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Introduction: Although numerous countries relied on contact-tracing (CT)
applications as an epidemic control measure against the COVID-19 pandemic,
the debate around their e�ectiveness is still open. Most studies indicate that very
high levels of adoption are required to stop disease progression, placing the main
interest of policymakers in promoting app adherence. However, other factors of
human behavior, like delays in adherence or heterogeneous compliance, are often
disregarded.

Methods: To characterize the impact of human behavior on the e�ectiveness of
CT apps we propose a multilayer network model reflecting the co-evolution of an
epidemic outbreak and the app adoption dynamics over a synthetic population
generated from survey data. The model was initialized to produce epidemic
outbreaks resembling the first wave of the COVID-19 pandemic and was used to
explore the impact of di�erent changes in behavioral features in peak incidence
and maximal prevalence.

Results: The results corroborate the relevance of the number of users for the
e�ectiveness of CT apps but also highlight the need for early adoption and, at
least, moderate levels of compliance, which are factors often not considered by
most policymakers.

Discussion: The insight obtained was used to identify a bottleneck in the
implementation of several apps, such as the Spanish CT app, where we
hypothesize that a simplification of the reporting system could result in increased
e�ectiveness through a rise in the levels of compliance.
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1. Introduction

Contact tracing (CT) is one of the most effective epidemic control strategies, as it allows

cutting the disease transmission chains by isolating potentially infected individuals before

they can further spread the pathogen (1). However, during the early days of the COVID-

19 pandemic, this classical strategy was hardly effective due to the long turnaround of tests,

and the presence of presymptomatic ineffectiveness and mild symptomatology in a large

proportion of cases. As a consequence, many countries promoted the use of novel digital

contact tracing (DCT) strategies, based on the use of smartphone apps. These apps, also

known as CT apps, rely on several technologies to register interactions between individuals

and warn those who recently had contact with someone who turns out to be infected. This

way, these individuals could quarantine themselves preventively, much sooner than with

classical contact tracing (2).

These apparent benefits produced an explosive growth of CT apps even though there

was no empirical evidence of the effectiveness of these tools (3). In less than a year,

researchers fromMIT identified at least 80 different CT apps deployed over 50 countries (4).
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Concurrently, many modeling studies tried to understand whether

these apps could be effective, and it was generally accepted that

the adoption rate should be around 60% of the population for

pandemic mitigation (2, 5–7). Nonetheless, current empirical

evidence signals that in practice most apps were not as effective as

expected and that many models were too optimistic (8).

For example, health authorities in New South Wales, Australia,

compared the performance of the Australian CT app vs.

conventional contact tracing during an outbreak of 619 cases (9).

They observed that only 137 of the infectees had the app, which

corresponds to an adoption rate of 33%. Among these 137 users,

only 32 warned at least one contact using it. In total, there were

79 contacts notified, or roughly 3 per index case. In contrast,

conventional contact tracing revealed 25,300 close contacts, 40

per index case. Moreover, the app only detected 17 (<0.1%) new

contacts not identified through conventional tracing. Based on

these outcomes, Australian health workers considered that the app

was not useful for them and that its use actually increased their

burden (9).

Similar conclusions were also reached in other countries. In

Finland, out of 4,557 PCR-positive cases, only 541 warned their

contacts (12%). Besides, most people that received the warning had

already been alerted through traditional contact tracing, since the

procedure to notify contacts with the app was rather slow. In total,

only 8 (0.3%) people reported having changed their behavior due to

the app notification (10). In Switzerland, with an adoption rate of

26%, only between 20 to 40% of the users triggered an exposure

notification upon receiving a positive test (11). In Belgium, the

adoption rate was 28%, and only 43% of the users employed it to

notify their contacts (12). The generalized low adoption levels may

have played a role in limiting the effectiveness of DCT strategies.

However, the level of reporting among users was also strikingly low

across these countries, which could greatly hinder the efficacy of the

procedure even if large levels of adoption were to be achieved.

Though most countries categorized CT apps as ineffective

interventions, a study about the British CT app concluded

otherwise. Even when it only had an adoption rate of 29%, they

estimated that during an outbreak of over half a million individuals,

the CT app resulted in 1.7 million notifications sent to potential

contacts, roughly 3 per case. With an estimated secondary attack

rate of 6%, and assuming that 65% of individuals adhered to

quarantine, it was estimated that between 4,200 to 8,700 deaths

were averted by the app, claiming that it was highly successful (13).

Interestingly, both the percentage of adoption and the number

of contacts alerted per index case were very similar to the ones

found in the Australian study. Therefore, the apparent success

of the intervention probably derives from the difference in the

size of both outbreaks rather than from the good performance

of the app. While the outbreak in Australia was relatively small

and conventional contact tracing was extraordinarily effective,

identifying 40 close contacts per index case, the outbreak in the UK

was much larger, and manual contact tracing only identified 2 close

contacts on average (14).

Overall, it is clear that the worldwide performance of DCT

systems was far from ideal. But was this solely derived from the

low penetration of the app or other aspects of human behavior

may have influenced their performance? From the empirical

implementations, we identified that compliance with reporting

is an important factor to consider. Moreover, it is also likely

that the reluctance of the population toward app adoption may

have induced unexpected temporal delays between the start of the

CT app campaign and its mass adoption, which could have also

hindered their performance.

Now that the pandemic phase of COVID-19 has come to an

end, it is time to gather all evidence available to generate more

complete CT app models that can better inform policy-making.

To this end, we propose a hybrid model that combines epidemic

and human behavior dynamics to describe the co-evolution of

a disease outbreak and the CT app adoption process over a

single population. Through its use, we assessed the impact of

three human behavior parameters (maximal app adoption, average

reluctance toward adoption, and reporting compliance) on the

effectiveness of CT apps. This allowed us to extract some general

recommendations for healthcare authorities and policy-makers,

which can be interpreted as a set of good practices for future

implementations of DCT systems.

2. Methodology

2.1. Population structure

Communicable diseases spread through the interaction

between an infected individual and a susceptible (or healthy) one.

To model these interaction patterns, epidemic models often rely on

networks. These mathematical representations are composed of a

set of entities (also known as nodes) and the pairwise interactions

between them (known as edges or links) (15).

In our model, we have considered two different types of

interaction patterns between the same set of 10,000 individuals. The

first connectivity pattern reflects the in-person interactions. This is

the population structure in which the epidemic dynamic spreads.

Meanwhile, the second connectivity pattern reflects the Bluetooth

interactions registered by the CT app, which are only a proxy of

the real in-person contacts. Both patterns represent connections

between the same set of nodes through different edge distributions.

Therefore, they can be represented as amultilayer network with two

layers (16), the epidemic layer and the CT app layer. See Figure 1A

for a schematic representation of the multilayer network structure.

The connectivity pattern of the epidemic layer was defined

to follow the contact distribution observed in survey data from

the Italian population (18, 19). In graph theory, the distribution

of the number of contacts per individual is often called the

degree distribution, and its shape and average value define many

of the topological properties of a network (15). Prior research

has indicated that the degree distribution of in-person contact

networks follows a negative binomial shape (18), and thus it can be

completely characterized through its average value and dispersion

parameter. To estimate them from survey data we followed the

approach described in Lu et al. (20). We first estimated the average

number of interactions per individual (average degree 〈k〉) from the

age-mixing matrices in Mistry et al. (19) (〈k〉 = 11.92), and then we

obtained the dispersion parameter (r) by fitting a negative binomial
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FIGURE 1

Overview of the epidemic-CT app multilayer network model. (A) Schema of the multilayer network structure and the coupling between layers. The
links connecting nodes in di�erent layers are a visual aid to reflect that both nodes represent the same individual in two contexts. (B) Compartmental
model of the dynamic in the CT app layer. It contains two separate dynamics, the app adoption dynamic, and the app e�ect. (C) Compartmental
model for the epidemic layer. It is based on a modified SEPIR epidemic model (17), with the addition of a presymptomatic state (P) and quarantined
versions of the S, E, P, and I states. The transition rates have been defined to produce outbreaks reassembling the 1st wave of the COVID-19
pandemic.

distribution to the age-aggregated data from the POLYMOD study

(r = 2.426) (18).

To define the connectivity pattern of the CT app layer we just

expanded the in-person contact network with random edges. These

spurious links reflect interactions meeting the inclusion criteria

of the CT app (location and duration) but not entailing a risk of

infection, because of other protective measures or physical barriers

between the users. For instance, in Australia, up to 61% of the

contacts identified by the app were workers in adjacent rooms,

customers in neighboring restaurants or even people waiting in

separate cars at COVID-19 drive-through testing clinics (9). Thus,

we duplicated the number of contacts associated with random

encounters in this network. Given that random contacts encompass

approximately 25% of the 11.92 average daily interactions of a

person (19), this yields an average degree in the CT app network

of 〈k〉App = 14.81.

To evaluate the sensitivity of our results to the population

structure characteristics, we repeated the analysis for

populations with two non-empiric degree distributions

[Erdős and Rényi random graph (21) and a Scale-Free

network (15)] and a very similar 〈k〉. More details about the

network definition and the fitting process are available in

Supplementary Methods.

2.2. Epidemic model

The dynamics of epidemic contagion have traditionally

been modeled through compartmental models. This approach

assumes that individuals can be classified in one of the

states (compartments) of the model and they can change

their state depending on the probability of transition between

compartments (15).

We described the natural history of SARS-CoV-2 using the

compartmental model shown in Figure 1C. This model is based

on the Susceptible-Exposed-Presymptomatic-Infected-Removed

(SEPIR) model (17), which has already been used to model SARS-

CoV-2 progression (22). In short, the SEPIR model assumes

susceptible individuals (S) can be infected by interacting with

their neighbors with infectious capabilities, presymptomatic (P)

or infected (I). After contagion, S individuals transition toward

the exposed state (E), in which they are already infected but not

yet infectious. After this latent phase, infected individuals gain

contagion power, despite still not showing symptoms, this is what

is known as the presymptomatic infected state (P). As symptoms

appear P individuals transition toward the symptomatic infectious

state (I), in which they will remain until they lose contagiousness,

thus transitioning to the removed state (R).
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This basic epidemic model was modified to incorporate

quarantined equivalents to the S, E, P, and I states (Sq, Eq, Pq, and

Iq). In them, disease follows the same progression as in their non-

quarantined counterpart, but Pq, and Iq cannot infect others and

Sq cannot become infected. Transitioning from a free state to its

quarantined analog occurs mainly through the CT app’s warning

system. All individuals who receive a message from the app are

forced to enter a 10-day preventive quarantine regardless of their

current state. Additionally, a fraction of the daily new symptomatic

individuals (P → I transitions) are detected in healthcare testing

and quarantined 1 day after developing symptoms. By limiting

healthcare detection to symptomatic cases on their first day of

symptoms we reflect the large fraction of individuals with mild

or asymptomatic COVID-19 manifestations, who would never be

detected without additional control strategies. Contrary to the

preventive quarantines, confirmed positive cases (Iq) remain under

quarantine until their complete loss of contagiousness.

The transition rates across compartments were defined based

on epidemiological metrics empirically estimated during the Alpha

variant of COVID-19, like the mean incubation period (IP), the

generation time, or the basic reproductive number (R0). More

specific definitions of these epidemiological metrics can be found

in Supplementary Table 1.

The IP defines the average time between infection and the start

of symptoms onset. In the case of the Alpha variant of COVID-

19, several studies reported it was around 5 days, e.g., 4.9 days

(95% credible intervals, CrI, 4.4–5.4) (23) or 5.1 days (95% CI, 4.5–

5.8 days) (24). Another relevant epidemic parameter is the mean

generation time, which indicates the average delay between two

lineages of a generation (25). In the case of the Alpha variant, it

was estimated to be 7.12 days (95% CrI 6.27–8.44) (23). Based on

these parameters, we assumed the transition rates between E → P

and P → I to be ǫ = 1/3 and ρ = 1/2 respectively, resulting

in an average incubation period of 5 days. To reflect the 7-day

mean generation time, the transition rate from I → R (removal

probability) was assumed to be µ = 1/2. Note that in this case, the

µ does not represent the probability of complete recovery from the

symptoms of COVID-19; it merely reflects the loss of contagious

capacity of an infectee, either due to natural causes or due to

behavioral changes (contact reduction).

The last parameter of the epidemic compartmental model is the

transmissibility parameter (β). This parameter reflects the infection

rate of the disease and we defined it to reflect the R0 observed

in European countries during the 1st wave of the COVID-19

pandemic (2 ≤ R0 ≤ 3) (26).

R0 is an epidemiological metric widely used to estimate the

difficulty of controlling epidemic progression. For R0 < 1 an

epidemic outbreak naturally dies out, as the number of recovered

individuals will exceed the number of new infections. Meanwhile,

R0 > 1 indicates that the pathogen continues spreading (15).

For a pathogen with presymptomatic infectivity, the relationship

between β and R0 is given by

R0 = β

(

1

ρ
+

1

µ

)

λR(Aij) (1)

where β , ρ, andµ represent the epidemic parameters, and λR is the

real component of the largest eigenvalue of the network’s adjacency

matrix (27). Hence, for a given β , the actual value of R0 will depend

on the network under consideration. We calibrated the model to

ensure it resulted on an R0 = 3 using our in-person contact

network estimated from mobility data. This yields β = 0.045, see

Figure 2B.

We also relied on empirical data to define the transition rates

for healthcare detection and the duration of preventive quarantines.

Seroprevalence studies have shown that during the first wave,

only 10% of the cases were detected, increasing to 60–70% in

subsequent waves (28). Thus, we assumed that half of the new daily

symptomatic were detected on the first day of infection (δ = 0.5)

and that preventive quarantines lasted for 10 days, as suggested

in the COVID-19 quarantine protocol followed by the Spanish

government during most of the pandemic (29).

The epidemic parameters described above were also used

for the simulations evaluating the sensitivity of the results to

the population structure. Given the dependence of R0 on the

network structure, the R0 values from the Erdős-Rényi and

Scale-Free simulations are different than the one in the negative

binomial distribution. However, their maximal prevalence levels

show similar values for the whole range of β under consideration,

Figure 2A.

A different sensitivity analysis was also performed to assess the

impact of the epidemic parameterization on the results obtained. In

this case, we simulated outbreaks with a shorter incubation period

(IP = 3.5 days), more similar to the Omicron variant (23), and

different R0 values. More details about how this sensitivity analysis

can be found in the Supplementary Results.

2.3. Contact-tracing app model

The dynamical model in the CT app layer reflects two different

processes, the adoption of the CT app and the spread of the warning

notifications to potentially infected individuals (see Figure 1B).

The app adoption dynamics describe the decision-making

process of each individual to download or remove the CT app

depending on their reluctance level and the pressure of external

factors. Prior research has described binary decision-making in

rational individuals (like adherence to riots or trends) using

threshold dynamics. These models assume each individual in the

population has an intrinsic reluctance threshold for adopting a

specific behavior. This represents the minimum level of external

influence (e.g., peer pressure or media information) required for

an individual to adopt the behavior. The dynamical process then

considers that an individual will adopt the behavior if the adoption

pressure is higher than their reluctance level or otherwise they will

remain in the non-adopting state (30).

Our model assumes that disease progression acts as a positive

pressure toward app adoption, as it has been observed that fear of

infection will push more reluctant individuals to overcome their

concerns and download the app (31). Because of this, we defined

the reluctancy threshold for each individual as the minimal level of

infection (7-day incidence/100,000 inh.) triggering their adoption

of the app. More intuitively, the app adoption dynamics assume

that individuals will only use the CT app while they feel at risk (the

incidence level is above their reluctancy threshold), and they will
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FIGURE 2

Selection of the transmissibility parameter on the basis of R0. (A) Maximal prevalence for simulations with ranging values of β. (B) Basic reproductive
number estimated for simulations with varying β. Light-violet trends represent the results for the Erdős-Rényi connectivity matrix (ER), purple trends
reflect estimations for the Scale-Free (SF) population and the blue points reflect the results for the Negative Binomial distribution (NB) fitted to data
from contact patterns surveys.

uninstall it once the incidence returns below threshold. Generally,

the decision to download or remove the CT app is not made on

a daily basis, even if the environmental conditions have changed.

To incorporate this factor, we introduced a refractory period after

the decision-making event equal to the duration of the preventive

quarantine (10 days).

To model the heterogeneous reluctance levels between

individuals we sampled their reluctancy threshold from a Poisson

distribution with a pre-defined average reluctancy threshold (Ithr).

This distribution was modified in both extremes to include a

fraction of individuals with extreme responses:

• Non-adopters: Individuals who would never adopt the app,

either because they are too concerned about their privacy, or

they do not have access to a compatible smartphone. In the

case of European countries, prior studies have shown that at

least 30% of the population may be unable to acquire CT

apps (5). We used this value to set the upper bound in the

maximal number of adopters to 70%.

• Early adopters: Pioneer individuals without reluctance

toward app adoption. They download the app right

after its implementation and only uninstall it after

the complete extinction of the epidemic outbreak

(Ithr = 0 cases/100,000 inh.). We considered only 1% of

the population to be early adopters.

The population’s Ithr can be interpreted as the cultural

differences between different populations, in terms of their

willingness to adopt the CT app. Populations with a high average

threshold require more time to reach the level of infection

triggering the generalized adoption of the apps, while low threshold

populations will adopt the CT app more easily.

The second dynamic implemented in the CT app layer is the

reporting system. Only compliant app users who test positive for

SARS-CoV-2 (individuals transitioning to the Iq state) will report

their infection in the CT app and activate the contact warning

system. This will cause all their Bluetooth contacts (neighbors

in the app layer) who are also active users to enter a 10-day

preventive quarantine. We assumed that compliance is only related

to reporting, thus, individuals who are labeled as non-compliant

will still quarantine themselves since they willingly downloaded the

app. Individuals who do not report their status nor follow the app

recommendations are those who do not have the app installed.

A list of the parameters used for the epidemic-CT app model is

available in the Supplementary Table 2.

2.4. Simulations

We assessed the impact of the CT app intervention by

measuring the difference in peak incidence and total prevalence

between a simulation with the CT app and a baseline scenario

without it. Both simulations were initialized with the same initial

conditions and iterated for 500 time steps (500 days), enough time

to observe a complete dynamic in both layers. To reduce the effects

of stochastic noise, we repeated each simulation 1,000 times starting

from different initial conditions.

Before estimating the effectiveness of the CT app, we removed

all repetitions not resulting in an effective outbreak (max(I) <

1%) and aligned the surviving ones following kiss et al. (32) (see
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Supplementary Section 1.3 for a description of the alignment). The

effectiveness of the CT app was measured over the average response

of the surviving repetitions in each simulation and it was estimated

by using the relative reduction in peak incidence (1i) and maximal

prevalence (1p). For both cases 1 was defined as

1 = 1−
max(I CT app)

max(I Baseline)
(2)

where I CT app is the value of the metric (peak incidence or maximal

prevalence) in the scenario with an active CT app, and IBaseline is

the same metric for the scenario without the CT app.

The relative peak incidence reduction is associated with a

flattening of the epidemic curve, indicating the potential of the

CT app to reduce the speed of epidemic propagation and the

pressure on the healthcare system. Meanwhile, maximal prevalence

reduction is an indicator of the overall impact of the CT app in

reducing the total number of infections, providing a more global

perspective of the effect of the apps. The code to reproduce the

analysis is available on the following public repository https://

github.com/AFosch/Epi-CTapp.

3. Results

3.1. Scenario description

We evaluated the influence of three factors of human behavior

in the effectiveness of CT apps: the maximal percentage of

adoption, the average reluctancy toward app adoption and the

fraction of compliant users. To this end, three hypothetical

scenarios were implemented: the voluntary adoption scenario

(where 100% compliance is assumed), the imposed adoption one

(with zero reluctance toward app adoption) and the “adherence

& compliance” scenario (only constraining the maximal level of

adoption). These scenarios can also be interpreted according to

the characteristics of the app adoption campaigns followed by

different countries during the COVID-19 pandemic. In European

countries, most countries relied on voluntary adoption campaigns,

where adherence is not compulsory and it only depends on the

population’s willingness to download the app (its average reluctance

threshold). In this scenario, complete compliance is assumed under

the hypothesis that individuals who voluntarily decide to adhere to

the strategy will also be more likely to comply with it. Contrarily,

the imposed adoption strategy assumes that individuals are forced

to download the app from the start of the epidemic outbreak (Ithr =

0 cases/100,000 inh.) but no control is exhorted over their use.

The differences between these two approaches are more evident

when comparing their evolution over the same baseline epidemic

outbreak. In the voluntary adoption scenario (Figure 3A), app

adoption only starts rapidly growing after the epidemic outbreak

has reached the population’s average reluctancy threshold (Ithr =

230 cases/100,000 inh. in this case). As the epidemic progresses, the

number of users continues to increase, reducing its adoption rate as

the epidemic starts its decline. When the incidence level decreases

below the threshold, the number of users rapidly declines, until the

complete removal of the app around t = 120. In this scenario,

the average reluctancy threshold controls the start of the adoption

process and the time of removal of the app, conditioning the total

duration of the control strategy. Lower reluctancy produces wider

windows of app adoption, resulting in higher detection rates and

increased app effectiveness. This can be observed in more detail in

Supplementary Figure 3A.

In the imposed adoption scenario the app adoption dynamic

differs (see Figure 3B). Since the average reluctancy threshold is

defined to Ithr = 0 cases/100,000 inh., app adoption rapidly

grows at the start of the simulation, reaching the maximal level

of adoption (70%) before the epidemic’s exponential growth phase

(t = −4). Maximal adoption is maintained for the rest of the

epidemic outbreak and the app removal cascade will only start after

the complete extinction of the disease. In this scenario, the maximal

number of adopters is maintained for the whole duration of the

epidemic, regardless of its size (see Supplementary Figure 3B).

Thus, compliance affects the effectiveness of the strategy through a

reduction in the performance of the reporting system, not through

a change in the duration of the adoption window.

Finally, the “adherence & compliance” scenario relaxes the

assumptions of complete compliance and no reluctance toward

app adoption assumed respectively, in the voluntary and imposed

adoption scenarios. It represents a more realistic scenario,

where the only constraint introduced over the human behavior

parameters is on the upper bound of the number of adopters (set

to 70% of the total population). As mentioned in Section 2.3,

the number of app users is intrinsically upper-bounded by the

proportion of individuals who do not have an appropriate device

(30% of the population).

3.2. Exploratory analysis of the human
behavior parameters

Figure 4 shows the results for the voluntary and imposed

adoption scenarios and Figure 5 shows the results for the

“adherence & compliance” simulation. The effectiveness of the

apps is measured in terms of peak incidence reduction (1i) and

prevalence reduction (1p). To facilitate the interpretation of the

results we defined qualitative performance patterns depending on

the incidence and prevalence reduction induced by the app: no

effectiveness (1 < 5%), low effectiveness (5% ≤ 1 < 10%),

moderate effectiveness (10% ≤ 1 < 20%) and high effectiveness

(1 ≥ 20%).

The analysis for the voluntary adoption scenario (Figures 4A,

C) revealed that CT apps are only effective (1 ≥ 5%) when

low reluctancy thresholds and high levels of adoption are present.

Strategies with late adoption (Ithr ∼ 1300 cases/100,000 inh.) are

only minimally effective in peak-incidence reduction when they

are adopted by a very large fraction of users (> 50%). However,

late adoption is less relevant for prevalence reduction, where the

same combination of parameters resulted in a moderate prevalence

reduction (1p ≥ 10%). Interestingly, to obtain a high peak

incidence reduction (1i ≥ 20%) it is not enough to have more

than 50% of adopters, the population’s average reluctancy threshold

must also be very low (Ithr < 400 cases/100,000 inh.).

In the imposed adoption scenario (Figures 4B, D) CT apps

with high levels of adoption and moderate levels of compliance

are necessary to obtain effective strategies (1 ≥ 5%). Apps with
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FIGURE 3

Temporal evolution for the epidemic and app adoption dynamics in the voluntary adoption and imposed adoption scenarios in a population with a
realistic distribution (Negative Binomial fit with survey data). In each panel two conditions are tested, purple traces reflect the baseline condition (no
app adoption) and the green ones reflect the e�ective CT app situation. The results for both conditions are represented with the average and 95% CI
across 1,000 repetitions. Epidemic progression is reported using the 7-day incidence/100,000 inh. (more details available in
Supplementary Section 1.4), while CT app adoption is reported with the percentage of the population using the CT app. (A) Simulation for the
voluntary adoption scenario with an Ithr = 230 cases/100,000 inh. (B) Simulation for the imposed adoption scenario with a fraction of compliant users
= 70%.

less than 10% of compliance are mostly ineffective, even when

considering high levels of adoption. The relevance of compliance

for app effectiveness is even more apparent when aiming toward a

high-effectiveness strategy (1 ≥ 20%). Even when assuming a high

level of adoption (50%), it is only possible to obtain a high peak

incidence reduction if more than 30% of compliance is guaranteed.

The results for the “adherence & compliance” scenario

(Figure 5) confirm the trends observed in the previous strategies,

evidencing that moderate levels of compliance (>15%) and low

reluctancy thresholds (Ithr < 800 cases/100,000 inh.) are required

to obtain relevant peak incidence reductions, and that even

strategies with a high reluctancy threshold can result in moderate

prevalence reductions if almost everyone complies with them.

The results of the sensitivity analysis to the population’s

degree distribution can be found in Supplementary Figures 4–7.

Meanwhile, the analysis of different epidemic parameterization is

shown in Supplementary Figures 8–12. The results obtained in all

the supplementary scenarios evaluated support the conclusions

extracted in the main results.

4. Discussion

The COVID-19 pandemic was one of the first cases in which

digital contact tracing was widely used as an epidemic control

measure. However, its empirical performance drastically differed

from the one estimated in early modeling attempts. Health

authorities in many countries have concluded that CT apps were

completely ineffective, and in some cases, they even implied an

extra burden for them.

One of the key lessons to be learned from COVID-19 pandemic

is that the first models used to estimate the effectiveness of DCT

systems were too simplistic. They modeled app adoption through

a static point of view, assuming a constant amount of users for

the whole duration of an outbreak. In reality, app adoption is a

dynamic process, where individuals can decide to download and

remove the app at will as the epidemic progresses. Heterogeneous

reporting compliance has also been observed in empirical DCT

systems, either because of the low willingness of an individual to

report their status or the inability to do so due to technical issues.

These human behavior heterogeneities can impact the

effectiveness of DCT systems but they have been disregarded in

most prior DCT models. Our study proposes a novel approach

for representing CT apps, where app adoption is modeled as

a threshold dynamic depending on epidemic progression and

heterogeneities in the reluctance threshold. Besides, we also

include the effect of the level of compliance with infection

reporting. Using this model we explored the interplay between app

adoption and epidemic progression and characterized how three

human behavioral heterogeneities alter the performance of CT

apps. This was achieved by simulating three separate scenarios: the

voluntary adoption (assuming complete compliance) the imposed

adoption (assuming no reluctancy toward app adoption) and the

“adherence & compliance” scenario, where the only constraint

is the maximum number of people who can download the app

(70% of the total population). An exploratory analysis of these

scenarios allowed us to extract a set of recommendations (good

practices) that may interest policy-makers when planning to use

DCT systems in future outbreaks.

First, with the current maximal adoption levels (<30%) the

effectiveness of CT apps is limited to only moderate or low effects.

Thus, DCT systems should preferably be used as a complement to

other mitigation strategies, such as classical contact tracing or social

distancing measures. Prior research already identified the need for

high levels of adoption to obtain effective strategies (33), and our

analysis confirmed these outcomes. Apps adopted by less than 10-

15% of the total population always result in ineffective strategies

regardless of the time of adoption and the level of compliance
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FIGURE 4

Impact of di�erent factors of human behavior in the e�ectiveness of CT apps in a population with a Negative binomial distribution (NB). For the
voluntary adoption scenario (A, C), the parameters explored are the average reluctance threshold and the maximal fraction of adopters. Meanwhile,
in the imposed adoption scenario (B, D), changes in the fraction of cooperative users and the maximal fraction of adopters are explored instead. The
color scale reflects the average reduction produced by the CT app (1) in the peak incidence (top panels) or maximal prevalence (lower panels). The
isoclines indicate the combinations of parameters resulting in 1 = 5%, 1 = 10%, and 1 = 20%.

assumed (Figure 4). This lower bound of adoption corresponds to

approximately 21% of all smartphone users, a value very close to

the minimal penetration needed identified in prior studies [20% in

(5)].

Even with more than 50% of maximal adoption, high

effectiveness strategies are only obtained when the reluctancy

threshold is low (<400 cases/100,000 inh.) in the voluntary

adoption scenario, or compliance is moderate or high (>20%

compliant users). Note that incidences of the order of 1,000

cases/100,000 inh. were common in Europe through 2020-2022

and still app adoption was close to 20–30%. Similarly, even

though people voluntarily downloaded the app, compliance was

in the range of 20–40%, and thus one would expect lower

values if adoption is imposed. As such, high effectiveness may

not be reachable in empirical settings. Nonetheless, for large

enough outbreaks—such as the one observed in the UK—even low

reductions of prevalence may result in a noticeable decrease in

hospital burden.

To aim toward highly effective strategies, policy-makers

should emphasize the importance of early adoption and reporting
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FIGURE 5

Impact of the population’s average reluctance threshold and the level of compliance in the e�ectiveness of CT apps for a population with a Negative
binomial distribution (NB). We assumed a maximal fraction of adopters of 70% for the “adherence & compliance” scenario. The color scale reflects
the average reduction produced by the CT app (1) in the peak incidence (A) or maximal prevalence (B). The isoclines indicate the combinations of
parameters resulting in 1 = 5%, 1 = 10%, and 1 = 20%.

compliance in their promotion campaigns. During the COVID-19

pandemic, the fast adoption of CT apps was mostly hindered by

the public’s privacy and data-sharing concerns (34). Policymakers

should work to ensure that DCT systems are perceived as a safe and

secure option way before the start of any new outbreak. This will

probably imply a revision of the current implementations of DCT

systems andmassive promotion campaigns to establish them as safe

and secure interventions.

Policy-makers should also focus on increasing reporting

compliance. Limited research has assessed the importance of

reporting compliance for DCT. An interesting study is Davis

et al. (35), which explored how adherence and compliance can

play a relevant role in a traditional contact-tracing strategy

based on self-reporting. In their scenario with low self-reporting

(around 11%), scalability did not have a significant impact on

the overall effectiveness. This was also observed for our model,

where increasing the percentage of adoption did not result in major

improvements in app effectiveness for compliance levels below

20% (Figure 4D). Adherence only starts playing a major role in

increasing app effectiveness if moderate levels of compliance are

ensured.

Poor compliance may also be related to the very own

implementation of the app. To exemplify this point, we analyzed

the performance of RadarCOVID, the Spanish CT app (36).

According to their statistics, after 40 weeks of implementation, the

app had a 19% of penetration and only 6.7% of the users were able to

report their infection (36). Our model shows that this combination

of parameters results in a completely ineffective strategy both in

terms of peak incidence and prevalence reduction (Figures 4B,

D). The low levels of compliance in the Spanish app may have

resulted from its complex reporting system. Users needed to obtain

a verification code from the regional healthcare authorities and

enter it into the CT app to report their infection. However,

the codes were generated by the central Health Ministry, which

had to communicate with regional authorities (37). Due to this

interaction, there were significant delays in reporting infections,

and many users did not receive their verification code even after

requesting it.

We hypothesize that apps that follow a similar approach

could benefit from a more straightforward reporting strategy,

where the healthcare authorities are responsible for activating the

positive status of an individual once they have provided their

consent, removing the responsibility from the final user (38). This

would ensure almost perfect compliance at the expense of maybe

increasing privacy concerns toward app adoption. Hence, there

is no perfect solution and more research should be devoted to

understanding how DCT can actually be implemented in practice,

taking into account the complexities of human behavior.

4.1. Limitations and future research

One of the main considerations of the study is the definition of

the CT app model. App adoption was assumed to follow threshold

dynamics only dependent on the prior incidence and the reluctance

level of each individual. This follows the hypothesis that media

reporting about disease progression can act as a driving force to

encourage more reluctant individuals to download the app for their

protection. There is still not a clear consensus about the main

driving factor for app adoption. Guillon (39) suggests concerns

about data protection and misinformation played a more relevant

role in shaping app adoption than the perception of being at

risk. However, Nguyen et al. (31), a study based on technology

acceptance models (TAM), states that health risk perception has
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a positive effect on CT app adoption. Future research could

aim toward developing an adoption model combining health

risk perception and peer pressure dynamics. For generating such

models it would be valuable to consult with policy-makers and

implementation scientists as they can reveal other relevant factors

that may condition the empirical performance of DCT systems.

Our app adoption model also assumes that infectees warn their

contacts the same day of the diagnosis and the quarantine starts the

exact day after the alert. Prior research has identified that delays

in the reporting process, poor compliance with the preventive

quarantine and testing unavailability can drastically diminish the

effectiveness of CT app strategies (2, 40, 41). Empirical evidence

also shows that even if compliance may be of the order of 40–70%

of the users, only 10–50% of the ones that receive the alert contacted

the authorities (8). In our case, we assumed that the latter was 100%.

Our epidemic model is not designed to precisely replicate

the progression of the COVID-19 pandemic. Instead, its purpose

is to assess the isolated impact of CT apps. Therefore, in our

baseline simulations, we intentionally omit any consideration of

the influence of other epidemic control interventions implemented

during the COVID-19 pandemic (e.g., the use of face masks, social

distancing, preventive screening, etc.), as well as any changes in the

behavior of the population. This approach implies that our baseline

scenario may yield higher incidence and prevalence values than

those observed in real-world settings, as it does not account for

the natural tendency of people to change their behavior during

a pandemic, nor the effect of any of the non-pharmaceutical

interventions that were implemented all over the world. Therefore,

our results should be interpreted as an upper-bound estimate of the

potential effectiveness of CT apps in realistic scenarios.

Future research could also be directed toward incorporating

more realistic population structures into the model. It is known

that age heterogeneities can play a major role in the distribution

of reluctance toward app adoption (5) and also in the average

number of in-person contacts. Thus, it would be possible to

modify the distribution of reluctance to better describe the patterns

observed in realistic populations. Prior studies have reported that

a high CT app coverage amongst adults plays a central role in

preventing transmission to older adults, who have less accessibility

to smartphones (5). By including age heterogeneities in our model

it will also be possible to use more complex epidemic models that

consider the distinction between individuals who die and recover

from the disease. This will provide some insight into the number

of deaths averted by the use of CT apps among the different age

groups.

4.2. Conclusion

Overall, this study presents a novel approach to represent

the co-evolution of epidemic progression and CT app adoption

from a dynamic point of view. This approach allowed us to

better characterize CT apps by including human behavioral

heterogeneities like the individual’s reluctance toward app adoption

or different levels of compliance.

With this approach, we identified some relevant “good

practices” that should be followed by policy-makers aiming to

use DCT systems in new epidemic outbreaks. The summarized

recommendations are the following:

• The first models of DCT systems were far too optimistic

because they disregarded several crucial factors of human

behavior.

• Even if high levels of adoption are needed to obtain highly

effective CT apps, there are other important factors to

consider, like an early adoption and at least moderate levels

of compliance.

• CT apps can hardly be used as the only protective measure

during an outbreak. Instead, they are better used to

complement other mitigation strategies.

• The fast adoption of DCT systems should be prioritized in

future outbreaks.

• Reporting compliance has been one of the main bottlenecks

of some of the CT apps implemented during the COVID-19

pandemic.

• Low compliance can derive from an overly complicated design

of the app’s reporting system.

• A reporting system that removes the responsibility for

reporting from the final user may aid in increasing

compliance.

• More research should be directed toward integrating the

complexities of human behavior in epidemic processes,

especially when planning interventions for epidemic control.

These models should incorporate heterogeneity in adherence

and compliance with the interventions.

One way in which policy-makers could apply these

recommendations is by promoting the development of DCT

systems in non-pandemic periods. This proactive approach would

give time to the general public to trust such systems before they

must be used, likely reducing the population’s average reluctance

once the outbreak starts. Another advantage of this method

is that CT apps could be easily activated under demand. This

would lead to shorter delays between disease onset and CT app

implementation, which is one of the key factors needed to boost

their effectiveness.

Even with these considerations, it is likely that DCT systems

cannot be the sole solution for epidemic control. We observed

that their limited performance in realistic settings makes them

more suited to become a complement to other traditional epidemic

control strategies.
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