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Opioid use disorder (OUD) is a major public health threat, contributing to morbidity 
and mortality from addiction, overdose, and related medical conditions. Despite 
our increasing knowledge about the pathophysiology and existing medical 
treatments of OUD, it has remained a relapsing and remitting disorder for 
decades, with rising deaths from overdoses, rather than declining. The COVID-19 
pandemic has accelerated the increase in overall substance use and interrupted 
access to treatment. If increased naloxone access, more buprenorphine 
prescribers, greater access to treatment, enhanced reimbursement, less stigma 
and various harm reduction strategies were effective for OUD, overdose deaths 
would not be at an all-time high. Different prevention and treatment approaches 
are needed to reverse the concerning trend in OUD. This article will review the 
recent trends and limitations on existing medications for OUD and briefly review 
novel approaches to treatment that have the potential to be more durable and 
effective than existing medications. The focus will be on promising interventional 
treatments, psychedelics, neuroimmune, neutraceutical, and electromagnetic 
therapies. At different phases of investigation and FDA approval, these novel 
approaches have the potential to not just reduce overdoses and deaths, but 
attenuate OUD, as well as address existing comorbid disorders.
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Introduction

Opioid use disorder (OUD) is a complex physical and emotional disease with important 
mood and anhedonic impacts. It also contributes to comorbid medical and infectious diseases 
that require evaluation and treatment (1). Drug use changes the brain, behavior, and 
motivational hierarchy via induction of neuroplasticity; the patient with OUD acquires a 
chronic, progressive neurodysregulation that shortens life, reduces career opportunities and 
earning potential, increases the risks of other diseases, and often ends in death. Fentanyl is 
becoming increasingly common. Fentanyl is highly effective at producing OUD and 
contributing to anhedonia and overdose. Many with OUD also use methamphetamine and 
cocaine for their euphoric mood effects, but when used regularly, these drugs can lead to 
alterations in brain function to trigger negative effects, such as dysphoria, anhedonia, and 
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depression (2). Unfortunately, polysubstance use and relapses are the 
norm rather than the exception (3, 4). OUD is part of the substance 
use disorder (SUD) spectrum but is unique among other SUDs in that 
there is a solid understanding of its neurobiology and there are Food 
and Drug Administration (FDA) approved treatments (5). Medical 
management of OUD has not changed much since the 1970s, with 
agonists like methadone and antagonists like naltrexone. The addition 
of the partial agonist buprenorphine and extended-release naltrexone 
(XR-NTX) were important milestones.

Opioid use in the context of 
worsening substance use

Substance use disorder (SUD) is one of the nation’s most pressing 
public health challenges. According to the 2021 World Drug Report 
by the United Nations Office on Drugs and Crime (UNODC), at least 
275 million people worldwide used controlled substances in the 
previous year, with more than 36 million meeting the criteria for a 
substance use disorder (6). Among controlled substances contributing 
to the burden of disease, opioids stand out as the primary driver of 
drug-related fatalities, comprising 69% of deaths directly associated 
with drug use.

Recent data show the evidence-based and FDA-approved 
treatments for OUD reduce stigma and improve treatment access. 
Although more people are currently being treated with medications 
for opioid use disorder (MOUD), deaths continue to increase. 
Nationally, over the past 15 years, at least 500,000 deaths have been 
attributed to opioid overdoses, contributing to the decrease in US life 
expectancy. This concerning trend has worsened during the 
COVID-19 pandemic (7, 8). Those with SUDs are highly dependent 
on traditional in-person and often emergent care (9). However, 
pandemic policies--such as the quarantine--to save lives from the 
COVID-19 virus, have led to disruptions in such care, leading to 
worsening opioid overdoses and deaths during the lockdown (10, 11). 
The Centers for Disease Control and Prevention estimated that for the 
first time ever, over 100,000 deaths occurred due to overdoses during 
a 12-month period, and the current Director of the Office of National 
Drug Control Policy suggested that annual opioid-induced deaths 
could reach 165,000 by 2025 (12).

By necessity, the opioid crisis has shifted the focus to addressing 
overdose deaths rather than treatment and recovery. A considerable 
proportion of opioid overdose fatalities are now linked to synthetic 
opioids, particularly fentanyl. The opioid epidemic has transitioned 
from being primarily of prescription opioids to heroin and now 
subsequently fentanyl. Concerningly, with the increase in synthetic 
opioid use, the trend shows that more and more individuals are also 
consuming other substances, sometimes inadvertently from 
contamination and others from co-ingestion of other prescription or 
psychostimulant drugs. Although SUDs are often discussed in 
isolation, the reality is that many individuals are combining multiple 
drugs, often in fatal combinations. For example, in more than half of 
all methamphetamine-related deaths and about three-quarters of all 
cocaine-related deaths in 2019, there were co-ingestion of opioids (7). 
Illicitly manufactured fentanyl is implicated in the increase in 
overdose deaths in cocaine use, and co-ingestion of fentanyl and other 
substances, such as methamphetamine, cocaine, and ecstasy, have 
been shown in postmortem examinations of overdose deaths (13, 14). 

Patients in the psychiatric emergency rooms often test positive for 
fentanyl while testing positive for other psychostimulants; unknown 
contamination with fentanyl puts opioid-naïve psychostimulant users 
at an increased risk of overdose (15, 16). While the public attention 
remains on opioid-related deaths, a concerning upsurge in fatalities 
linked to stimulant drugs suggests that the opioid crisis may 
be entering a new phase. The ongoing substance use crisis is constantly 
evolving, marked by changing patterns of substance use and 
availability, as well as concurrent use of multiple drugs across 
drug classes.

OUD overdose reversal starts with 
naloxone

Among all potential interventions, increasing the access to 
naloxone would have the most significant effect in reducing 
opioid-use related deaths, according to Pitt et  al. (17). While 
important to implement other strategies, no other harm reduction 
approach has had as significant of an impact. Naloxone is classified 
as a “pure” antagonist, meaning it lacks opioid agonistic traits seen 
in other opioid antagonists, and it displaces other full and/or partial 
opioid agonists that engage opioid receptors to reverse the effects of 
euphoria, analgesia, as well as respiratory depression, sedation, and 
bradycardia. Naloxone is a rapid-acting, easy-to-administer agent 
that can be given in the setting of opioid intoxication and overdose, 
to provide swift, life-saving reversal (18). Within minutes, naloxone 
can fully reverse the effects of opioids. Regardless of the substance 
use history, naloxone offers substantial potential benefits and 
minimal risk when overdose is suspected. Thus, the importance of 
promoting access to naloxone in those who use opioids as well as in 
potential bystanders who can intervene in an overdose setting 
cannot be understated. However, it is also important to note that 
naloxone serves as an intervention rather than a remedy for the 
underlying condition. Naloxone can treat the overdose acutely, but 
it does not treat the OUD. Existing evidence does not indicate that 
experiencing an overdose and subsequent reversal with naloxone 
alters the trajectory of those with OUD; patients must be connected 
to subsequent treatment services that include MOUDs for improved 
outcomes (1). Thus, access to both is critical to reduce OUD 
related deaths.

Transition with urgency: from 
overdose reversal to treatment of the 
whole patient with OUD

It is difficult to accurately estimate the total economic burden 
associated with substance use, encompassing factors from the cost of 
treatment as well as reduced productivity, loss of life, and the 
emotional toll on those left behind (19). Although it has been 
suggested that mortality can be reduced by evidenced-based treatment 
approaches, OUD is characterized by a chronic and relapsing course—
initially driven by activation of the brain’s reward system, but later 
increasingly dominated by anti-reward neural circuits that trigger 
negative emotional states and relapses (3, 20). It is noteworthy that one 
important anti-reward neurocircuit phenomena is the subsequent 
opioid-induced reduction of functional connectivity (21).
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No single treatment approach has proven to be  universally 
effective, as many have other medical and psychiatric comorbidities 
that often hinder successful treatment. Furthermore, racial and 
economic disparities in morbidity and mortality point to inequalities 
that must be  addressed and rectified (22). Even harm reduction 
strategy of naloxone is a limited strategy in that it often requires 
someone else other than the patient to help administer the reversal 
agent (23).

The current mainstay of treatment for OUD is MOUDs. 
Buprenorphine, extended-release naltrexone (XR-NTX), and 
methadone are all FDA-approved and have been shown to be effective 
in reducing the number of overdoses in those who remain adherent 
to treatment—which remains a challenge in access and retention 
(24–26). Buprenorphine is the most prescribed of the MOUDs and it 
may help mitigate anhedonia and withdrawal symptoms associated 
with fentanyl use (27, 28). However, treatment dropouts are common, 
and patients are often re-initiated on the same buprenorphine (29). 
Once an overdose is reversed, the patient remains at high risk for 
overdose, which has led to initiation of buprenorphine in hospitals, 
emergency rooms, and immediately after rescue. This has not 
decreased the overall number of deaths, but provides another 
opportunity to successfully treat the patient.

XR-NTX is a monthly injectable opioid antagonist that acts to 
block other opioids from activating receptors. Despite the monthly 
injectable formulation of the drug, transition and compliance to 
treatment remain an issue, as patients need to go through 
detoxification to start the medication. Therefore, despite similar 
efficacy of XR-NTX to buprenorphine shown in the XBOT trial, 
buprenorphine is more often initiated (30). Augmentation of 
naltrexone therapy with other agents such as clonidine, lofexidine, and 
buprenorphine are often tried in outpatient detoxification settings. 
With augmentation of non-opioid agents like clonidine, patients are 
able to successful initiate and maintain an opioid antagonist, rather 
than a partial agonist. This is particularly important for those in 
occupations related to public for whom methadone or buprenorphine 
is not prescribed and for those who may be mandated to treatment for 
their OUD (26, 31).

While MOUDs are highly effective and FDA approved, they are 
not a “magic bullet”, and the entire scientific community should 
continue their pursuit to develop alternative non-addictive and safe 
treatments (32, 33). Despite best efforts, the existing strategies for 
preventing and treating OUD will still result in more than 700,000 
deaths in the US between 2016 and 2025, from both prescription and 
non-prescription opioids such as fentanyl (34).

The most favorable outcomes are associated with extended 
duration of MOUD therapy. However, treatment drop out and relapses 
are common. When OUD treatment with a MOUD ends or is 
discontinued by the patient, they often relapse, overdose, and rarely 
have the disease remitted. Risk of overdose appears to persist even 
after completion of buprenorphine treatment, and stopping MOUD 
is associated with an elevated overdose risk, raising a controversial 
question about whether opioid agonist treatment can lead to opioid 
deficiency or opioid system dysregulation (3, 35). This risk of relapse 
and overdose persists even several years of recovery; thus, recovery 
can be akin to a “remission” of OUD symptoms rather than a complete 
cure or elimination. While it may be true that prolonged MOUD is the 
most effective in preventing relapse, it is also true that the quality of 
life on MOUD treatment can be  negatively impacted and most 

patients do not remain on lifelong treatment for OUD. One study 
revealed that patients on long-term Suboxone exhibited significantly 
flat affect (p  < 0.01) and reported diminished sense of feelings of 
happiness, sadness, and anxiety compared to both the general 
population and Alcoholics Anonymous (AA) groups (36). Despite the 
limitations, treatment of OUD is still linked to improved outcomes in 
morbidity and mortality, and integration of MOUD with effective, 
evidence-based therapy and contingency management lead to 
enhanced outcomes (37). It is thought that achieving successful 
treatment of OUD requires not just medications but a comprehensive 
approach that addresses the psychosocial factors that predispose and 
perpetuate individuals toward opioid use disorder.

Brain and behavioral recovery take hope, patience, time, and 
effort. No one knows if or when the brain will return to its pre-morbid 
function. Interestingly, research from China revealed that even after 
10 months of heroin abstinence, there were changes in resting state of 
functional connectivity (RSFC) patterns between the midbrain and 
various cortical regions, such as diminished RSFC of the medial 
orbitofrontal cortex (mOFC) and anterior cingulate cortex compared 
to non-heroin using controls. Persistent reward circuitry abnormalities 
were present after 16 months, but enhancement of RSFC in certain 
circuits were seen in long-term abstinence compared with short-term 
(38, 39). Abstinence from substance use, as well as adopting a healthy 
diet, and other regenerative treatments, including exercise and 
transcranial magnetic stimulation may all help expedite brain recovery 
(40, 41).

Pro-dopamine regulation and 
assessment of preaddiction

At the population health level, a “preaddiction” model, like 
prediabetes, has been suggested to ring the alarm bell for an early 
intervention before the addiction progresses to cause more severe 
symptoms and engender chronic changes in the brain’s neural 
circuitry. SUD is currently defined by the DSM-5 based on 11 
symptoms of impaired control, and severity is determined by the 
number of symptoms patients endorse. The term addiction specifically 
refers to severe SUD, which is defined as having six or more symptoms. 
This occurs in about 4–5% of adults, compared to 13% of the adult 
population who have mild to moderate SUD, defined as having 2–5 
symptoms (42). Although larger proportion of the population suffer 
from mild to moderate SUD, public health policies and treatment 
focus on those with severe, often chronic addictions, to prevent 
overdoses and deaths, rather than the much larger population 
grappling with early-stage SUDs. By focusing on those with early-
stage addiction, McLellan et al. argue that a preaddiction model that 
looks for early signs of addiction increases public awareness and 
allows early intervention that can increase disease detection, shorten 
delays to treatment, and prevent progression (42, 43). Directors of the 
National Institute on Drug Abuse and National Institute on Alcohol 
Abuse and Alcoholism have also advocated for the integration of 
“preaddiction” to the conceptualization of addiction in the DSM.

Although the term preaddiction borrows from the advances made 
in diabetes, but it is best conceptualized as dopamine or reward 
dysregulation, where there is a net hypodopaminergia within the 
meso-limbic reward circuitry from inappropriate or dysregulated 
neurotransmitter systems (44, 45). Therefore, the terms “reward 
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deficiency” or “reward dysregulation” have also been proposed (46, 
47). Reward deficiency syndrome (RDS) refers to behavioral 
dysfunctions resulting from the disruption of the reward circuitry, due 
to both genetic and epigenetic factors, and can describe a wide 
spectrum of psychiatric disorders, from various addictions to 
obsessive and compulsive disorders and other behavioral 
conditions (47).

Ways to improve on existing treatment 
approaches

Public health solutions proposed to address the worsening opioid 
epidemic include: relaxing the restrictions for physicians to be able to 
prescribe MOUD; increasing insurance coverage to increase access to 
treatment for patients (48–51); inducting patients on high-dose 
buprenorphine in the emergency department (52, 53); and 
implementing contingency management along with medical treatment 
to address other key issues of patients undergoing treatment, such as 
other concurrent substance use (50). Widespread adoption of these 
practices may help improve treatment retention and reduce overdoses 
and deaths, to address critical gaps in delivery of existing treatments 
(37, 54–56).

All these measures would be helpful to curb damage of the OUD 
at the population level, but still does not address the intrinsic 
limitations of existing treatments. Limited effectiveness of existing 
pharmacologic treatments and harm reduction approaches leaves a 
desire for more durable, novel treatment approaches especially as they 
relate to the required induction of “dopamine homeostasis” (57–59).

Novel treatments for SUDs are being investigated, most notably 
interventional neuromodulatory interventions such as transcranial 
magnetic stimulation (TMS) and deep brain stimulation (DBS), as 
well as psychedelics and neuroimmune therapies. Rather than working 
at modulating specific opioid receptors as existing MOUDs do, these 
proposed treatments target other aspects of substance use 
pathophysiology, such as the mesolimbic neural circuitry modulating 
reward and dorsolateral prefrontal and orbitofrontal cortex involved 
in craving, or the neuroimmune and epigenetic modulations that 
occur in response to substances (60, 61).

Developments in interventional 
neuromodulation treatments for OUD

Interventional neuromodulational treatments such as TMS and 
DBS work by modulating neural circuits and synaptic plasticity, and 
several neuromodulating modalities have been investigated for use in 
various neurologic and psychiatric conditions (62). TMS is a 
noninvasive treatment that utilizes an extracranial magnetic coil to 
induce a magnetic field that can stimulate or inhibit targeted cortical 
and subcortical structures. It is currently FDA-approved for treatment 
of psychiatric conditions including major depressive disorder and 
obsessive-compulsive disorder. Clinical trials have shown its 
effectiveness in reducing substance craving via targeting of the 
dorsolateral prefrontal cortex, with effects on curbing substance use 
lasting greater than the immediate treatment period, with various 
substances such as cocaine, methamphetamine, alcohol, heroin, and 
cigarette use (63–70). A meta-analysis of repetitive TMS (rTMS) on 

addiction has found a small, persistent effect on stimulant and 
behavioral addiction, but not on depressants such as alcohol, opioids, 
and cannabis (71). However, currently multiple randomized controlled 
trials are being conducted for various TMS protocols to treat patients 
with opioid use as well as uncover mechanisms (72–83). Further 
understanding of the exact mechanism and optimization is needed to 
implement TMS as treatment for OUD (84). One important aspect 
regarding TMS relates to the concept of utilizing QEEG to determine 
individualized or personalized signatures termed PRTMS, first coined 
and developed by Kevin T. Murphy (85).

Similarly, DBS is a neuromodulatory treatment method that can 
directly stimulate targeted brain regions, but unlike TMS, it typically 
relies on surgically implanted electrodes. It has FDA approval for 
various neurologic conditions, such as Parkinson’s disease, tremors, 
dystonia, as well as epilepsy and OCD. With its ability to reach deeper 
subcortical structures, DBS is also being investigated for other 
psychiatric conditions, such as treatment-resistant depression, pain, 
multiple sclerosis, and addiction. Specifically for addiction, animal 
models have shown that modulation of nucleus accumbens (NAc) can 
reverse synaptic changes from cocaine and alcohol use (60, 62), and 
small case studies in humans have shown effectiveness in treating 
alcohol use and heroin use (86). More registered clinical trials are 
examining DBS’s effect in various substance use, including both 
randomized and non-randomized clinical trials on DBS of NAc of the 
mesolimbic system as well as DBS specifically for the treatment for 
severe OUD (87–94).

Beyond TMS and DBS, other similar modalities such as vagus 
nerve stimulation (VNS), focused ultrasound (FUS), and transcranial 
direct current stimulation (tDCS) are being investigated, with varying 
degrees of invasiveness and spatial resolution. VNS is FDA-approved 
for treatment-resistant depression and epilepsy, and FUS is approved 
for use in treatment-resistant Parkinson’s disease as well as essential 
tremor (95, 96), while tDCS does not have any FDA-approved 
indications. A small randomized clinical trial on transcutaneous VNS 
has found significant improvement in behavioral and physiologic 
opioid withdrawal symptoms, indicating potential utility as adjunct 
treatment for OUD (93). Although not FDA-approved, tDCS has 
some evidence for utility in depression and addiction, and multiple 
clinical trials are ongoing for its use in neuropsychiatric conditions 
(81, 97–101). FUS is also being investigated in a small, open-label 
clinical trial for feasibility in treatment for OUD (102).

Overall, more evidence is needed before neuromodulatory 
modalities are adopted in OUD treatment, but the strength of these 
proposed therapies is that they work via modulating neural circuitries 
and synaptic plasticity, rather than maintaining patients on opioid 
maintenance treatments, as well as treat other comorbid 
neuropsychiatric conditions, such as other SUDs and mood disorders.

Renewed interest in psychedelics for 
SUD

Psychedelic medicine has seen a resurgence of interest in recent 
years as potential therapeutics, including for SUDs (103, 104). Prior 
to the passage of the Controlled Substance Act of 1970, psychedelics 
had been studied and utilized as potential therapeutic adjuncts, with 
anecdotal evidence and small clinical trials showing positive impact 
on mood and decreased substance use, with effect appearing to last 
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longer than the duration of use. Many psychedelic agents are 
derivatives of natural substances that had traditional medicinal and 
spiritual uses, and they are generally considered to have low potential 
for dependence and low risk of serious adverse effects, even at high 
doses. Classic psychedelics are agents that have serotonergic activity 
via 5-hydroxytryptamine 2A receptors, whereas non-classic agents 
have lesser-known neuropharmacology. But overall, psychedelic 
agents appear to increase neuroplasticity, demonstrating increased 
synapses in key brain areas involved in emotion processing and social 
cognition (105–109). Being classified as schedule I  controlled 
substances had hindered subsequent research on psychedelics, until 
the need for better treatments of psychiatric conditions such as 
treatment resistant mood, anxiety, and SUDs led to renewed interest 
in these agents.

Of the psychedelic agents, only esketamine—the S enantiomer 
of ketamine, an anesthetic that acts as an NMDA receptor 
antagonist—currently has FDA approval for use in treatment-
resistant depression, with durable effects on depression symptoms, 
including suicidality (110, 111). Ketamine enhances connections 
between the brain regions involved in dopamine production and 
regulation, which may help explain its antidepressant effects (112). 
Interests in ketamine for other uses are expanding, and ketamine 
is currently being investigated with plans for a phase 3 clinical trial 
for use in alcohol use disorder after a phase 2 trial showed on 
average 86% of days abstinent in the 6 months after treatment, 
compared to 2% before the trial (113).

Psilocybin, an active ingredient in mushrooms, and MDMA, a 
synthetic drug also known as ecstasy, are also next in the pipelines for 
FDA approval, with mounting evidence in phase 2 clinical trials 
leading to phase 3 trials. Psilocybin completed its largest randomized 
controlled trial on treatment-resistant depression to date, with phase 
2 study evidence showing about 36% of patients with improved 
depression symptoms by at least 50% at 3 weeks and 24% experiencing 
sustained effect at 3 months after treatment, compared to control 
(114). Currently, a phase 3 trial for psilocybin for cancer-associated 
anxiety, depression, and distress is planned (115). Similar to 
psilocybin, MDMA has shown promising results for treating 
neuropsychiatric disorders in phase 2 trials (116), and in 2021, a phase 
3 trial showed that MDMA-assisted therapy led to significant 
reduction in severe PTSD symptoms, even when patients had 
comorbidities such as SUDs; 88% of patients saw more than 50% 
reduction in symptoms and 67% no longer qualifying for a PTSD 
diagnosis (117). The second phase 3 trial is ongoing (118).

With mounting evidence of potential therapeutic use of these 
agents, FDA approval of MDMA, psilocybin, and ketamine can pave 
the way for greater exploration and application of psychedelics as 
therapy for SUDs, including opioid use. Existing evidence on 
psychedelics on SUDs are anecdotally reported reduction in substance 
use and small clinical cases or trials (119). Previous open label studies 
on psilocybin have shown improved abstinence in cigarette and 
alcohol use (120–122), and a meta-analysis on ketamine’s effect on 
substance use showed reduced craving and increased abstinence 
(123). Multiple open-label as well as randomized clinical trials are 
investigating psilocybin, ketamine, and MDMA-assisted treatment for 
patients who also have opioid dependence (124–130). Other 
psychedelic agents, such as LSD, ibogaine, kratom, and mescaline are 
also of interest as a potential therapeutic for OUD, for their role in 
reducing craving and substance use (104, 131–140).

Potential neuroimmune modulatory 
approaches to treating OUD

Changes to brain’s synaptic plasticity via neuroimmune 
modulation seen in addiction suggest the role of agents that can 
disrupt and/or mitigate the changes from substance use and addiction 
as potential therapeutics (141, 142). Existing medications may 
be applicable to OUD and substance use treatment in this manner, by 
modulating or reversing synaptic plasticity. For example, 
N-Acetylcysteine, an antioxidant medication with multiple clinical 
applications, has shown to reverse cocaine-induced metaplasticity in 
in rats (143), and ceftriaxone, a third generation cephalosporine 
antibiotic, has shown to downregulate glutamate transporter 1 
(EEAT2) and reduce drug seeking behavior (144, 145). Similarly, 
spironolactone, a mineralocorticoid receptor antagonist, has been 
shown to reduce alcohol consumption in both mice and humans, but 
to a greater degree in humans (146). Novel immune-modulating 
agents can also be developed to target known signaling pathways 
involved in addiction and OUD, such as TLR4, a transmembrane 
protein that plays a role in rewarding effects of substances, leading to 
reinforcement of use (147–149).

Other neuroimmune modulatory agents are of interest, including 
biologic agents, such as antibodies, and vaccines that block the effect 
of substances of abuse (150–154), but low immunogenicity remains a 
major challenge to being effective in humans. Overall, much more 
evidence is needed to develop novel neuroimmunotherapeutics as 
effective treatments for SUDs. However, the potential benefit of the 
proposed approaches is that they may modulate or even reverse the 
lasting damages substance use imposes on the brain.

Summary

The nation has had a series of drug overdose epidemics, starting 
with prescription opioids, moving to injectable heroin and then 
fentanyl. Addiction policy experts have suggested a number of policy 
changes that increase access and reduce stigma along with many harm 
reduction strategies that have been enthusiastically adopted. Despite 
this, the actual effects on OUD & drug overdose rates have been 
difficult to demonstrate.

The efficacy of OUD treatments is limited by poor adherence and 
it is unclear if recovery to premorbid levels is even possible. Comorbid 
psychiatric, addictive, or medical disorders often contribute to 
recidivism. While expanding access to treatment and adopting harm 
reduction approaches are important in saving lives, to reverse the 
concerning trends in OUD, there must also be novel treatments that 
are more durable, non-addicting, safe, and effective. Promising 
potential treatments include neuromodulating modalities such as 
TMS and DBS, which target different areas of the neural circuitry 
involved in addiction. Some of these modalities are already 
FDA-approved for other neuropsychiatric conditions and have 
evidence of effectiveness in reducing substance use, with several 
clinical trials in progress. In addition to neuromodulation, 
psychedelics has been gaining much interest in potential for use in 
various SUD, with mounting evidence for use of psychedelics in 
psychiatric conditions. If the FDA approves psilocybin and MDMA 
after successful phase 3 trials, there will be  reduced barriers to 
investigate applications of psychedelics despite their current 
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classification as Schedule I substances. Like psychedelics, but with less 
evidence, are neuroimmune modulating approaches to treating 
addiction. Without new inventions for pain treatment, new treatments 
for OUD and SUD which might offer the hope of a re-setting of the 
brain to pre-use functionality and cures we will not make the kind of 
progress that we need to reverse this crisis.

Conclusion

By using agents that target pathways that lead to changes in 
synaptic plasticity seen in addiction, this approach can prevent 
addiction and/or reverse damages caused by addiction. All of these 
proposed approaches to treating OUD are at various stages in 
investigation and development. However, the potential benefits of 
these approaches are their ability to target structural changes that 
occur in the brain in addiction and treat comorbid conditions, such 
as other addictions and mood disorders. If successful, they will shift 
the paradigm of OUD treatment away from the opioid receptor and 
have the potential to cure, not just manage, OUD.
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