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Background: The intricate interplay between human well-being and the 
surrounding environment underscores contemporary discourse. Within this 
paradigm, comprehensive environmental monitoring holds the key to unraveling 
the intricate connections linking population health to environmental exposures. 
The advent of satellite remote sensing monitoring (SRSM) has revolutionized 
traditional monitoring constraints, particularly limited spatial coverage and 
resolution. This innovation finds profound utility in quantifying land covers 
and air pollution data, casting new light on epidemiological and geographical 
investigations. This dynamic application reveals the intricate web connecting 
public health, environmental pollution, and the built environment.

Objective: This comprehensive review navigates the evolving trajectory of SRSM 
technology, casting light on its role in addressing environmental and geographic 
health issues. The discussion hones in on how SRSM has recently magnified our 
understanding of the relationship between air pollutant exposure and population 
health. Additionally, this discourse delves into public health challenges stemming 
from shifts in urban morphology.

Methods: Utilizing the strategic keywords “SRSM,” “air pollutant health risk,” and 
“built environment,” an exhaustive search unfolded across prestigious databases 
including the China National Knowledge Network (CNKI), PubMed and Web of 
Science. The Citespace tool further unveiled interconnections among resultant 
articles and research trends.

Results: Synthesizing insights from a myriad of articles spanning 1988 to 2023, 
our findings unveil how SRMS bridges gaps in ground-based monitoring through 
continuous spatial observations, empowering global air quality surveillance. High-
resolution SRSM advances data precision, capturing multiple built environment 
impact factors. Its application to epidemiological health exposure holds promise 
as a pioneering tool for contemporary health research.

Conclusion: This review underscores SRSM’s pivotal role in enriching geographic 
health studies, particularly in atmospheric pollution domains. The study 
illuminates how SRSM overcomes spatial resolution and data loss hurdles, 
enriching environmental monitoring tools and datasets. The path forward 
envisions the integration of cutting-edge remote sensing technologies, novel 
explorations of urban-public health associations, and an enriched assessment of 
built environment characteristics on public well-being.
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Introduction

Exposure to atmospheric pollutants has emerged as a significant 
risk factor contributing to the global burden of disease. The rapid 
economic growth and urbanization witnessed over the past decades 
have led to substantial emissions of particulate matter (PM) into the 
atmosphere, primarily from the combustion of coal and fossil fuels (1, 
2). Of particular concern is PM with an aerodynamic diameter of less 
than 2.5 microns (i.e., PM2.5), which has been identified as a hazardous 
component in modern societies. Additionally, gaseous pollutants such 
as NOx, SO2, O3, and CO have also been concerned for their adverse 
influence on human health, causing significant and irreversible harm 
to human well-being (3–5). Surprisingly, despite efforts to mitigate 
global environmental and occupational exposure risks between 1990 
and 2019, the exposure risks associated with atmospheric PM and O3 
showed an alarming increase with annual variations of 1.78 and 
0.51%, respectively. Long-term exposure to these atmospheric 
pollutants poses a substantial threat to both the ecological 
environment and public health, with adverse outcomes reported 
across various disease categories, including those affecting the 
immune, respiratory, cardiovascular, and pulmonary systems, as well 
as hypertensive diseases in pregnancy and cancer (6–10). These 
adverse health impacts result in significant health losses and economic 
burdens (11–13). If left uncontrolled, air pollution-related fatalities are 
projected to escalate to 6–9 million globally by 2060 (14, 15). The link 
between air pollution and public health stems from human exposure 
to contaminated air. Therefore, a rigorous quantitative assessment of 
air pollution exposure is critical for evaluating associated health risks 
and serves as a fundamental basis for establishing ambient air quality 
standards and identifying priority areas for air pollution emission 
control. Air pollution exposure assessment is conducted at two levels: 
population and individual. Regional-scale population exposure 
evaluation relies on air pollutant concentrations and population 
distribution, while individual external exposure assessment involves 
tracking individual measurements or simulations. In both cases, air 
pollutant concentration plays a pivotal role in quantitatively assessing 
the extent of air pollutant exposure.

Air pollutant concentrations are conventionally monitored though 
automatic monitoring stations, offering objective and timely data on 
ambient air quality. However, the implementation of large-scale, grid-
based, high-density air quality monitoring in cities often encounters 
challenges related to funding and deployment conditions. Addressing 
the influence of uneven distribution of regional pollution sources and 
variations in pollutant transmission conditions on urban areas, some 
studies have utilized spatial interpolation and land use regression 
techniques to simulate regional air pollution concentrations. However, 
it is important to knowledge that these methods are constrained by 
the limited number of monitoring stations and cannot provide 
comprehensive coverage of the entire population in the region. In 
recent years, satellite data has emerged as a valuable tool for 
monitoring air pollution concentrations and evaluating population 

exposure, boasting the advantages of wide spatial coverage and long-
time observation capabilities (16, 17). Satellite remote sensing (SRS) 
offers a more effective approach to monitor and estimate atmospheric 
pollutant concentrations compared to ground-based monitoring 
methods. It provides valuable insights into the variation of pollutants 
across extensive weather maps, allowing for estimates of atmospheric 
parameters with broad spatial coverage. The rapid advancement of 
SRS technology, utilizing polar-orbiting and geostationary satellites, 
has significantly improved the spatial and temporal resolution of 
atmospheric environment monitoring. Beyond atmospheric 
environment monitoring, SRS technology finds extensive applications 
in monitoring various urban environments, such as the coverage of 
greenness, changes in land use, urban heat islands and so on. The 
mainstay of existing remote sensing (RS) health research lies in 
observing the relationship between the Normalized Difference 
Vegetation Index (NDVI) and human health, using NDVI as the 
primary variable for green spatial exposure (18). Multiple review 
analyses have demonstrated a positive correlation between greenness 
and physical activity and mental health (19, 20). Greenness prevents 
adverse mental health outcomes, cardiovascular disease, and mortality, 
and exposure to greenness may decrease depression levels and 
depressive symptoms (21, 22). However, conclusions drawn from a 
single influencing factor are not sufficient to account for all health 
conclusions, and greenness, as a mediator and effect modifier of 
associations with health, should be analyzed in combination with 
multiple influencing factors to draw more persuasive 
research conclusions.

This paper adopts a systematic review approach to elucidate 
technical principles of atmospheric SRSM and depict its progress in 
the field of atmospheric environmental epidemiology and health 
geography. The specific objectives of this study are as follows: (1) to 
visually analyze the literature using CiteSpace, thereby highlighting 
the progress of SRSM technology in environmental health-related 
research and identifying its prospects and limitations in the fields of 
atmospheric environmental health and geographical health research; 
(2) to conduct a comparative analysis of the advantages and limitations 
of SRSM technology and other monitoring methods in targeted fields; 
and (3) to explore the application of SRS technology in geographical 
health and the unique advantages it offers.

Methods

Literature searches

We conducted an extensive search of publications spanning from 
1988 to the present in the CNKI, PubMed, Microsoft Bing, and Web 
of Science electronic databases. The search strategy encompassed a 
wide range of terms related to atmospheric pollutants (e.g., PM, PM2.5, 
ozone, nitrogen dioxide, sulfur dioxide, carbon monoxide, carbon 
dioxide, aerosols), urban air pollution (e.g., urban aerosols, pollution 
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hotspots, indoor and outdoor air quality, air quality index), monitoring 
and modeling (e.g., air quality monitoring, air quality modelling, air 
pollutant concentration prediction), RS techniques (e.g., 
environmental RS, satellite monitoring, satellite imagery, satellite air 
pollution monitoring sensors, MODIS, multi-angle RS, atmospheric 
correction, multispectral imagery, high spatial resolution, polarimetric 
RS, dark target algorithms, deep blue algorithms, surface reflectance), 
data analysis and mapping (e.g., haze removal, meteorology, aerosol 
optical depth (AOD), aerosol modelling, GIS, pollution scenarios, 
spatial mapping, spatial analysis, spatial variability, spatial 
heterogeneity, spatiotemporal correlation, spatiotemporal patterns, 
multi-scale prediction), urban environment and health (e.g., urban 
health, health adaptation, urban scale, urban planning, urban 
morphology, built environment, population density, urban 
agglomerations, transport infrastructure, land use), machine learning 
techniques (e.g., machine learning, land use regression models, 
geo-weighted regression models, spatial regression models), and 
health outcomes (e.g., health symptoms, mental health, infectious 
diseases, health risk, health risk exposure assessment, infection rates, 
mortality rates, long-term trends). The main keywords are: urban air 
pollutants, environmental monitoring, SRS, satellite monitoring steps, 
urban environmental health, built environment, regression modeling, 
health risk. Additionally, we manually searched the references cited in 
each included article to supplement our initial search.

Selection criteria

The inclusion criteria comprised studies (1) addressing the 
technical rationale and applications of SRS technology in atmospheric 
pollution monitoring; (2) focusing on geographical health research 
related to atmospheric pollution, influencing factors and approaches, 
and (3) exploring the substitutability of SRS technology in 
geographical health research methods. Exclusion criteria included 
research that (1) did not focus on SRS techniques and (2) did not 
concentrate on geographic health. After an initial screening based on 
titles and abstracts, 237 studies were selected. Following a review of 
the abstracts, 210 studies were further considered, and ultimately, after 
a thorough evaluation of the full texts, a total of 165 articles met all the 
criteria within the scope of this review.

Analysis tools

For data collection, processing, and visualization, we employed 
CiteSpace, a widely recognized and popular data analysis software. 
CiteSpace facilitates a comprehensive understanding of historical and 
current information within a discipline, allowing efficient exploration 
and identification of research frontiers and emerging trends. Its 
essential functions streamline data processing and enhance accuracy. 
Researchers can utilize various analysis methods, such as word 
frequency analysis, mediated centrality analysis, co-occurrence 
analysis, cluster analysis, timeline mapping analysis, and emergent 
word analysis, all of which contribute to improved readability of the 
literature and identification of research frontiers (23). By identifying 
emerging keywords, this study aims to comprehend the progression 
of research hotspots and trends at specific time, detecting the rise or 
decline of particular subject terms or keywords. CiteSpace’s robust 

features and advantages have made it extensively utilized across 
diverse disciplines, such as online learning (24), hospitality research 
(24), and cross-cultural competence (25). Therefore, this study 
leverages CiteSpace for the present literature review.

Results

Visual analysis of the literature

The literature search yielded a total of 190 articles 
encompassing the themes of SRS, built environment, and public 
health, spanning from 1988 to 2023. Employing the CiteSpace 
tool, we generated a temporal linear plot depicting the connections 
between keywords in the literature, allowing us to analyze the 
central themes and primary focuses of the relevant studies (26). 
Notably, the keywords “atmospheric RS” and “geographical health” 
co-occurred throughout the timeline. Table 1 and Figure 1 present 
the top 31 key terms with the highest hotspot, centrality, and burst 
intensity in the domains of RS and geographical health. To 
highlight their distinctive research attributes, we employed the 
Log-likelihood ratio (LLR) algorithm to obtain research terms and 
utilized the LLR algorithm’s labels for cluster identification. 
Furthermore, Figure 2 illustrated the 31 hot keyword nodes in red, 
showcasing their interconnections and relevance. According to 
Table 1, the keyword “particulate matter” emerged as the most 
frequent, appearing 40 times with a centrality of 0.32. Oher 
keywords like “air pollution” “environmental monitoring” 
“environmental exposure” “aerosol thickness” “air quality” 
“nitrogen dioxide” “RS techniques” and “SRS” displayed 
decreasing frequencies ranging from 38 to 4. Notably, keywords 
such as “particulate matter” “air pollution” “RS technology” and 

TABLE 1 The top 10 keywords ranked by frequency and centrality, 
respectively.

No Frequency Keywords Centrality Keywords

1
40

Particulate 

matter
0.32

Particulate 

matter

2 38 Air pollution 0.18 Air pollution

3
17

Environmental 

monitoring
0.15

Air quality

4
13

Environmental 

exposure
0.08

Aerosol optical 

depth

5
11

Aerosol optical 

depth
0.07

Electrochemical 

sensors

6 9 Air quality 0.05 Remote sensing

7
9

Nitrogen 

dioxide
0.04

Environmental 

monitoring

8
6

Remote 

sensing
0.03

Environmental 

exposure

9

5

Remote 

sensing 

technology

0.03

Nitrogen 

dioxide

10
4

Satellite remote 

sensing
0.03

Air pollutant
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“environmental exposure” exhibited higher centrality, signifying 
their greater importance in terms of connectivity within the 
visualization network.

Figure  1 illustrates the prominent research frontiers in SRS 
technology that bridge the domains of atmospheric and built 
environment health, encompassing key themes such as “air pollution” 
“environmental exposure” “RS techniques” and “regression analysis 
and modeling.” These frontiers can be classified into four distinct 
periods based on the intensity of keyword bursts and the respective 
starting and ending years. Firstly, research focusing on air pollution 
and air quality has maintained its prominence since 2003. Studies 
initially emphasized PM and NO2 but gradually shifted toward 
investigating gaseous pollutants over the years. Secondly, within the 
realm of air pollution, researchers have directed their attention toward 
conducting epidemiological assessment of human exposure to 
polluted environments. Notably, an emerging area research at the 
forefront involves examining the interconnected health effects of 
factors such as population density, traffic, and land use in the context 
of human respiratory exposure. It is evident that the integration of SRS 
technology into studies of environmental exposure began to emerge 

around 2009. From 2017 onwards, SRS technology has experienced a 
surge in applications within the public health field, particularly 
concerning environmental concerns. This period has witnessed 
continuous technological advancements and adaptations, enhancing 
the utility of SRS for public health research. Lastly, the integration of 
diverse regression methods and models holds significant potential for 
enhancing the accuracy of pollutant data within a region, thus 
positively affecting the analysis and prediction of public 
health outcomes.

As evident from the more recent research frontier depicted in 
Figure 1 for the period of 2019–2021, notable terms such as “urban 
planning” “settlement characterization” and “environmental 
monitoring and RS technology” have emerged as prominent focal 
points. This shift signifies the gradual adoption of SRS technology in 
the field of geographical health, an emerging domain in recent years. 
SRS technology not only enables the capture of atmospheric pollutant 
composition but also effectively distinguishes between different land 
use types, street scenes, and categories within the built environment. 
The integration of atmospheric pollution and built environment 
health through SRS represents a major trend in the field of geographic 

FIGURE 1

The emergent intensity and period of occurrence for the top 31 keywords.
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and environmental health research, promising exciting avenues for 
future exploration.

Figure 2 outlines the evolution of keywords in included literature. 
A substantial corpus of research conducted between 2002 and 2004 
centers on intricate air pollution monitoring methodologies, cutting-
edge RS techniques, and the concomitant health perils entwined with 
air pollution. This epoch marked the acknowledgment of air pollution’s 
determinant role in urban public health. Initial air pollutant 
monitoring relied primarily on sparsely situated fixed monitoring 
stations worldwide (27). Primary methodologies for environmental 
exposure assessment encompassed conventional ground-based 
techniques and individual monitoring, leveraging real-time data 
emanating from stationary monitoring stations in diverse regions. 
This served as an indispensable approach for initial exposure analysis. 
However, the rapid pace of economic development catalyzed the 
emergence of independent individual monitors, yielding high-
resolution, near-real-time data. These insights illuminated spatial air 
pollutant variations, enabling enhanced, personalized air quality 
monitoring. A pivotal moment in 2004 saw heightened attention on 
PM coinciding with the deployment of SRS for PM surveillance. 
Research between 2008 and 2010 extended to urban health’s 
environmental exposure, especially investigating inhalation exposure 
to PM across varying population densities. However, only limited 
studies delved into exploring the impact of PM on cardiovascular 
disease during this period. From 2010 to 2016, the synergy between 
AOD and PM emerged for expansive PM concentration extraction via 
SRS. Additionally, research on air pollutants expanded to encompass 
NO2 during this period. The rising concern surrounding exposure to 
ambient urban health and public health have gained considerable 
attention over the years due to the rising concern surrounding 
ambient air pollution led to an increase focus on urban health, with 
studies investigating not only respiratory exposure to PM but also 
particle diameter size and NOx in relation to cardiovascular disease, 
adverse pregnancy and birth outcomes, and various aspects of 
epidemiology. This trend contributed to the dissemination of health 
literacy and health education. Advanced SRS technologies in 

2012–2016 revolutionized air pollution monitoring, allowing 
comprehensive urban health applications. Cardiovascular disease’s 
link to ambient air pollution retained its research significance. 
Combined RS with Geographic Information Systems technology, 
geographical factors like “settlement characteristics,” “green space use,” 
and “population density” emerged as influential on health. Post-2020, 
there has been a progressive refinement in the study and consideration 
of variables influencing urban health. Researchers have increasingly 
emphasized the incorporation of additional built environment 
variables, such as street design, land use, housing floor levels, and so 
on. Smaller-scale geographical health studies, including 
neighborhoods and industrial parks, have gained traction within the 
field of urban health. Mental health of urban populations has emerged 
as a focal point in the literature, signifying a growing recognition that 
urban health encompasses not only physical well-being but also 
mental health.

Bibliometric analysis reveals a growing focus on urban health 
issues related to air pollution since 2016. Early monitoring methods 
were limited by insufficient spatial and temporal coverage of ambient 
air quality information, often providing only supplementary data for 
polluted areas, resulting in limited representative area coverage. 
However, the incorporation of SRS technologies has enabled the 
inversion of pollution data at large spatial scales as well as extract 
images depicting changes in selected physical variables in cities over 
time. This advancement has strengthened the connection between air 
pollution and public health in the built environment in specific areas.

Satellite remote sensing monitoring

SRSM has emerged as a promising solution to address data gaps 
in atmospheric monitoring. These low-cost air quality monitors with 
portability offer two types: one pertains to the sensor itself, and the 
other encompasses the complete monitoring system, including 
additional supporting hardware and software (28). These monitors 
contain multiple pollutant sensors within a single system (29). SRS 

FIGURE 2

Timeline of keywords in the literature.
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technology, implemented with sensors on satellites, enables wide-scale 
air quality monitoring without direct physical contact with the 
atmosphere, overcoming limitations in regions where ground-based 
sensors are inaccessible. Researchers have effectively utilized satellite 
observation techniques to enhance or substitute the air pollution 
monitoring data obtained from existing stations. For instance, Yu et al. 
(30) utilized the Aura OMAERUV satellite aerosol product data 
(0.125 × 0.125°) to estimate ground-level air pollutant concentrations, 
demonstrating the reliability of satellite observations. Gupta et al. (31) 
found that satellite-derived AOD serves as a suitable proxy for 
monitoring PM2.5 air quality. Ju et  al. (32) assessed atmospheric 
pollutants (O3, NO2, SO2, and HCHO) in Lanzhou. China, using 
Ozone Monitoring Instrument (OMI), revealing multidimensional 
characteristics and spatial distribution. Soleimany et  al. (33) 
successfully mapped air pollutants’ spatial distribution by integrating 
various monitoring data encompassing Terra OMI (1 × 1°), 
Sentinel-5P (7 × 3.5 km2) and monitoring station data.

SRS technology offers real-time monitoring and forecasting of 
air pollution, along with mapping changes in air pollution. However, 
it is susceptible to tropospheric cloud interference, leading to 
incomplete data retrieval (34). To address these limitations, 
researchers are exploring numerical spatial interpolation/
extrapolation techniques, such as inverse distance weighted, nearest 
interpolation, interpolating splines, and kriging (35, 36), which can 
estimate observations for non-monitoring points using known data 
from monitored points within the region (37). Chen et  al. (38) 
employed developed a mixed-effects model and inverse distance 
weighted technique to replace missing AOD data, significantly 
reducing the missing rate from 87.9 to 13.8%. Ma et  al. (39) 
introduced a novel geo Long Short-Term Memory (Geo-LSTM) 
model for generating spatial distributions of air pollutant 
concentrations, outperforming traditional methods.

SRSM excels in spatial scale and temporal coverage compared to 
ground monitoring and individual monitoring. Integrating ground 
observatory data, real-time air quality information, and various 
environmental variables, SRS offers a holistic view of the atmospheric 
conditions. Rigorous spatial interpolation and machine learning 
models are used for data validation and prediction of air pollution 
concentrations and air quality index (40). Despite challenges, ongoing 
improvements in SRS data help identify and mitigate elevated 
exposures in global communities. Moreover, high-resolution SRSM 
data has the potential to better address the global burden of disease 
resulting from environmental disparities compared to ground-based 
monitors. Table 2 shows a comparison of monitoring methods for 
atmospheric conditions.

Technical advancement of SRS for 
atmospheric environment monitoring

Technical advancements in SRS have revolutionized atmospheric 
environment monitoring, particularly in the field of aerosol 
substances. Aerosol SRSM began in the 1970s with the Multispectral 
Scanner (MSS) on ERTS-1 (Earth Resource Technology Satellite), 
enabling ground-based aerosol observations through the linear 
relationship between upwelling radiance and AOD (43). Over the 
years, various polar-orbiting satellite sensors, such as the AVHRR 
(Advanced Very High Resolution Radiometer), TOMS (Total Ozone 
Mapping Spectrometer), ATSR (Along Track Scanning Radiometer) 
sensors (including AATSR), the MODIS (MODerate-resolution 
Imaging Spectroradiometer) sensor on Terra (44), the MISR (Multi-
angle Imaging Spectro Radio meter), POLDER (Polarization and 
Directionality of the Earth’s Reflectances), SeaWiFS (Sea-viewing 
Wide Field-of-view Sensor), MERIS (Medium Resolution Imaging 

TABLE 2 Comparison of monitoring methods for atmospheric conditions.

Monitoring methods Principle Distribution Advantage Disadvantage

Monitoring stations

High-Sensitivity Spectroscopic 

Techniques, Fourier Transform IR 

Spectroscopy, Fluorescence 

Spectroscopy Technique, 

Differential Optical Absorption 

Spectroscopy, Non-Dispersive 

Infrared Technology, Photoacoustic 

Spectrometer Technology (41, 42)

Large Urban and Small 

Peri-Urban Areas

24-Hour Continuous Online 

Monitoring and Construction 

of Heavily Polluted Areas

High Construction and 

Maintenance costs, Land Use 

Constraints, Sparse Network, 

Limited Regional Coverage

Individual monitoring

Scattered Light Principle and 

Changes in Specific Properties of 

Sensing Materials in the Presence of 

Gaseous Species

Randomness

Low-Cost, Portable, Real-Time 

Monitoring, Targeting Specific 

Population Groups for 

Monitoring Placement in Any 

Region

Short Monitoring Range, Low 

Sensitivity, Susceptibility to 

Missing Data, Challenges in Large-

Scale Implementation

SRSM

Differential Optical Absorption 

Spectroscopy; Deep Blue 

Algorithms, Dark Target 

Algorithms, Structural Function, 

Polarization, Ultraviolet, Multiangle 

Algorithms et.al

Globally

Broad Coverage, Continuous 

Space-Based Observation, 

Enabling Real-Time 

Monitoring, Mapping of 

Pollution across the Earth’s 

surface, Extended Lifetime 

without physical contact with 

atmospheric pollutants

Meteorological Factors, Encounters 

Non-Random Missing Regional 

Data and Exhibits Discontinuities.
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Spectrometer), and the multi-angle polarimetric imager DPC 
(Directional Polarimetric Camera), China’s Gaofen-5 (GF-5) satellite 
(45), have been deployed to monitor aerosol products and atmospheric 
conditions. Notable studies have used SRS to assess air quality 
monitoring, track aerosol pollutant migration, and estimate ground-
level air pollutant concentrations. For instance, the Global Aerosol 
Climate Project by NASA employed AVHRR satellite sensors in 1998 
to achieve gridded monitoring of marine aerosols at a resolution of 
1 × 1 (46, 47). In 2003, Hutchison utilized MODIS data from RS 
satellites with spatial resolutions of 250, 500, and 1,000 meters, as well 
as 10 kilometers, to assess air quality monitoring and forecasting in 
Texas and track the transport and migration of aerosol pollutants (48); 
Additionally, Wang et al. (49) retrieved global optical depth data for 
terrestrial aerosols from October to December 2018 using the DPC 
(3.3 km × 3.3 km) sensor onboard China’s GF-5, covering eight spectral 
channels ranging from 443 to 910 nm.

Continuous technological advancements have improved the 
spatial and temporal resolution of aerosol products. However, 
disparities in inversion algorithms and sensor sources may introduce 
variations in monitoring outcome (50–52). Polar-orbiting satellites 
equipped with atmospheric aerosol and PM monitoring sensors have 
been pivotal in achieving atmospheric environmental monitoring. The 
deployment of specialized sensors like MODIS, MISR, POLDER, 
OCTS, and OMI has significantly enhanced spatial resolution and 
allowed for simultaneous monitoring of both marine and terrestrial 
aerosols (53–60). SRS has gained international prominence as a 
widespread approach for monitoring atmospheric pollution. 
Computer-generated RS digital images of atmospheric radiance 
provide insights into atmospheric conditions, air quality, particle 
concentration, and hazardous gas presence (61–64). Aerosol inversion, 
an essential input parameter for atmospheric quality modeling and 
health-related studies, also aids in atmospheric correction of SRS 
images. The retrieval of AOD involves multiple steps, including 
radiometric and geometric corrections, and the influence of complex 
meteorological and anthropogenic factors on pollutant concentration 
(65). Table 3 summarizes commonly used aerosol monitoring sensors, 
including their respective satellites, spatial resolution, sensor 
characteristics, and applications.

Main algorithms of atmospheric aerosol 
inversion by SRS

AOD that represents the transmittance rate through a vertical 
atmospheric column, severs as a quantitative indicator for atmospheric 
turbidity and total particle concentration (76). Nine algorithms, such 
as Dark Target(DT), Improved Dark Target, Structure Function, 
Multi-angle RS, Tandem method, Polarization RS, Deep Blue (DB), 
Cloud-top AOD, and Ground-air coupling, are employed for aerosol 
inversion, catering to variations in surface types and aerosol 
compositions (77–84). Supplementary Table S1 summarizes the 
detailed principles and applications of main algorithms. For instance, 
prior studies conducted by Jin et al. (85) and Chen et al. (86) utilized 
DT and improved DB algorithms, respectively, to estimate AOD in 
different regions, revealing broader coverage in hazy areas and higher 
AOD concentrations in urban areas and along highways. Moreover, 
Mukai et al. (87) conducted aerosol retrieval in hazy atmospheres 
using DT and polarization information from multiple viewpoints.

SRS contribute to atmospheric particulate 
matter monitoring

SRS has significantly contributed to atmospheric particulate 
matter (PM) concentration inversion, particularly focusing on PM10 
and PM2.5 measurements (Figure 3). Early studies relied on simple 
linear regression models to establish correlations between total 
column AOD and surface PM concentrations, assuming specific 
atmospheric conditions and aerosol properties (88–91). Assuming a 
dry and cloud-free sky, a mixed boundary layer with no overlapping 
aerosols at the boundary height (H), and aerosols with similar optical 
properties. The AOD can be expressed as follows equation (1) (88):

 
AOD=PM×H×f RH ×

3Q

4 r

exr,dry

ef f
( ) 







ρ  

(1)

f(RH) denotes the ratio of the ambient extinction coefficient to the 
dry extinction coefficient; Qext,dry represents the extinction efficiency 
under dry conditions; ρ indicates the mass density of the aerosol (g/
m3); and reff corresponds to the effective radius of the PM that 
calculated as the ratio of the third-order moment of the size 
distribution to the second-order moment.

However, researchers later extended these algorithms to more 
complex models, including land use regression, geographically 
weighted regression (GWR), nonlinear models, and machine learning 
approaches, to enhance inversion accuracy (92–96). For example, Hu 
et al. utilized a two-layer model (linear mixed model and GWR) to 
combine temporal and spatial variations, resulting in significantly 
improved PM2.5 distribution inversion accuracy in the southeastern 
United  States (97, 98). Physicochemical models have also been 
proposed to calculate the relationship between AOD and PM2.5. For 
instance, Liu et al. introduced the scaling factor method, employing 
the Chemistry Transport Model (CTM) to simulate PM2.5 and AOD, 
and Zhang et al. developed a semi empirical formula based on the 
physical mechanism of mutual influence between aerosols, 
atmospheric PM, humidity, and temperature parameters (99–101). 
These models have effectively addressed the issue of uncertainty in 
PM2.5 concentration estimation, leading to improved precision in 
the results.

Application of SRS in air pollutant 
monitoring

Application of SRS in monitoring atmospheric 
particulate matter

The analysis of spatial and temporal trends in atmospheric PM2.5 
concentrations represents a significant application of SRS in 
atmospheric monitoring. For instance, a study in China harnessed 
satellite data from multiple satellites, including Aqua MODIS 
(10 × 10 km2), Terra MISR (17.6 × 17.6 km2) and OrbView-2 SeaWiFS 
(4 × 4 km2), along with ground-based PM2.5 measurements discern 
contamination patterns. The findings revealed an upward trend in 
China’s annual average PM2.5 concentration from 1998 to 2008, 
followed by a subsequent decrease (102). Similarly, in Korea, a 
comprehensive analysis leveraging various satellite sensors, namely 
Terra/Aqua MODIS (10 × 10 km2, Suomi-NPP VIIRS (Visible infrared 
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Imaging Radiometer, 6 × 6 km2), Terra MISR (17.6 × 17.6 km2), and 
Aura OMI (13 × 24 km2)), in combination with ground-based 
observations, uncovered seasonal variations in PM2.5 concentrations 
using a multiple linear regression model (103). Furthermore, in the 
eastern United  States, generalized linear models were employed, 
utilizing day-by-day PM2.5 concentration data from 2005 and MISR 
AOD (17.6 × 17.6 km2), to predict PM2.5 concentrations that 

demonstrated slight deviation from the observed values. The study 
also highlighted significant seasonal differences and spatial variability 
in MISR AOD values (104). Additionally, a collaborative investigation 
conducted in several countries (e.g., Australia, China, the Netherlands, 
etc.) integrated generalized additive modeling alongside a DT and DB 
inversion method. This approach was employed to retrieve Terra/
Aqua MODIS (10 × 10 km2) AOD data, ground-based PM1 monitoring 

TABLE 3 Satellite sensors for aerosol inversion (66–75).

Sensor Satellite Producing 
countries

Usage 
duration

Spatial 
resolution(km)

Attribute Main 
application

AVHRR NOAA-7, −9, 

−11, −14, −L, 

Metop-1

USA 1978–1994 1.1(local mode); 4.4(globe) Long-term datasets AOD

TOMS Nimbus-7, 

Meteor-3, 

ADEOS, Earth 

Probe, QuikTOMS

USA 1978–1993;1991–

1994

50 Long-term datasets; 

Sensitivity to 

absorbing aerosols on 

land and at sea

O3, SO2

POLDER ADEOS, ADEOS 

II

France、Japan 1992–2002 7×6 Polarization is more 

sensitive to the 

refractive index of 

aerosols; Observation 

of Earth targets from 

12 directions; Cloud 

screening using 

A-band, reflectivity 

threshold and spatial 

coherence

Aerosol properties 

measured by 

polarization

MISR Terra USA 2002 to present 17.6 × 17.6; 4.4 × 4.4 Flight calibration 

using high quantum 

efficiency diodes; 

Global coverage for 

9 days

Aerosol

MODIS Terra, EOS PM, 

Aqua

USA 1999 to present 0.25–1 High calibration 

accuracy; Large 

number of airborne 

band calibrators; Wide 

spectral range; Ability 

to detect clouds, 

shadows and heavy 

aerosols

H2O; cloud layers; 

Aerosol

OMI EOS CHEM Aura Finland, Netherlands 

Co-operation

2004 to present 13(local mode); 13 × 

24(globe)

High calibration 

accuracy; Large 

number of on-board 

calibrators

O3; SO2; NO2; Aerosol; 

CHOCHO

AATSR/SLSTR Envisat/Sentinel-3 European Space 

Agency(ESA)

2002–2012; 2016 to 

present

1 Dual-viewing angle 

(front view is 55°) 

Observation capability 

at different 

wavelengths; Can 

be used for 

atmospheric 

characterization and 

sea surface 

temperature

Aerosol; Land; Surface
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data, and other spatiotemporal predictors. The study indicated that the 
global PM1 concentration remained consistently high during the 
period of 2005–2014, establishing a robust association between PM1 
exposure and health (105, 106). These comprehensive studies 
underscore the significance of integrating SRS inversion data with 
ground-based observations, thus providing a more holistic 
comprehension of long-term trends and high-resolution spatial 
variability of PM2.5 concentrations across diverse spatial and temporal 
scales. Moreover, the incorporation of influencing factors such as land 
use and meteorological conditions enhances the potential and 
accuracy of regional PM2.5 concentration predictions.

The continuous advancements in RS technology and global data 
assimilation systems have rendered SRS a valuable extension of 
ground-based networks, particularly in the realm of AOD 
measurements. The data sourced from satellites offer an independent 
and complementary data source to augment ground-based monitoring 
and computational modeling. This additional information serves as 
an extensive resource for ambient air quality monitoring, aiding in the 
determination of ground-level PM concentrations. Notably, it also 
contributes to refining the accuracy of population exposure data in 
public health atmospheric epidemiological studies, providing valuable 
insights into the impact of atmospheric conditions on human health. 
Therefore, SRS plays an indispensable role in complementing ground-
based measurements, significantly enriching our understanding of 
atmospheric conditions and their implications for public health.

Application of SRS in monitoring atmospheric 
gaseous pollutant

SRS techniques have long been predominantly employed for 
monitoring atmospheric PM, however, they also hold promise for 
tracking other gaseous pollutants. Several noteworthy studies have 
demonstrated the efficacy of SRS in this context. In an American 
study, NOAA-10 and NOAA-12 satellites were used to monitor the 
spectral channel of brightness temperature (BT) difference between 
11 and 8.3 μm (BT8-BT11), revealing the presence of sulfuric acid-water 
(H2SO4-H2O) aerosols in the stratosphere after the eruption of the 
Mount Pinatubo (107). Similarly, a German study utilized the 
differential optical absorption method with data to from the 

METOP-A series of satellites equipped with the Global Ozone 
Monitoring Experiment (GOME) sensors to analyze tropospheric NO 
levels. This investigation unveiled significant amounts of NO in the 
troposphere over Africa and in the outflow regions over the South 
Atlantic and Indian Oceans (108). Furthermore, a Chinese study 
leveraged the Tropospheric Monitoring Instrument (TROPOMI) 
board the Copernicus Sentinel-5 Precursor (S5P) satellite to examine 
O3 concentrations. By extracting NO2 concentrations and tropospheric 
HCHO column data, this study observed an acceleration in O3 
production during the COVID-19 blockade in the North China Plain, 
particular in winter (109). Additionally, a Norwegian study combined 
data from Sentinel-5 TROPOMI and Terra/Aqua MODIS with on-site 
air quality monitoring data to extract NO2, O3, and PM2.5 concentration 
for 34 countries. The study revealed that due to the unprecedented 
reduction in global economic and transport activities during the 
COVID-19 blockade period, the concentrations of NO2 and AOD 
decreased, while that of O3 increased (110). While the current 
application of SRS for monitoring atmospheric gaseous pollutants may 
have some limitations, continuous advancements in SRS technology 
hold the potential for extracting more atmospheric pollutant data 
from satellite images in the future.

Application of SRS linking atmospheric 
environment to human health

SRS technology has emerged as a critical tool in environmental 
epidemiological studies, enabling researchers to investigate the impact 
of PM exposure on public health. In recent years, its application has 
expanded to encompass the monitoring of gaseous pollution, 
broadening its scope and relevance. In these studies, the monitoring 
of AOD and PM concentration data through satellite inversion has 
become an essential input parameter for assessing PM exposure 
among regional populations. By combing satellite AOD monitoring 
with representative parameters such as land use, researchers have 
constructed LUR and GWR models, facilitating regional population 
PM exposure evaluations. This approach has significantly improved 
the accuracy of SRSM in atmospheric environmental epidemiological 
studies. For instance, researches the United States and Canada utilized 
Terra and Aqua MODIS (10 × 10 km2) products to explore the 

FIGURE 3

Inversion of AOD and transformation with PM.
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association between PM exposure and population health. The findings 
revealed significant associations between AOD and PM10 and 
elevated daily events of cardiovascular disease and ischemic heart 
disease (111). Additionally, another study using AOD products and 
ecogeographic research methods explored the link between aerosol air 
pollution and chronic ischemic heart disease (CIHD). It observed a 
higher mortality rate from CIHD in the eastern United States, where 
AOD indicated higher levels of outdoor (112); Additionally, a study 
investigating the relationship between PM2.5 exposure and birth 
outcomes integrated satellite data and ground-based monitoring data 
generated by the PM2.5-AOD. It existed an association between PM2.5 
exposure and adverse birth outcomes (113). The improved satellite 
accuracy has allowed for more comprehensive assessments. A 
Canadian study evaluated the contribution of long-term PM2.5 
exposure to global mortality rates based on MODIS and MISR 
(0.1° × 0.1°) satellite monitoring data, which showed that 8.0% of adult 
deaths globally from cardiorespiratory disease, 12.8% from lung 
cancer, and 9.4% from ischemic heart disease were attributed to PM2.5 
exposure (114); A US-Mexican study explored the relationship 
between MODIS (1 × 1km) measurements, ground station interpolated 
PM2.5 measurements, and acute respiratory symptoms (ARS) in 
children, identifying PM2.5 as a risk factor for the prevalence of ARS 
in children (115). In conclusion, SRSM for PM is one of the main data 
sources widely used in global atmospheric PM exposure assessment 
and environmental epidemiological studies.

In addition to the monitoring of atmospheric particulate 
pollutants, SRSM technology is gradually being applied to the 
monitoring of other gaseous pollutants with the development of 
gaseous pollution monitoring sensors. For instance, a study conducted 
in Hong Kong explored the correlation between long-term NO2 and 
O3 exposure and kidney health in Asian children and adolescents, 
basing on the retrieval of NO2 and O3 data from 2005 to 2018 in the 
TROPOMI secondary data. The findings revealed that the risk of 
chronic kidney disease increased by 7% for every 10 μg/m3 rise in the 
annual average NO2 concentration, while each 10 μg/m3 increase in 
the annual average O3 concentration resulted in a 19% reduction in 
the risk of chronic kidney disease (116); In another Chinese study, 
OMI (10 km × 10 km) inversion and monitoring data from the AURA 
satellite indicated that cardiovascular and respiratory deaths caused 
by O3 accounted for approximately 32 and 16% of all-cause mortality 
in 2016 (117); Similarly, a Swedish study utilized data from MetOp-A, 
MetOp-B, GOME-2 (50 × 50 km2), and OMI (13 × 24 km2) instruments 
on the Aura and Suomi satellites to extract SO2 vertical column 
densities for providing fast source estimates for dispersion modeling. 
The study conducted probabilistic analyses using a probit model and 
found that during the fires at the sulfur production site of Al-Mishraq, 
located 100 km from the center, there was a potential for respiratory 
symptoms, eye irritation, inflammation, burns, and fatalities at acute 
high concentrations any day (118). Based on the results of the appeal 
study, it was found that the potential health effects of gaseous 
pollutants at low resolution and small spatial scales may 
be  underestimated. Utilizing satellite data can offer a clearer 
understanding of pollution data and spatial variations in public health 
at larger scales. As the accuracy of exposure levels directly affects the 
estimation of public health outcomes, the development of SRS data 
collection and modeling methods for high spatial and temporal 
resolution atmospheric pollutant exposure levels becomes a necessary 
and important future endeavor.

Geographic health research

Frontier research linking public health with 
environment and air pollution

Urban layout, morphological distribution, and natural landscape 
distribution significantly influence population exposure to 
environmental air pollution and health behavior. In recent years, 
numerous studies have confirmed that the urban environment can 
impact the physical and mental health of urban residents by altering 
their exposure to environmental hazards and individual health 
behaviors. Most studies on the relationship between the built 
environment, air pollution and health have focused on extrapolating 
findings and predicting the health effects of air pollution on physical 
diseases. For instance, studies have associated low risks of 
non-communicable diseases, such as obesity, heart disease, and 
cancer, with favorable built environment exposures, such as a well-
balanced land use mix, high residential densities, frequent walking 
behaviors, and extensive green spaces (119–124). Compact built 
environments are positively associated with infectious diseases (120). 
However, compact built environments may also generate positive 
exercise behaviors that reduce the risk of non-communicable diseases 
such as obesity, heart disease, and cancer (121–124). However, recent 
reports have begun investigating the relationship between urban form 
and mental health (125). Mental health is linked to urban surface 
design, often incorporating green measures (about 60%) or land use 
patterns (about 50%) (126). For example, high urban and residential 
densities may limit social interactions and lead to a sustained increase 
in negative psychological symptoms, such as anxiety, depression, and 
stress (127, 128). The quality of the living environment directly affects 
human health. Studies have demonstrated that the diversity of 
greenery, water areas, and land cover play crucial roles in reducing the 
impact of PM2.5, O3, and NO2 on mortality (129). Furthermore, the 
identification of five key urban form parameters (building density, 
mean building height, standard deviation of building height, mean 
building volume, and degree of enclosure) significantly influences the 
dispersion and distribution of pollutants in the neighborhood (130). 
However, determining parameters in these large domains often relies 
on modeling, which may lack timeliness and data authenticity. 
Modern research on the relationship between the built environment, 
air pollution, and public health requires large-area, high-precision 
photographic images, and pollutant concentration data. Therefore, 
SRS technology has rapidly developed in the field of geographic health 
research, providing timely images of the air pollutant spatial and 
temporal changes and satellite images of the built environment, and 
improving data completeness and accuracy at the same time. As a 
result, SRS technology plays a crucial role in enhancing the framework 
for studying the impact of urban air pollution exposure on population 
health. RSM briefly describes the results of land use, which greatly 
enriches the material for researching the effects of atmospheric 
environmental pollutants on population health.

Satellite technology utilized in geographical 
health

The most used RS data in environmental health studies are green 
space, such as the NDVI, and land use or land cover databases (131, 
132). Green space exposure has been found to be closely related to the 
mental health of the public. A study in England revealed that pregnant 
women living in areas with higher NDVI were less likely to suffer from 
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depression than those in areas with low green index (133). However, 
an investigation in Southern California, United States, utilized satellite 
measurements (Terra MOD13Q1, 250 m × 250 m), including NDVI, 
land-covered greenspace, and canopy cover, to assess the relationship 
between postpartum depression (PPD) and different types of green 
space exposure. The study found that the reduction in the risk of 
postpartum depression (PPD) was independent of NDVI and green 
space exposure (134). In addition to this, urban area characteristics in 
environmental health studies, such as the compactness of the built 
environment, unnatural infrastructure networks, modern transport 
systems, and air pollution conditions, lead to different exposure 
profiles in the population, making them potential risk factors for the 
spread and prevalence of various diseases across countries (135–137). 
However, in these complex situations, SRS can still be used to monitor 
urban air pollution. For example, a study in Indonesia collected NO2, 
SO2, and CO pollution data near communities through Sentinel-5P 
TROPOMI. It combined this data with socio-economic and health 
data from IFLS, land cover data from ESA CCI, and the GIS Spreading 
Index to measure the built environment. The study found that the 
quality of housing and neighborhood conditions played a role in the 
symptoms of lower respiratory infections (138). Similarly, Bechle 
(139) and colleagues examined the correlation between air pollution 
and built environment variables (population centrality, population 
density, transport availability, etc.), using OMI (11 × 11 km2) satellite 
estimates of NO2 concentrations and Landsat satellite imagery for 
defining the extent of the city. This approach suggests that changing 
urban form could be  a potential strategy to mitigate urban air 
pollution and public health hazards.

In a New  Zealand study, MODIS (medium resolution 500 m) 
surveillance was used to classify urban form, and tropospheric NO2 
measurements from GOME, SCIAMACHY, and GOME-2 satellites. 
Three of the urban form metrics examined (proximity, roundness, and 
vegetation) showed a statistically significant relationship with urban 
NO2 and potentially had a large joint effect (140). Past literature has 
concluded that the association between the built environment and 
infectious diseases varies from region. Finer forms of control and data 
could be adapted to address the self-selection problem studied in each 
region. The incorporation of SRS discipline can provide more detailed 
spatial pollution and built environment imagery data that is regionally 
specific, which can be a valuable cross-fertilizer of different disciplines 
in the field of geographic health research. Supplementary Table S2 
summarizes the satellites applied to geo-health research and provides 
a brief description of the satellite precision and the urban health areas 
in which they are applied.

Discussion and conclusion

The concentration of atmospheric pollutant plays a pivotal role in 
air pollution exposure assessment. In particular om regional 
population exposure evaluation. Traditionally, air pollutant 
concentrations have heavily relied on on-site measurements from air 
pollution monitoring stations. However, these stations often tend to 
be situated in highly polluted areas, leading to spatial and temporal 
coverage issues and an imbalance in spatial distribution. Relying solely 
on ground-based monitoring data may introduce errors in calculating 
regional air pollutant concentrations, potentially affecting the 
accuracy of health impact studies related to air pollution. To address 

this challenge, researchers have incorporated SRS inversion techniques 
into existing methods to obtain regional monitoring data with large 
area coverage and high accuracy. Satellites offer advantages over 
ground-based monitoring, including spatial and temporal repetition, 
broad coverage, continuous observation in space, and global 
observation capabilities, which help to fill data gaps in ground-based 
monitoring and monitor air quality on a global scale in various 
countries and regions. The advancement of SRS sensors and retrieval 
algorithms has led to an increasing use of SRS products (including 
derivative AOD products) to monitor the impact of aerosols on the 
Earth-atmosphere system. However, the retrieval of satellite data is 
highly dependent on clear sky conditions, and cloud cover or cloudy 
day can obstruct data retrieval, resulting in incomplete datasets. 
Ground-level atmospheric pollutant concentrations are continuously 
monitored (e.g., hourly/daily/monthly/yearly), while AOD is retrieved 
only when satellites pass over a location (typically once a day). 
Consequently, measurements obtained at a specific location may not 
adequately represent diurnal variations at each site (141). However, 
Recent health impact studies have revealed the limitations of 
estimating relative risks solely based on ground-based information or 
satellite-derived exposure modelling (142). To address these 
limitations, studies now commonly combine data from both sources, 
correcting satellite data using ground-based monitoring data to 
achieve a high degree of precision, completeness, and broad coverage. 
Then, adding model simulations and predictive modelling are 
integrated into epidemiological exposure studies to prospectively 
assess health impacts, presenting a comprehensive approach in 
contemporary health research.

In recent years, SRS has proven successful in estimating 
atmospheric pollution concentrations in regions with limited ground-
based monitoring data, by leveraging the correlation between satellite 
measurements and ground-based data (106, 143, 144). Various 
meteorological factors, including temperature, relative humidity, 
barometric pressure, wind speed, and sunlight variations due to cloud 
cover, influence the relationship between column aerosol loading 
measurements and near-surface dry PM2.5 mass concentrations (145, 
146). Employing statistical modeling, satellite-retrieved AOD 
estimates historical and current PM exposure with good accuracy and 
spatial resolution by exploiting the relatively strong AOT- PM2.5 
relationship (147). SRS technology has not only found utility in 
environmental monitoring but has also become an integral component 
of geo-health epidemiological studies related to exposure. There have 
been previous reviews showing that SRS technology can be applied in 
the field of environmental monitoring, in addition to its gradual 
incorporation into exposure-related geo-health epidemiologic studies. 
Earth observation (EO) satellites can capture a wide range of surface 
environmental factors on a large scale, providing fine-grained 
environmental measurements that complement the built environment 
factors commonly used in non-communicable disease (NCD) research 
(148, 149). However, the risk to human health is not limited to these 
built environment factors, and air pollution is the most critical 
component. Cardiovascular diseases, ischemic heart disease, chronic 
obstructive pulmonary disease, respiratory system issues, and adverse 
pregnancy outcomes are among the health concerns linked to outdoor 
air pollution (150, 151). Urban form and structure, urbanization and 
urban activities can also affect the generation and dispersion of air 
pollutants. Geographically informed individual-level exposure 
estimates are generated for geo-health epidemiological studies by 
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incorporating land use maps, environmental pollutant concentrations 
(e.g., PM2.5, NOx, etc.) derived from aerial photographs and Landsat 
images, and other environmental and built environment factors (e.g., 
atmospheric conditions, topography, traffic flow, and population 
density). Therefore, the addition of atmospheric pollutant inversion 
techniques to the capture of various surface environmental factors 
with satellites may reveal previously overlooked risk factors that could 
better serve environmental public health research.

Prior to the development of RS technology, ground-based air 
pollution monitoring, classical maps, health reports, and databases of 
built-environmental variables used in health and geography studies 
and then combined air pollution, public health, and regionally based 
socio-demographic data, resulting in a limited breadth of findings. 
Instead, the impacts of built environment air quality and 
environmental exposures between neighboring cities can be explored 
by increasing the precision and scale of geospatial data to obtain 
highly credible research results. The rapid integration of SRS 
technology into geographic health research has resulted in timely 
acquisition of maps showing spatial and temporal variations of air 
pollutants, along with satellite images of the built environment. This 
advancement has significantly improved the completeness and 
accuracy of geographic data, allowing for more comprehensive studies 
on public health, considering the interplay between air pollutants and 
the built environment. Combining SRS with ground-based monitoring 
in epidemiological studies on the short/long-term health effects of 
ambient air pollutants provides a more detailed characterization of 
exposures. Additionally, incorporating models to predict outdoor air 
pollutant concentrations contribute valuable insights into the 
epidemiology, incidence, progression, and prediction of air pollutant-
related diseases throughout individuals’ lifetimes (152). The cited 
literature through econometric calculations indicates that urban 
health issues related to air pollution have gained increasing attention 
since 2016, and the inclusion of SRS technology has strengthened the 
connection between air pollution and public health impacts of the 
built environment in specific regions. These multidisciplinary 
approaches serve as a valuable tool for assessing and predicting 
environmental health risks associated with air pollution. Moreover, it 
offers a platform to explore the potential benefits of SRS in geographic 
health research, leading to more precise findings in epidemiological 
studies. This integration also helps discovery potential future research 
directions in the field of air pollution epidemiology.

Based on the preceding discussion, this review advocates for 
increased utilization of diverse land use, meteorological, and 
physicochemical input models to provide small-grid or point-by-point 
predictions of key air pollutants at the local level, where SRS data are 
superior to in situ data for capturing human health impacts of air 
pollution. The selection of advanced AOD satellite data resolution and 
calibration algorithms should be prioritized to expand high-quality 
and fine-grained modeling to more regions, enabling a comprehensive 
understanding of various pollutant classes and major sources. By 
incorporating enhanced traffic data, new monitoring platforms, and 
machine learning techniques, pollutant prediction models have 
witnessed further improvements in performance and robustness for 
epidemiological studies. Furthermore, while most studies have 
analyzed the relationship between urban planning factors and air 
pollutant concentrations, it is feasible to combine highly accurate air 
pollution data from SRS and ground-based monitoring, as well as 
location-specific data from SRS, to investigate the effects of urban 

spatial structure, land use, spatial morphology, traffic, green space, 
and population density on long-term exposure to air pollutants (153, 
154). In contrast, although many studies have investigated the 
relationship between physical characteristics of the built environment 
and environmental exposure, few studies have examined the type of 
surrounding built environment and building density based on 
environmental exposure at the transport site scale. Hence, by 
integrating air pollution data from satellite and ground-based 
monitoring, we can conduct research on the potential influence of 
traffic travel on the environmental exposure of nearby residents, the 
association between the built environment and travel patterns around 
the site, and the spatial relationship between environmental exposure 
from traffic travel and regional travel flow. Simultaneously, this 
approach opens a novel research avenue in geographic health to 
investigate the impact of multidimensional built environment 
characteristics and traffic travel flow. However, because sensors are 
mobile in space, the data they record for an area are usually 
discontinuous, leading to nonrandom missingness in contaminant 
retrieval results. The point in time and location at which a health 
exposure occurs is random in nature, and RS cannot guarantee 
complete monitoring of all exposure-related factors at the time of that 
exposure. At the same time, the actual indoor and outdoor exposure 
times cannot be precisely determined, and there are many occasions 
when indoor exposures are not monitored by RS. Diseases with long 
incubation periods have too many uncertainties (e.g., time of 
emergence, location of activity, etc.), which makes it even more 
difficult to assess and analyze them systematically using RS techniques.

In summary, atmospherically environmental epidemiology relies 
significantly on exposure assessment, often using atmospheric 
monitoring data directly as exposure proxies. However, the regional 
limitations of this method can lead to exposure prediction errors and 
misclassification of spatially heterogeneous pollutants. Studies have 
established a robust correlation between SRS estimates and ground-
based measurements of key pollutants like PM10, PM2.5, and NO2. Yet, 
this necessitates extensive daily and regional calibration (155–157). 
Incorporating high-resolution (10 km-250 m) inverted pollution data 
from SRS with ground-based monitoring, air quality modeling and 
geographic predictors enhances health impact studies (158). Modern 
research at the nexus of the built environment, exposure to air 
pollutant, and health outcomes demands extensive, high-precision 
photographic imagery and pollutant concentration data. The rapid 
integration of SRSM into geo-health research holds promise for 
comprehending the pathways from built environment to health 
mediating by changes in exposure to atmospheric pollutants. 
Literature substantiated by econometric analyses highlights the 
effective integration of SRSM in concerning the health impacts of 
exposure to atmospheric pollutants derived from built environment 
alteration. This technology offers detailed spatial images of air 
pollution and built environments, enabling accurate temporal and 
spatial trend analysis of atmospheric air quality and geographic health 
research, fostering interdisciplinary collaboration. Nonetheless, SRSM 
data encounters inherent challenges, including discontinuous 
recording and incomplete retrieval under cloudy conditions. To 
address the limitations, numerical spatial interpolation/extrapolation 
can estimate non-monitoring observations through ground-based 
monitoring data. Thus, further research should enhance satellite 
performance and explore ground-sky integration (159). In essence, the 
synergy of SRSM and ground-based data holds significant promise for 
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advancing our understanding of the links from atmospheric and built 
environment to human wellbeing’s. Further research should focus on 
refining satellite capabilities and optimizing combined 
data methodologies.
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