in 
pancreatic beta cells, it is considered to play an important role in 
glucose regulation. This was further confirmed by studies showing 
that individuals with polymorphism in PD-1 and CTLA-4 genes are 
more susceptible to autoimmune disorders, including type 1 diabetes 
(70–74).

CPI-triggered diabetes is similar to type 1 diabetes in that they have 
a common feature of insulin deficiency. Therefore, as in the case of type 
1 diabetes, SGLT2 inhibitors may be potentially useful for the treatment 
of CPI-triggered diabetes. However, it is important to point out that our 
present case had moderate renal impairment and SGLT2 inhibitors are 
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not generally recommended to be used in patients with severe renal 
impairment. Therefore, our present case was carefully taken care for the 
development of further renal impairment, and our case is not a typical 
case for using SGLT2 inhibitor and it is a limitation of this report.

The prevalence of ketoacidosis in type 1 diabetes patients is 
reported as high as 4–6% when SGLT2 inhibitors are used in 
combination with insulin, although it is rare in type 2 diabetes 
patients. The FDA adverse event report system found a 7-fold higher 
risk of acidosis with SGLT2 inhibitors compared to dipeptidyl 
peptidase 4 inhibitor therapy in type 2 diabetes patients (16, 75–77).

The underlying mechanism of ketoacidosis in patients treated 
with SGLT2 inhibitors is induced by glucose loss, leading to lipolysis 
of fat mass and a decrease in the insulin/glucagon ratio (17, 69). This 
leads to an increase in acetyl-CoA production from fatty acids and 
β-oxidation, ultimately inducing ketoacid production. The risk of 
SGLT2 inhibitor-associated ketoacidosis increases when insulin 
deficiency becomes acutely pronounced or with a sudden restriction 
of carbohydrate availability (17, 78). In the present case, an SGLT2 
inhibitor was administered only after the acute phase of CPI-triggered 
diabetes was confirmed to be  relieved with urine ketone body 
negative and food intake becoming normal. So far, the present report 
is the first successful case of using SGLT2 inhibitor in addition to 
insulin in CPI-triggered diabetes.

Since a high blood glucose level may have a negative effect on 
cancer treatment, maintaining good glycemic control is important in 
cancer patients. As we have shown in the present case, with close 
monitoring and appropriate adjustment, SGLT2 inhibitors may be an 
effective solution in CPI-triggered diabetes when urine ketone bodies 
are negative, and long-term glycemic control is not achieved by 
insulin therapy alone.

Conclusion

In summary, CPIs are widely used for cancer treatment, and as a 
result, the incidence of CPI-triggered diabetes is on the rise. Insulin 
therapy is typically considered the best approach for managing 
CPI-triggered diabetes. However, our present case highlights that 
when insulin therapy fails to produce the desired effect, the addition 
of SGLT2 inhibitor can effectively achieve optimal glycemic control. 
Although SGLT2 inhibitors have been associated with adverse effects 
on ketoacidosis, recent studies suggest that the occurrence of 
ketoacidosis is relatively rare. Given the pathological mechanism of 
CPI-triggered diabetes, SGLT2 inhibitors could represent an effective 
option provided they are administered with diligent 
ketoacidosis monitoring.
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