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based on machine learning
among Chinese healthy older
adults: results from the China
Health and Retirement
Longitudinal Study

Yuchen Han and Shaobing Wang*

School of Public Health, Hubei University of Medicine, Shiyan, Hubei, China

Background: Predicting disability risk in healthy older adults in China is essential

for timely preventive interventions, improving their quality of life, and providing

scientific evidence for disability prevention. Therefore, developing a machine

learning model capable of evaluating disability risk based on longitudinal research

data is crucial.

Methods: We conducted a prospective cohort study of 2,175 older adults enrolled

in the China Health and Retirement Longitudinal Study (CHARLS) between 2015

and 2018 to develop and validate this prediction model. Several machine learning

algorithms (logistic regression, k-nearest neighbors, naive Bayes, multilayer

perceptron, random forest, and XGBoost) were used to assess the 3-year risk of

developing disability. The optimal cuto� points and adjustment parameters are

explored in the training set, the prediction accuracy of the models is compared in

the testing set, and the best-performing models are further interpreted.

Results: During a 3-year follow-up period, a total of 505 (23.22%) healthy older

adult individuals developed disabilities. Among the 43 features examined, the

LASSO regression identified 11 features as significant for model establishment.

When comparing six di�erent machine learning models on the testing set, the

XGBoost model demonstrated the best performance across various evaluation

metrics, including the highest area under the ROC curve (0.803), accuracy (0.757),

sensitivity (0.790), and F1 score (0.789), while its specificity was 0.712. The

decision curve analysis (DCA) indicated showed that XGBoost had the highest

net benefit in most of the threshold ranges. Based on the importance of features

determined by SHAP (model interpretation method), the top five important

features were identified as right-hand grip strength, depressive symptoms, marital

status, respiratory function, and age. Moreover, the SHAP summary plot was used

to illustrate the positive or negative e�ects attributed to the features influenced by

XGBoost. The SHAP dependence plot explained how individual features a�ected

the output of the predictive model.

Conclusion: Machine learning-based prediction models can accurately evaluate

the likelihood of disability in healthy older adults over a period of 3 years. A

combination of XGBoost and SHAP can provide clear explanations for personalized

risk prediction and o�er amore intuitive understanding of the e�ect of key features

in the model.
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1. Introduction

Currently, there are approximately 900 million people aged 60

years or above worldwide, and this number is expected to double

by 2050 (1). As people age, most individuals commonly experience

a decline in their health or a gradual loss of the functional ability to

perform basic yet valuable daily activities, such as bathing, doing

laundry, or eating (2). Functional disability is closely correlated

with adverse outcomes, such as a decrease in the quality of life,

an increase in hospitalization rates, and mortality risks (3–5).

The incidence of disability among older adults has become an

increasingly serious public health issue. Extending their healthy

lifespan and the ability to live independently without relying on

others has become a fundamental social goal (6, 7). Meanwhile,

functional decline during aging is dynamic and reversible. In a

meta-analysis, 13.7% of older adults showed an improvement in

their frailty over an average follow-up period of 3.9 years (8).

Therefore, accurately predicting disability risk and developing

targeted interventions are crucial for reducing the burden of

disability among older adults.

In order to accurately predict the 3-year disability incidence

rate in healthy older adults, it is essential to first analyze the factors

that are most closely related to disability in older adults. Previous

research has identified a series of risk factors for disability in older

adults, including advanced age (9), the lack of social support (10),

abnormal blood lipids (11), smoking (12), abnormal body mass

index (13), slow gait speed (14), depression symptoms (15), and

poor memory (16). However, these studies have typically been

limited to evaluating the relationship between specific predictive

factors and disability rather than conducting a comprehensive

analysis of multiple factors. While there have been a few studies

that have used machine learning to predict disability risk in

older adults (17–19), these studies have been primarily conducted

on populations in other countries, and there has been limited

investigation of disability risk in older adults in China. However,

there are still two main limitations to these studies. First, very few

research studies have used machine learning methods to achieve

objective variable pre-selection, which may lead to issues such as

multicollinearity or overfitting due to the inclusion of too many

variables. Second, disability is the result of long-term accumulation.

To our knowledge, previous studies have not assessed functional

disability status in older adults at baseline, which creates a strong

correlation between activity levels at that time and outcomes. To

address these limitations, this study used machine learning feature

selection methods and selected healthy older adults at baseline in

order to construct a disability prediction model for this population

in China.

Machine learning methods can be used to extract non-linear

and seemingly irrelevant factors that are difficult to find with

traditional methods, thereby allowing for more accurate feature

Abbreviations: CHARLS, China Health and Retirement Longitudinal Study;

LASSO, Least absolute shrinkage and selection operator; LR, Logistic

regression; KNN, k-nearest neighbors; NB, Naive Bayes; MLP, Multilayer

perceptron; RF, Random forest; XGBoost, Extreme gradient boosting; ROC,

Receiver operating characteristic; DCA, Decision curve analysis; SHAP,

Shapley additive explanations.

selection (20, 21). Machine learning algorithms, including logistic

regression, KNN, NB, MLP, random forest, and XGBoost, will

be used to develop and evaluate prediction models. However,

previous machine learning modeling studies have encountered

various issues (22, 23). To establish amore precise and generalizable

model, this study employs LASSO regression for feature selection,

resampling techniques to address class imbalance, normalization

on both training and testing data to avoid data leakage, grid search

for hyperparameter tuning to improve model performance, and

DeLong test to ensure no overfitting occurs.

This study compares various machine learning algorithms

by examining performance metrics, including receiver operating

characteristic (ROC) curve area under the curve (AUC), accuracy,

sensitivity, specificity, and F1 score, to evaluate the performance of

themodel. Due to the complex non-linear relationships of someML

algorithms, the model results may be difficult to interpret, leading

to the “black box” problem, which limits the practical application of

prediction models (24). This study will employ SHapley Additive

exPlanations (SHAP) on the best-performing machine learning

algorithmmodels to explain individual predictions for both kernel-

based approaches and tree-based models. Compared with other

interpretation methods found in prior literature, SHAP has distinct

advantages in visualizing complex ML prediction models (25).

These benefits make it possible to solve the “black box” problem of

complex ML models; however, this advanced model interpretation

method has not yet been used to predict the risk of disability in

healthy older adults in China.

Therefore, the purpose of this study was to develop and validate

a predictive model for the 3-year incidence of disability in a

Chinese population of healthy older adults, using six machine

learning algorithms, while overcoming the limitations of previous

research. In addition, the SHAP method will be used to select

the best-performing model for further disability risk prediction

and interpretability. The study’s findings will contribute to timely

and targeted intervention measures, promote healthy aging, reduce

health disparities, and guide future research in this field.

2. Materials and methods

2.1. Data and participants

The data used in this study are from the China Health

and Retirement Longitudinal Survey (CHARLS)(26). CHARLS

is a longitudinal survey that aims to be a representative of

the residents in China aged 45 and older, with no upper age

limit. To ensure the adoption of best practices and international

comparability or results, CHARLS is harmonized with leading

international research studies in the Health and Retirement Study

(HRS) model. A stratified (by per capita GDP of urban districts

and rural counties) multi-stage (county/district-village/community

household) PPS random sampling strategy was adopted. The

national baseline survey was conducted in 2011–12, with wave 2

in 2013, wave 3 in 2015, and wave 4 in 2018. In order to ensure

sample representativeness, the CHARLS baseline survey covered

150 countries/districts and 450 villages/urban communities across

the country, involving 17,708 individuals in 10,257 households,

reflecting the mid-aged and older Chinese population collectively.
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We included 18,085 participants from the 2015–2018 study

wave, 2,175 of whom were eligible for model development and

internal validation. None of these participants had a disability

in the 2015 survey. The inclusion criteria include the following:

(1) participants aged 60 years or older as the United Nations

defines this age group as older adults (27); (2) participants with

complete responses to ADL and IADL in the 2015–2018 survey,

which is an indicator of disability; and (3) participants who did

not report any ADL or IADL injuries in the 2015 survey, and

the absence of disability at baseline was the baseline condition

for the study. The World Health Organization defines health as

“the complete state of physical, mental, and social wellbeing”

(28). Therefore, the exclusion criteria include the following: (1)

participants who reported disability issues, including physical

disability, brain injury/intellectual disability, blindness or partial

blindness, deafness or partial deafness, and muteness or severe

stuttering; (2) participants diagnosed with serious illnesses such

as cancer and dementia; and (3) participants diagnosed with

emotional, nervous, or psychiatric problems by a doctor.

2.2. Research variable

2.2.1. Outcome variable
Disability was assessed by activities of daily living (ADL) and

instrumental activities of daily living (IADL) (29, 30). The ADL

measured the respondent’s ability to perform daily tasks, including

dressing, bathing, eating, getting out of bed, using the toilet, and

controlling urination and defecation, while the IADL determined

the ability to perform instrumental activities, such as doing chores,

preparing hot meals, shopping, managing money, making phone

calls, and taking medications. The participants’ answers were

categorized into four responses: (1) No, I do not have any difficulty;

(2) I have difficulty but still can do it; (3) Yes, I have difficulty and

need help; and (4) I cannot do it. Each ADL/IADL item received

scores of 0 if they had no problem performing the activity and 1 if

they experienced any difficulty or could not complete the task. We

calculated the total score by summing the six items. We classified

the ADL/IADL into two categories: (1) no disability (ADL/IADL

score= 0) and (2) disability(ADL/IADL score ≥ 1) (31).

2.2.2. Predictive variables
We conducted a preliminary assessment of predictive factors

related to disability based on their clinical significance and scientific

knowledge and established predictive factors in previous research

(32, 33). We selected 43 factors that may be related to the

population, including demographic characteristics (age, gender,

marital status, and education level); lifestyle and health behaviors

(smoking, drinking, sleep duration, naps, and social involvement);

laboratory results (white blood cells, hemoglobin, hematocrit,

mean corpuscular volume, platelets, triglycerides, creatinine,

blood urea nitrogen, high-density lipoprotein cholesterol, low-

density lipoprotein cholesterol, total cholesterol, glucose, uric acid,

cystatin C, C-reactive protein, and glycated hemoglobin); physical

examination results (systolic blood pressure, diastolic blood

pressure, pulse, respiratory function, left-hand grip strength, right-

hand grip strength, standing balance, walking speed, body mass

index, upper arm length, knee length, and waist circumference);

satisfaction (health, marriage, children, and life); and memory and

depression symptoms measured by the 10-item version of the

Center for Epidemiologic Studies Depression Scale (CES-D).

2.2.3. Data collection
The participants’ demographic features, lifestyle and health

behaviors, and satisfaction were collected by trained staff using

questionnaire interviews. The Chinese version of CES-D 10 from

the website of the Epidemiology Research Center was used to assess

depression symptoms. The answers for CES-D are on a 4-scale

metric, ranging from rarely to some days (1–2 days), to occasionally

(3–4 days), to most of the time (5–7 days). Scores from 0 for rarely

to 3 for most of the time are used for negative questions such as

“Do you feel sad?” For positive questions such as “Do you feel

happy?”, the scoring is reversed from 0 for most of the time to

3 for rarely. The higher the score, the more severe the depressive

symptoms. Blood sample analysis was conducted in two stages.

Initially, a complete blood cell count was performed at the local

county health center right after sample collection. The samples

were then shipped back to the research headquarters for the analysis

of other biomarkers. The participants’ physical examinations

were conducted using professional equipment demonstrated by

a measuring officer. Blood pressure was measured using the

Omron HEM-7200 monitor, and the average of three systolic and

diastolic pressure readings was recorded. Respiratory function was

measured using a peak flowmeter three times, and the average value

was taken. Handgrip strength was measured twice for each hand

using a dynamometer, and the average value was taken. Standing

balance was determined using a stopwatch to determine whether

the participant could stand with their feet together for 10 s.Walking

speed was measured twice using a stopwatch, and the average value

was taken. Body mass index was calculated based on height and

weight. The upper arm length and knee length weremeasured using

the MA DING ruler. Waist circumference was measured using a

soft tape measure.

2.3. Statistical analysis

2.3.1. Data pre-processing
In the dataset used in this study, some variables contain missing

values, but the proportion is extremely low (<0.15%). Therefore,

we used multiple imputation via regression models using the R

package mice to impute the missing values. The number of disabled

samples accounts for 23.22% of all participants, and as they tend

to cluster into a group, it can lead to a decrease in classifier

performance. To address this class imbalance issue, we utilized

SMOTE (sampling technique), which oversamples the minority

class by generating synthetic samples through a linear combination

of existing minority class neighbors (34). We split the processed

data into a 70% training set and a 30% testing set. In the dataset used

in this study, count data are presented as both numerical values

and proportions and analyzed using the chi-squared test. Given that
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FIGURE 1

Flow chart.

the continuous data are not normally distributed, we represented it

using the median and interquartile range and compared it using

the Mann–Whitney U test. The training set was used for model

development, while the testing set was used for adjusting model

parameters and estimating the generalizability of the model.

2.3.2. Model construction and evaluation
All analyses were conducted using R version 4.3.0. A p-value of

<0.05 was considered statistically significant. Before modeling, we

normalized the training and testing sets separately to prevent data

leakage. The testing set was used for adjusting model parameters

to avoid overfitting and for final model evaluation. The steps

for model building and evaluation were as follows: (1) The least

absolute shrinkage and selection operator (LASSO) regularization

was employed on the training set to select significant features from

the initial set of 43 variables. The algorithm underwent 10-fold

cross-validation to enhance reliability. (2) Six distinct machine

learning techniques, including logistic regression (LR), k-nearest

neighbors (KNN), naive Bayes (NB), multilayer perceptron (MLP),

random forest (RF), and extreme gradient boosting (XGBoost),

were chosen to construct models. The optimization of models was

performed using 10-fold cross-validation with 5 repetitions and

grid searching to adjust hyperparameters, ensuring stability. (3) The

performance of the models was compared using metrics such as

the area under the curve, accuracy, sensitivity, specificity, and F1

score. The Youden index was used to select the threshold, and the

Delong test was used to compare the ROC curves of the training

and testing sets to avoid overfitting. Decision curve analysis (DCA)

was performed on the testing set to evaluate the value and relative

superiority of each model in the applied scenario.

2.3.3. Model interpretation
The interpretability of machine learning has always been a

challenging problem. To further explain how each feature variable

affects and contributes to the final model, we employed the SHapley

Additive eXplanation (SHAP) method to interpret the black box

model with the best performance. SHAP values estimate the effect

of each feature on the prediction outcome based on game theory,

where each feature is considered a participant. SHAP attributes

prediction performance fairly to each feature, thereby explaining

each feature’s contribution to a single observation. We evaluated

the importance of each feature by computing the mean absolute

value of its SHAP value. We also plotted the SHAP values for each

feature of each sample to better understand the overall pattern

and the impact range of features on the dataset. We also utilized

the SHAP dependency plot to evaluate the non-linear effects of
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the features. Additionally, we provided two examples of SHAP

predictions for the purpose of demonstration. Figure 1 displays the

entire workflow of this study.

3. Results

3.1. Data processing results

This study included a population of 2,175 older adults whowere

in good health. Following a 3-year follow-up, we discovered that

505 of these individuals had become disabled, reflecting a disability

rate of 23.22%. Owing to the imbalance of data between the disabled

and non-disabled groups, we employed the oversampling process

of synthetic minority classes. We were left with 3,535 samples

following the application of SMOTE. The number of individuals

with disabilities was found to be 1,515, accounting for 42.86%. The

data were split into a ratio of 7:3, with the training set composed of

2,474 cases, of which, 1,063 were disability cases, and the testing

set containing 1,061 participants, including 452 individuals with

disabilities. The baseline data for both the final training and testing

sets are presented in Table 1. Except for smoking, there were no

significant differences in baseline characteristics between the two

groups (P > 0.05). This suggests that the two groups were not

biased due to the uneven distribution of dependent variables.

3.2. Feature selection

To identify the variables most strongly associated with

disabilities, we normalized the training dataset to eliminate the

influence of different units of measurement across the independent

variables. Disability was used as the dependent variable, and the

compressive variable coefficient was used to prevent overfitting

and address issues of severe multicollinearity (see Figure 2A). We

employed 10-fold cross-validation to determine the optimal penalty

parameter, λ. We evaluated the predictive performance of the fitted

models by computing the binomial deviance for the test data. The R

package generates two λ values automatically—one that minimizes

the binomial deviance and the other representing the largest λ

within 1 standard deviation of the minimum binomial deviance.

We chose the latter value of λ as it results in stricter penalties,

allowing us to further reduce the number of independent variables

compared with the former (see Figure 2B). Finally, we included

age, marital status, naps, white blood cells, systolic blood pressure,

diastolic blood pressure, respiratory function, right-hand grip

strength, standing balance, memory, and depression symptoms as

predictive variables to develop this machine learning model.

3.3. Model evaluation and comparison

According to the results of the LASSO feature selection, we

attempted to use several widely used machine learning algorithms,

including LR, KNN, NB, MLP, RF, and XGBoost, to construct

prediction models from the training set. During the modeling

process, we repeated 5 rounds of 10-fold cross-validation and grid

TABLE 1 Baseline characteristics in the training and testing cohorts.

Variable Training set
(n = 2474)

Testing set
(n = 1061)

p-
value

Age 66.00 [63.00, 70.00] 66.00 [62.00, 70.00] 0.490

Sex

Male 1, 398 (56.51) 588 (55.42) 0.575

Female 1, 076 (43.49) 473 (44.58)

Marital status

Married/cohabiting 1, 963 (79.35) 841 (79.26) 0.993

Widowed/never

married/divorced

511 (20.65) 220 (20.74)

Education level

Middle school and

below

2, 219 (89.69) 936 (88.22) 0.216

High school and

above

255 (10.31) 125 (11.78)

Smoking

No 1, 254 (50.69) 496 (46.75) 0.035

Yes 1, 220 (49.31) 565 (53.25)

Drinking

No 1, 030 (41.63) 427 (40.25) 0.465

Yes 1, 444 (58.37) 634 (59.75)

Sleep duration 6.70 [5.32, 8.00] 6.90 [5.40, 8.00] 0.853

Naps

No 1, 040 (42.04) 438 (41.28) 0.704

Yes 1, 434 (57.96) 623 (58.72)

Social involvement 1.00 [0.00, 1.00] 1.00 [0.00, 2.00] 0.361

WBC (1000) 5.82 [4.89, 6.85] 5.70 [4.82, 6.80] 0.137

HGB (g/dl) 13.80 [12.80, 14.80] 13.80 [12.80, 14.60] 0.318

HCT (%) 41.80 [39.00, 44.80] 41.80 [38.90, 44.60] 0.582

MCV (fl) 92.90 [89.20, 96.10] 92.80 [88.80, 96.20] 0.524

PLT (109/L) 194.00 [160.00,

233.00]

193.00 [156.00,

233.00]

0.398

TG (mg/dl) 112.16 [83.19,

160.50]

113.27 [84.55,

167.26]

0.281

CREA (mg/dl) 0.79 [0.69, 0.92] 0.79 [0.69, 0.91] 0.434

BUN (mg/dl) 15.13 [12.77, 18.29] 15.41 [12.89, 18.21] 0.720

HDL (mg/dl) 50.23 [43.63, 57.14] 49.81 [43.63, 57.53] 0.658

LDL (mg/dl) 102.58 [84.31,

120.14]

101.16 [84.17,

118.92]

0.406

CHO (mg/dl) 182.63 [161.85,

203.06]

180.70 [161.78,

203.09]

0.728

GLU (mg/dl) 97.30 [90.09,

108.11]

97.31 [90.09,

111.71]

0.500

UA (mg/dl) 5.00 [4.20, 5.90] 5.00 [4.10, 5.90] 0.999

CYSC (mg/l) 0.88 [0.78, 0.97] 0.88 [0.77, 0.97] 0.777

CRP (mg/l) 1.50 [0.90, 2.70] 1.40 [0.80, 2.60] 0.189

(Continued)
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TABLE 1 (Continued)

Variable Training set
(n = 2474)

Testing set
(n = 1063)

p-
value

HBALC (%) 5.90 [5.60, 6.20] 5.90 [5.60, 6.20] 0.316

Systolic blood

pressure

131.00 [119.00,

144.00]

131.00 [119.00,

143.00]

0.620

Diastolic blood

pressure

75.00 [69.00, 82.00] 75.00 [68.00, 82.00] 0.273

Pulse 72.00 [66.00, 79.00] 73.00 [67.00, 80.00] 0.337

Respiratory

function

271.00 [203.00,

347.00]

276.00 [202.00,

350.00]

0.612

Left-hand grip

strength

27.26 [22.30, 33.30] 27.00 [22.35, 33.42] 0.678

Right-hand grip

strength

28.50 [23.11, 35.00] 28.60 [23.22, 35.00] 0.749

Standing balance

Bad 561 (22.68) 218 (20.55) 0.175

Good 1913 (77.32) 843 (79.45)

Walking speed 3.06 [2.60, 3.65] 3.06 [2.59, 3.63] 0.925

BMI 23.32 [21.32, 25.48] 23.40 [21.25, 25.65] 0.550

Upper arm length 33.60 [32.20, 35.00] 33.40 [32.20, 34.80] 0.356

Knee length 47.80 [46.10, 49.70] 47.60 [46.00, 49.70] 0.362

Waist

circumference

86.00 [79.60, 92.77] 86.30 [79.20, 93.40] 0.655

Health satisfaction 3.00 [2.00, 3.00] 3.00 [2.00, 3.00] 0.503

Marriage

satisfaction

3.00 [2.00, 3.00] 3.00 [2.00, 3.00] 0.975

Children

satisfaction

2.00 [2.00, 3.00] 2.00 [2.00, 3.00] 0.352

Life satisfaction 3.00 [2.00, 3.00] 3.00 [2.00, 3.00] 0.662

Memory 4.00 [4.00, 5.00] 4.00 [4.00, 5.00] 0.249

Depression

symptoms

5.00 [3.00, 9.00] 5.00 [3.00, 9.00] 0.962

WBC, white blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular

volume; PLT, platelets; TG, triglycerides; CREA, creatinine; BUN, blood urea nitrogen; HDL,

high-density lipoprotein cholesterol; LDL, low-density lipoprotein cholesterol; CHO, total

cholesterol; GLU, glucose; UA, uric acid; CYSC, cystatin C; CRP, C-reactive protein; HBALC,

glycated hemoglobin; BMI, body mass index.

search parameter optimization. This was performed to ensure that

the models were not overfitting and had good generalization ability.

We evaluated the predictive models using the receiver

operating characteristic (ROC) curve, accuracy, sensitivity,

specificity, and F1 score. Prior to the evaluation, the optimal cutoff

point was determined by maximizing the Youden index (i.e.,

sensitivity + specificity – 1) on the ROC curve in the training

set. The results showed that the XGBoost model had the highest

area under the curve (AUC) on both the training and testing

sets (Figures 3A, B). In addition, except for the specificity metric,

the XGBoost model outperformed other models in terms of the

other performance metrics. The details of the specific model

parameters developed using different algorithms are shown in

Table 2. Although a high area under the curve (AUC) represents

high model prediction accuracy, it is insufficient to evaluate the

practical value of the model. To compare the practical utility of

different models, we used decision curve analysis (DCA) to plot

curves on the testing set. The DCA results (Figure 3C) showed

that XGBoost had the highest net benefit in most of the threshold

ranges. Taken together, these results demonstrate that XGBoost is

the optimal model to use.

3.4. Model interpretation

To better understand the relationship between the model and

the data, we provide a more intuitive interpretation of the best-

performing XGBoost model using SHAP to illustrate how these

variables affect the 3-year disability rate in the model. Figure 4A

illustrates the 11 evaluated risk factors by their SHAP values. The

SHAP value, located on the x-axis, is a unified index that determines

how a certain feature affects the model’s outcome. In each feature

important row, participants’ attributions to the outcome were

drawn with colored dots of high- and low-risk values represented

by purple and yellow dots, respectively. Figure 4B displays the

important features in this model where the feature ranking, located

on the y-axis, indicates the predictive model’s significance. The

findings show that there is a high correlation between right-hand

grip strength, depression symptoms, marital status, respiratory

function, age, and the 3-year disability prediction probability in

healthy older adults. The SHAP dependence plot (Figure 4C) can

also be used to understand how a single feature affects the output

of the XGBoost prediction model. Additionally, we provide two

typical examples, one predicting no disability (Figure 4D) and

the other predicting disability (Figure 4E), to demonstrate the

model’s interpretability.

4. Discussion

In this retrospective cohort study, we established a predictive

model to estimate the 3-year risk of disability in older adults

aged 60 and above in China who had good health status.

We employed machine learning algorithms for the prediction

task and utilized the LASSO method for feature selection; six

machine learning algorithms were deployed for the prediction

task and ultimately developed and validated the model using

11 important features. Among the tested models, the XGBoost

model performed the best in terms of predictive performance.

By analyzing the best-performing model using SHAP, we

identified influential features such as right-hand grip strength,

depressive symptoms, marital status, respiratory function, and

age. Additionally, we demonstrated how every feature affected the

model’s disability predictions.

From the point of view of influence factors, the selection of

features or variables is crucial in developing prediction models

(35). Among the initial 43 variables, the LASSO algorithm assisted

in identifying 11 significant variables. These variables support

previous literature regarding demographic characteristics (36),

depressive symptoms (37), and physical examinations (38, 39) in

older adults, highlighting the reliability and relevance of the chosen

predictors. In this study, grip strength emerged as a predictor
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FIGURE 2

Variable selection by the LASSO regression model. (A) Choice of the optimal parameter (λ) in the LASSO regression model with logλ as the horizontal

coordinate and regression coe�cients as the vertical coordinate; (B) plot of λ vs. number of variables with logλ as the bottom horizontal coordinate,

binomial deviance as the vertical coordinate, and number of variables as the top horizontal coordinate.

of disability in older adults. Grip strength provides a convenient

assessment of overall strength capacity, which is associated with

various health conditions. Research indicates that individuals with

lower grip strength have a 1.42 times higher risk of disability

compared to those with symmetrical and strong grip strength.

Moreover, individuals with asymmetric and weak grip strength

face an even higher risk of up to 1.86 times (40). Researchers

have found that lower grip strength could be a significant risk

factor for ADL disability in older adults (41). Compared with

other common factors associated with physical frailty, such as

comorbidities, weight loss, or fatigue, grip strength is highly

predictive of ADL disability (42). The strength of grip is directly

related to muscle strength, which plays a key role in executing

various actions and daily activities. The assessment of grip strength

is closely associated with changes in skeletal muscle strength and

alterations in physical functioning (43). A decline in grip strength

may indicate a decrease in the functional capacity of relevant

muscle groups, affecting an individual’s physical function and

activity ability, thereby increasing the risk of disability. We found

that depressive symptoms are a key predictor of disability in older

adults. This finding is consistent with previous research (44–46),

which demonstrates a longitudinal association between depressive

symptoms and disability in older adults. Over time, individuals

with higher baseline depression levels are more likely to report

difficulties in ADL abilities. Physiologically, depressive symptoms

can act as a stressor that triggers and exacerbates inflammatory

processes, thereby increasing the subsequent risk of disability.

Moreover, physical symptoms associated with depression, such

as fatigue and pain, may contribute to a decline in physical

functioning among older adults, impairing their ADL abilities

(47). From a psychological perspective, older adults experiencing

depression are more likely to lose hope in life, resulting in a

reduced likelihood of adhering to long-term medical advice (48).

Additionally, they may lack motivation for social and outdoor

activities, losing the protective effects of social engagement on

health and further weakening ADL abilities (49). Marital status

is an important predictor of disability in older adults. Among all

marital statuses, never-married and widowed older adults report

the highest incidence of disability compared with other groups (50).

Spousal support plays a unique role in the health of the Chinese

population, indicating a significantly increased disability risk in

older adults who are lifelong single or widowed (51). This can

be attributed to the positive influence of spousal companionship

on health behavior management and the healthcare environment

for older adults. Married individuals are more likely to adopt

healthy lifestyles, seek higher quality healthcare, and invest more in

healthcare expenditure (52). While the majority of older adults in

the cohort were married, the increasing rates of staying unmarried

and divorced in the current society necessitate further research on

marital status and its impact on disability. Respiratory function is

a strong predictor of disability in older adults. Previous research

suggests that, for every 1-unit decrease in respiratory function, the

risk of developing mobility limitations increases by 1.6 times (53).

Respiratory function is controlled by different distributed neural

networks, starting from the brain and extending to peripheral

muscles. Pathological features at multiple levels throughout the

neural axis may result in weakened respiratory function, causing

mobility limitations and increasing the risks of ADL and IADL

disabilities (54, 55). Although previous literature has reported a

relationship between respiratory function and disability, it has

not been included as a predictor in existing disability prediction

models. The study results indicate that older adults with stronger

respiratory function have a lower risk of disability, while those with

weaker respiratory function have a higher risk. This highlights the

potential importance of respiratory function as a novel predictor.

Age is also associated with the risk of disability in older adults. A
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FIGURE 3

Comprehensive evaluation of machine learning models. (A) ROC

and AUC of the training set; (B) ROC and AUC of the testing set; (C)

In the testing set, the ALL curve represents the benefit rates for all

cases with intervention, while the NONE curve represents the

benefit rates for all cases without intervention. The remaining curves

denote various models.

study by Chinese scholars on the trends of disability in Chinese

older adults over a 10-year period found that ADL disability

increases with age, and compared to period effects and cohort

effects, the age effect is the strongest (56). Another survey of

older adults aged 65 years and above revealed that bathing and

dressing/undressing were the most prevalent ADL disabilities, with

a higher proportion of participants experiencing IADL disabilities

(31.9%). The ≥85 age group exhibited the highest prevalence

of both ADL and IADL disabilities compared with other age

groups (32). While the likelihood of disability may vary due to

social and population differences among different countries, the

increase in disability risk with age in older adults seems undeniable.

Although the influence of the following factors on disability is

not as significant as the aforementioned predictors, we also found

higher WBC levels, an inability to maintain static balance, poorer

memory, and a lack of siesta to be risk factors for disability in older

adults. Blood pressure is also one of the influencing factors, but

according to the results, it does not exhibit a significant linear trend

in its effect on disability. Furthermore, we emphasize that all the

predictors included in this study can be measured in the real world.

In particular, physical examinations, as an integral part of the final

model, provide more objective and stable information compared

with self-reported measures.

From a model construction perspective, previous studies have

reported several risk prediction models for disability, with most of

them using the COX proportional hazards model andmultivariable

logistic regression analysis (57–60). Although only a few studies

have used machine learning algorithms for predicting disability

risk in older adults, machine learning models have been shown

to outperform traditional models in disability prediction (17, 61,

62). During the process of constructing disability risk prediction

models, we encountered several important issues. First, imbalanced

data can significantly affect model performance in the field of

biomedicine (63, 64). In the older population, the relatively low

disability rates lead to an imbalance in the proportion of normal

and disabled samples. For instance, if the disability rate among

older adults is 20%, even if the model predicts all results as

normal, there would still be an accuracy of 0.8, which is clearly

incorrect. This imbalance also leads to a tendency of the model

to predict normal samples more frequently and subsequently

shows less accuracy in predicting disabled samples. However, the

aforementioned studies did not adequately consider this point

during model construction. In machine learning, methods such as

oversampling or under sampling are recommended for addressing

the issue of imbalanced data (65). Therefore, we adopted the

SMOTE sampling technique to balance the normal and disabled

samples, thereby improving the prediction accuracy and stability

of the model by balancing the number of older adults in different

categories in the dataset. Second, regarding variable selection, a

5-year follow-up study on disability prediction in older adults

from Japan suggested that a prediction model constructed solely

using self-reported variables could predict functional impairments

with good performance (61). However, age explained 50–70% of

the predictive performance in their best model, indicating the

limited predictive value of other features. As older adults are a

group with rapidly changing health conditions, relying heavily on

age for prediction would be unreasonable, considering the high

incidence of disability within 5 years. Some studies have also
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TABLE 2 Evaluation of the performance of the six algorithms.

Algorithm Data set Threshold AUC Accuracy Sensitivity Specificity F1

LR Train 0.423 0.790 0.721 0.727 0.713 0.748

LR Test 0.423 0.768 0.714 0.718 0.708 0.742

NB Train 0.560 0.824 0.756 0.786 0.716 0.786

NB Test 0.560 0.793 0.739 0.778 0.686 0.774

KNN Train 0.432 0.792 0.705 0.644 0.787 0.713

KNN Test 0.432 0.762 0.689 0.629 0.770 0.699

MLP Train 0.371 0.808 0.726 0.698 0.763 0.744

MLP Test 0.371 0.776 0.716 0.704 0.732 0.740

RF Train 0.339 0.821 0.744 0.714 0.785 0.761

RF Test 0.339 0.793 0.715 0.683 0.759 0.73

XGBoost Train 0.478 0.833 0.761 0.787 0.726 0.790

XGBoost Test 0.478 0.803 0.757 0.790 0,712 0.789

FIGURE 4

SHAP interprets the model. (A) All samples and features are illustrated, with each row representing a feature and x-axis representing the SHAP value.

The yellow dots represent higher feature values, while the purple dots represent lower feature values. (B) Ranking of variable importance based on

the average value. (C) The SHAP dependence plot of the XGBoost model. (D) SHAP predictions for no disability samples. (E) SHAP predictions for

disability samples. Purple arrows indicate a higher risk of disability, while yellow arrows indicate a lower risk of disability. The length of the arrows

helps visualize the degree of impact of the prediction, whereby the longer the arrow, the more significant the e�ect.
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used ADL as one of the predictive factors (66). The functional

impairments in older adults are difficult to recover, and the

likelihood of returning to normalcy toward the end of follow-

up is extremely low for individuals who already have baseline

impairments.Whether daily activity ability can serve as a predictive

factor for disability remains to be further studied. Given the

complex factors influencing disability, it is worth considering

more variables and using techniques such as regularization for

selection. Finally, model performance evaluation is also a challenge.

The AUC is the most widely used metric. In a study on

daily living disability prediction in a Chinese older community

population from the same cohort similar to our study cohort,

researchers constructed six models based on different physical

performances, with AUCs ranging from 0.693 to 0.718 (67). In

this study, the AUCs of the six machine learning algorithms

ranged from 0.790 to 0.833, indicating that our research could

provide a reference for improving disability prediction models for

Chinese older adults. Overfitting is another issue to be considered

in model evaluation (68). In the modeling process, even with

methods such as cross-validation, some models still exhibited

very high AUC values and achieved high accuracy even on

test data. However, statistical tests revealed differences in AUC

between the two datasets, suggesting that the generalization ability

of models trained only on internal validation is questionable.

Therefore, without completely independent external validation

data, we recommend splitting a portion of the data before

normalization and variable selection and treating it separately

for mimicking external validation and parameter adjustment to

control model overfitting. For the construction and validation

of more standardized models in medicine, relevant guidelines

and studies can be consulted (69–71). In summary, although

we faced challenges in constructing disability risk prediction

models, machine learning algorithms have the potential to address

these issues. By addressing data imbalance, selecting relevant

variables effectively, improving model accuracy, and controlling

overfitting, we established a Chinese disability prediction model

for healthy older adults with high predictive and generalization

ability, providing more accurate and reliable guidance for

health management and disability risk interventions for Chinese

older adults.

From a model interpretation perspective, traditional machine

learning algorithms are often criticized for lacking transparency

and interpretability (72, 73). In order to better understand the

inherent logic and decision rules behindmodel predictions, another

advantage of this study was the use of SHAP values to interpret

these machine learning models and reveal their black box issues.

XGBoost, the best-performing model, was the one we focused

on for interpretation. In these test data, we calculated the SHAP

values for each feature variable to assess their contribution to

the prediction results. The overall SHAP summary plot helps

us understand which features positively and negatively affect the

prediction results, while the importance feature plot provides

an average assessment of the feature importance for the entire

dataset. This graph helps us understand the contribution of each

feature to the prediction results for this population and provides

useful information for further analysis and interpretation of the

model. Additionally, the SHAP dependency plot helps to observe

how these features affect the output of the prediction model at

different levels. In this study, the influence of marital status, balance

ability, memory, and napping on results can be clearly observed.

Grip strength, depressive symptoms, respiratory function, age,

and WBC count not only show a certain linear relationship with

the prediction results but also exhibit some turning points that

warrant further investigation. For example, age initially increases

the risk prediction of disability, followed by a slight decrease.

This may be because the mortality rate among older adults is

higher in a certain age group, and the surviving older adults tend

to exhibit relatively better health conditions, which cannot be

observed in linear models. Systolic and diastolic blood pressure

also plays important roles in predicting disability risk in older

adults but do not show obvious linear relationships. In other words,

the prediction results are not only influenced by the levels of

each factor but also by the individual differences among them.

Therefore, personalized risk prediction is also needed. The SHAP

force plot provides examples of how different features contribute

to individual risk prediction. In positively predicted samples, grip

strength, respiratory function, and marital status are the most

influential factors in the results. In negatively predicted samples,

grip strength, depressive symptoms, and diastolic blood pressure

are the most influential factors. This is similar to the overall

feature importance and also reflects the heterogeneity of older

adults. Previous one-size-fits-all intervention policies for disability

prevention have had limited effectiveness (74). Personalized risk

prediction provides guidance for relevant decision-makers, such

as offering more targeted health and community services for

specific age groups. Overall, the SHAP values used in this study

provide a method to unravel the black box of machine learning

models, enhancing their interpretability and transparency. This

allows us to better understand the predictive results of the

XGBoost model for disability risk prediction in Chinese healthy

older adults. By analyzing SHAP values, we can quantitatively

evaluate the extent to which these factors influence the prediction

results, identify potential risk groups among healthy older adults,

and provide a basis for intervention measures and personalized

prevention. This helps improve the quality of life for older

adults, reduce the burden on healthcare systems, and promote

healthy aging.

5. Limitations

There are several limitations to this study. First, there are no

universally accepted inclusion and exclusion criteria for defining

health. Although we established some selection conditions, this

may still result in the inability to identify hidden relationships

between certain individuals and outcomes. Second, the data were

obtained from a nationally representative survey, which may limit

its applicability and benefit thresholds in specific regions. Third,

the selected variables are limited by the structure of the survey

questionnaire, and thus, we cannot guarantee the inclusion of all

potential factors in this study. Whether to include the selected

variables as categorical or continuous, as well as the choice of the

division criteria, can also have an impact on the results. Finally,

despite employing certain methods to ensure the reliability and
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generalizability of the model, the results still need to be validated

in an externally independent cohort. Despite these limitations, we

believe that these findings are applicable in the prevention and

further intervention of disability occurrence among healthy older

adults in China.

6. Future routes of research

While the research results have significant implications, future

ideas and avenues for exploration remain to be investigated

and developed. Given the limitations of machine learning, we

present potential directions for further research that may aid

in advancing the field. First, we highlight the importance of

diversity in both variables and models. Currently, many factors

have been identified as predictive of disability occurrence, but the

importance of each factor may differ among different modeling

populations. To more accurately predict the risk of disability

occurrence, we need to collect more comprehensive and diverse

data, including information on different demographics, regions,

and environmental factors. With these data, we can tailor models

to specific populations, such as constructing multiple disability

risk prediction models based on the age range of older adults.

Multiple models can not only remove the influence of disability

occurrence rates in different age groups but may also reveal

unique predictive variables for each age group. Second, the

selection of predictive variables is crucial in building machine

learning models. At present, there are mainly three methods for

variable selection, including filter methods, wrapper methods,

and embedded methods. Although they have the same purpose,

the evaluation criteria for selecting predictive variables and the

variables selected by each method may differ. Future research can

consider using all three methods to establish predictive models

for comparison. Alternatively, one can take the intersection of the

predictive variables selected by the three methods and construct

the disability risk prediction model. Finally, there is a need

to focus not just on model development but also on model

interpretability. While building accurate and effective disability risk

prediction models is not difficult with the continuous development

of machine learning models, the focus should shift toward

model interpretability. Although SHAP, as a model interpretability

method, has some value, further research is needed to develop

machine learning models with stronger interpretability. This would

enable doctors and researchers to understand the decision-making

process of the model and would ultimately benefit the population at

risk of disability. In addition, machine learning predictive models

may also be used for long-term monitoring of an individual’s

health, which is uncommon in medical research. Future research

can explore ways to integrate predictive models with real-time

monitoring technologies, identify potential disability risks in a

timely manner, and provide personalized health intervention

measures to help people improve their lifestyles and prevent

disability. These are some ideas and routes for future research on

disability risk prediction. With further research and innovation,

we can expect more accurate and effective development of

disability risk prediction models, making greater contributions to

public health.

7. Conclusion

In conclusion, we successfully utilized machine learning

methods to predict the 3-year disability risk among older

adults in China. The XGBoost model demonstrated superior

performance in this study. Additionally, we addressed the “black

box” issue associated with machine learning by employing SHAP

for explanation. SHAP not only helped determine the importance

of each feature in the model but also demonstrated how each

feature influenced the model. This is highly valuable for the

early identification and intervention of healthy older adults with

potential disability risks.
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