
TYPE Brief Research Report

PUBLISHED 22 November 2023

DOI 10.3389/fpubh.2023.1276029

OPEN ACCESS

EDITED BY

Nuno Sepulveda,

Warsaw University of Technology, Poland

REVIEWED BY

Soufiane Bentout,

Centre Universitaire Ain Temouchent, Algeria

Jorge F. Mendez-Galván,

Federico Gómez Children’s Hospital, Mexico

*CORRESPONDENCE

Dario Ghersi

dghersi@unomaha.edu

RECEIVED 11 August 2023

ACCEPTED 31 October 2023

PUBLISHED 22 November 2023

CITATION

Thapa I and Ghersi D (2023) Modeling

preferential attraction to infected hosts in

vector-borne diseases.

Front. Public Health 11:1276029.

doi: 10.3389/fpubh.2023.1276029

COPYRIGHT

© 2023 Thapa and Ghersi. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Modeling preferential attraction
to infected hosts in vector-borne
diseases
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Vector-borne infectious diseases cause more than 700,000 deaths a year and

represent an increasing threat to public health worldwide. Strategies to mitigate

the spread of vector-borne diseases can benefit from a thorough understanding

of all mechanisms that contribute to viral propagation in human. A recent study

showed that Aedes mosquitoes (the vectors for dengue and Zika virus, among

others) are preferentially attracted to infected hosts. In order to determine the

impact of this factor on viral spread, we built a dedicated agent-based model

and parameterized it on dengue fever. We then performed a systematic study

of how mosquitoes’ preferential attraction for infected hosts a�ects viral load

and persistence of the infection. Our results indicate that even small values of

preferential attraction have a dramatic e�ect on the number of infected individuals

and the persistence of the infection in the population. Taken together, our results

suggests that interventions aimed at decreasing the preferential attraction of

vectors for infected hosts can reduce viral transmission and thus can have public

health implications.
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1 Introduction

Vector borne diseases like dengue, malaria, and yellow fever are infections transmitted

by the bite of blood-feeding arthropods such as mosquitoes and ticks. In 2019, 56,879million

cases of dengue were reported, with 36,055 deaths attributable to dengue globally (1). With

the increasing global burden of dengue and other vector-borne diseases, it is critical to

determine all the factors that influence the overall transmission of the virus. In this study,

we developed a computational model to understand how the viral transmission can be

influenced by vector attraction for infected hosts.

A recent study by Zhang et al. (2) showed that dengue and Zika infected mice were

more attractive to the Aedes mosquitoes than uninfected mice. The study showed that

dengue and Zika infections in mice lead to increased release of acetophenone, a mosquito

attractant, due to altered skin microbiota (2). Interestingly, preference toward infected

humans has also been observed in malaria, where mosquitoes are more attracted to humans

in transmissible stage than to uninfected and infected individuals in non-transmissible

stages (3). Anopheles mosquitoes are known malaria vectors and have been shown to

respond to skin volatile compounds emitted by skin-associated bacteria in the hosts (4). In

addition to skin microbiome, body odor and underlying health conditions can influence the

mosquitoes’ attraction to humans (5). Administering vitaminA to the host was able to reduce

acetophenone release due to decreased abundance of Bacillus spp. in the skin microbiome,

leading to decreased mosquito attraction (2). However, composition of the human skin
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microbiota is influenced by many factors including skin site, sex,

age, and use of cosmetics (6). More studies are needed to study

the efficacy of vitamin A in reducing the mosquito attraction in

dengue-infected individuals.

While the study by Zhang et al. (2) focused on understanding

the biochemical mechanisms that make infected hosts more

attractive to mosquitoes, the impact of such mechanisms on virus

transmission has not yet been fully elucidated. More specifically,

how viral load and persistence of viral infection in the population

can be impacted by changes in mosquitoes’ attraction to infected

hosts is still poorly understood. Knowing whether preferential

attraction to infected hosts has a major effect on viral propagation

in a population can have important implications for public health

initiatives aimed at reducing the burden of vector borne diseases.

In order to study the effect on viral propagation when vectors

are preferentially attracted to infected hosts, we built a simple

SIR (7) agent-based model (ABM) with mosquitoes and human

hosts as agents, and introduced a bias parameter that controls

preferential attraction of mosquitoes to infected hosts.We designed

computational experiments to systematically investigate the effect

of the bias and other key parameters in the model on viral

propagation and total viral load.

Agent-based models have been widely applied in biomedical

sciences, with areas of focus ranging from immune system

responses to viral infections (8, 9), tumor development and

response to different therapies including immunotherapy (10,

11), and viral transmission during pandemics (12). ABMs are

comprised of individual agents, with well-defined behavior and

rules of interactions, and are an orthogonal approach to equation-

based mathematical modeling (13). In both types of approaches,

choosing a correct set of parameters is key to successfully model

the phenomenon of interest (14), (15), (16), (17). In this study, we

specifically parameterized the model using data from the literature

on dengue virus. However, the model can be easily adapted to

simulate other vector borne diseases like malaria or Zika. Using

this dengue infection model, we show that preferential attraction

to infected hosts plays a key role in sustained infections. Without

any preference for infected hosts (i.e., with the bias parameter set to

0), the viral load is minimal and the infection dies out quickly in the

population. Taken together, these results suggest that interventions

designed to interfere with mosquito preference for infected hosts

could be effective for controlling vector-borne diseases.

2 Methods

In this section, we describe the agent-based model that

we developed using the NetLogo language (18), and discuss

the computational experiments and analyses performed with

the model.

2.1 NetLogo model

1. Agents and their properties: The two agents in the model are

mosquitoes and humans. Human agents have three states, viz.

uninfected, infected, and recovered. Similarly, mosquitoes have

three states, viz. uninfected, incubation, and carrier.

TABLE 1 Typical model parameter values with sources of information on

dengue specific parameters.

Parameter Value (s) Source (s)

Number of individuals 100 –

Number of mosquitoes 100* –

Percentage infected at start 10* –

Attractiveness 0.1* –

Bias 0.1* –

Average sick time 5 (3–7) days Simmons et al. (20)

Average carrier time 21 (10–35) days Goindin et al. (21)

Average incubation time 7 (3–10) days Kularatne (19)

Average recovery time 30 days Nishiura (22) (1–2 weeks) and

Snow et al. (23) (8 weeks)

The star (*) indicates parameters that are directly explored in the study.

2. Agents’ behavior: At every tick (time step), mosquitoes, and

humans move. Human agents can move in any direction

randomly, while the direction of mosquitoes depend on the

attractiveness and bias parameter values. Attractiveness can be

defined as the probability that a mosquito will move toward

the closest human. Bias can be defined as the probability

that a mosquito will move toward the closest infected human,

given that the mosquito is attracted to human. In short,

the attractiveness represents mosquitoes’ attraction to human

agents, whereas bias represents preferential attraction to infected

individuals.

3. Environment:World of 33 by 33 patches with toroidal topology.

4. Interactions:

Mosquitoes: When an uninfected mosquito is in the

same location as an infected host, the mosquito is inoculated

with the virus and its state changes to incubation stage. Average

incubation time is set to 7 days based on published data on

dengue transmission (19). At the end of the incubation time,

the state of the mosquito will change to carrier state, and the

mosquito can now infect an uninfected human. The mosquito

remains in carrier state for its lifetime, which is set to 21 days

(see Table 1). After its lifetime (determined by average carrier

time), the mosquito reverts to the uninfected state, simulating

the replacement of a mosquito with a newly born one.

Humans: Once a human agent is infected by the bite

of a carrier mosquito, its state changes to infected stage and

remains sick for a period of time. Average sick time is set to 5

days (see Table 1). After the sick time is over, the individual can

no longer transmit the virus to another mosquito and cannot

get re-infected for a period of time. Based on multiple studies,

the average time before the individual can be re-infected is set to

30 days (see Table 1).

5. Model assumptions: The model assumes constant human and

mosquito populations throughout the simulation, i.e., the death

rate equals the birth rate.

6. Output variables: At every time point, viral load is measured as

the sum of the counts of infected humans and mosquitoes in

incubation and in carrier stage.
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FIGURE 1

Results from simulation experiments plotting (A) Average viral load vs. human attractiveness and bias (B) Average simulation time vs. human

attractiveness and bias (C–F) Average viral load over each step for varying human attractiveness and bias = 0.0, 0.3, 0.6, and 0.9, respectively. The

height of 3-D bars in (A, B) represents the average viral load.

7. Stopping criterion: If all humans and mosquitoes are clear of

infection, the simulation stops. In cases when the infection

continue to persist in the population, the simulation has a hard

stop at 2,000 ticks.

2.1.1 Model parameters
There are three types of parameters in the NetLogo interface

(see Supplementary Figure 1): (1) Initial population sizes of

mosquito and human and percentage of infected mosquito; (2)

dengue infection specific parameters such as average sick time,

carrier time, incubation time, and recovery time; and (3) human

attractiveness and preference (bias) for the infected host. The

sick time, recovery time, incubation time, and carrier time

are modeled with random normal distributions, with average

times as specified in Table 1 and standard deviation set to

one fourth of the average, to allow some variability in the

infection and transmission parameters, which is often the case in

real scenarios.
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2.2 Grid search for attractiveness and bias

To study the impact of attractiveness to human hosts and bias

of mosquitoes for infected individuals, we performed a systematic

grid search for attractiveness and bias parameter values in the range

from 0 to 1.0, with 0.1 as step size. Low values of attractiveness

indicate mosquitoes having little to no preference to move toward

human hosts. Similarly, low values of bias correspond to little to no

preference for infected individuals.

2.3 Sensitivity analysis

Parameters that were taken from the literature were kept

constant for all simulation runs. For instance, average sick time,

average carrier time, recovery time and average incubation time

were set to 5, 21, 30, and 7 days, respectively (Table 1). In order

to determine the sensitivity of the model to changes in parameter

values, we performed simulations with a range of parameter values

for percentage infected at start and mosquito population. The

human population was set to 100, as larger values resulted in an

overcrowded environment, in which mosquitoes can always find a

host, irrespective of bias, and attractiveness.

3 Results

Simulation experiments based on systematic grid search for

human attractiveness and bias were carried out. The simulation

results included simulation time and viral load at the end of each

simulation. For every pair of human attractiveness and bias values,

we plotted average viral load and average simulation run length

(Figures 1A, B and Supplementary Figures 4–9). Additionally, the

trend in viral transmission is shown by plotting viral load over time

(see Figures 1C–F).

When there is no preference of the mosquitoes for infected

hosts (bias = 0), the viral load in the population either died off

quickly or remained at a low level (Figures 1A, B), even when

human attractiveness was set to high. This trend was consistent

even when the percentage of infected individual was high (e.g.,

30%) at the beginning of the simulation (Supplementary Figures 4,

5). When the population of mosquitoes was doubled to 100, similar

trends were observed with little to no bias for infected hosts (see

Supplementary Figures 6, 7). However, even with small bias values

for infected hosts (bias = 0.3), the infection persisted for a

much longer period (Figure 1D). These results suggests that the

preferential bias for infected hosts has a substantial effect on the

ability of the virus to propagate in the population.

The results were consistent for a wide range of parameters for

percentage infected at start and number of mosquitoes, as shown

by the high correlation between runs (Supplementary Figures 2,

3). In a crowded environment (i.e., with a large number of

mosquitoes and humans), we observed persistent infections

even with little or no bias for infected hosts. This can be

explained by the high probability that mosquitoes will find a host

(Supplementary Figures 8, 9).

Generally, an increase in bias and attractiveness resulted

in higher viral propagation in the population (Figures 1D, E).

However, for extreme values of attractiveness to human and

bias (when attractiveness = 1 and bias = 0.9) toward

infected individuals, we observed a sudden decrease of viral

load (Figure 1F). One explanation for this behavior is that the

mosquitoes end up biting the same infected individuals again and

again, with a decreased probability for the infection to spread to

more individuals.

4 Discussion

Here, we presented an agent-based model that simulates the

propagation of a vector-borne viral infection in a population,

systematically studying the impact of vector’s attractiveness to

human and its bias for infected hosts. Our results indicate that

without bias for infected hosts, vector-borne diseases can die off

relatively quickly. Conversely, infections tend to persist for longer

periods of time and viral propagation increases substantially even

with a moderate bias for infected individuals. However, very high

values of bias and attractiveness lead to reduced viral propagation,

as a result of the vectors biting the same infected individuals

multiple times.

Our agent-based model does not aim to realistically simulate

all the complexities underlying the spread of vector-borne

diseases. Rather, it aims to provide an interpretable evolutionary

explanation for the preferential attraction of mosquitoes for

infected hosts, described in Zhang et al. (2). Further, the results

of our simulations clearly suggest that intervention strategies

that can decrease or eliminate the vector bias for infected hosts

might be very effective in reducing the spread of vector-borne

diseases.

5 Model availability

The source code for our NetLogo model is available on

GitHub at the following URL: https://github.com/ishworthapa/

biasInfectionModel. The model can be run in the NetLogo

modeling environment, freely available at: https://ccl.northwestern.

edu/netlogo/. A snapshot of our NetLogo model interface is shown

in Supplementary Figure 1.
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