
Frontiers in Public Health 01 frontiersin.org

A prognostic model and 
pre-discharge predictors of 
post-COVID-19 syndrome after 
hospitalization for SARS-CoV-2 
infection
Oleksii Honchar 1*, Tetiana Ashcheulova 1, 
Tetyana Chumachenko 2, Dmytro Chumachenko 3, Alla Bobeiko 4, 
Viktor Blazhko 4, Eduard Khodosh 4, Nataliia Matiash 4, 
Tetiana Ambrosova 1, Nina Herasymchuk 1, Oksana Kochubiei 1 and 
Viktoriia Smyrnova 1

1 Department of Propedeutics of Internal Medicine No.1, Fundamentals of Bioethics and Biosafety, 
Kharkiv National Medical University, Kharkiv, Ukraine, 2 Department of Epidemiology, Kharkiv National 
Medical University, Kharkiv, Ukraine, 3 Department of Mathematical Modelling and Artificial Intelligence, 
National Aerospace University "Kharkiv Aviation Institute", Kharkiv, Ukraine, 4 Department of 
Pulmonology, MNE “Clinical City Hospital No.13” of Kharkiv City Council, Kharkiv, Ukraine

Background: Post-COVID-19 syndrome (PCS) has been increasingly recognized 
as an emerging problem: 50% of patients report ongoing symptoms 1  year after 
acute infection, with most typical manifestations (fatigue, dyspnea, psychiatric and 
neurological symptoms) having potentially debilitating effect. Early identification 
of high-risk candidates for PCS development would facilitate the optimal use of 
resources directed to rehabilitation of COVID-19 convalescents.

Objective: To study the in-hospital clinical characteristics of COVID-19 survivors 
presenting with self-reported PCS at 3  months and to identify the early predictors 
of its development.

Methods: 221 hospitalized COVID-19 patients underwent symptoms assessment, 
6-min walk test, and echocardiography pre-discharge and at 1  month; presence 
of PCS was assessed 3  months after discharge. Unsupervised machine learning 
was used to build a SANN-based binary classification model of PCS development.

Results: PCS at 3  months has been detected in 75% patients. Higher symptoms 
level in the PCS group was not associated with worse physical functional 
recovery or significant echocardiographic changes. Despite identification of 
a set of pre-discharge predictors, inclusion of parameters obtained at 1  month 
proved necessary to obtain a high accuracy model of PCS development, with 
inputs list including age, sex, in-hospital levels of CRP, eGFR and need for 
oxygen supplementation, and level of post-exertional symptoms at 1  month after 
discharge (fatigue and dyspnea in 6MWT and MRC Dyspnea score).

Conclusion: Hospitalized COVID-19 survivors at 3  months were characterized by 
75% prevalence of PCS, the development of which could be predicted with an 
89% accuracy using the derived neural network-based classification model.
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1 Background

Since 2019–2020, the novel SARS-CoV-2 infection has emerged 
as a global health challenge. During the first year of COVID-19 
pandemic, the cumulative effect of overwhelming of healthcare 
systems, lack of effective etiological treatment, and more severe course 
of disease that was typical to early SARS-CoV-2 variants had led to 
high morbidity and significant excess mortality (1), and the cascade 
of prolonged lockdowns that were introduced in an attempt to slow 
down the epidemic process imposed an additional strain on 
economies worldwide (2). Subsequent success of the global 
vaccination campaign has dramatically reduced the prevalence of 
severe and life-threatening cases whilst imposing less significant initial 
effect on the morbidity (3). Moreover, gradual lifting of lockdowns 
contributed to multifocal re-acceleration of the COVID-19 spread, 
with the daily new cases count in January 2022 exceeding the 
parameters during previous peaks more than three-fold (4). As a 
result, the current phase of lower morbidity that we observe since the 
beginning of 2023 is being continuously accompanied by an increasing 
number of patients suffering from long lasting sequelae of SARS-
CoV-2 infection.

Unlike in most other respiratory viral infections, persistence of 
symptoms after the end of the acute phase is highly prevalent in 
COVID-19 convalescents (5, 6) and is shown to be associated with a 
decreased quality of life (7). Potential pathogenetic mechanisms are 
heterogenous and include consequences of direct organs injury during 
the acute phase, persistent SARS-CoV-2 replication, dysautonomia, 
altered immune reactivity, coagulopathy, endotheliopathy, and 
gastrointestinal microbiome disturbances (8, 9). “Long COVID,” the 
most popular term reserved for this scenario, accounts for all 
manifestations that persist beyond 4 weeks after disease onset and, 
therefore, includes the early post-acute period of 4 to 12 weeks (also 
referred to as “ongoing symptomatic COVID-19”), when one expects 
to observe good natural dynamics of residual symptoms resolving in 
a significant proportion of patients (10). At the same time, 
development of the “post-COVID-19 syndrome,” being defined as 
persistence of symptoms beyond 12 weeks, presents a more significant 
socio-economic problem, given the debilitating effect of some of the 
most prevalent symptoms, such as fatigue, dyspnea, apathy, and 
cognitive dysfunction (6, 10, 11).

The prevalence of post-COVID-19 syndrome (PCS) ranges 
from 5 to 37% in the general population of convalescents but may 
reach as high as 76 to 81% in those who required hospitalization 
(6, 12). To date, cardiopulmonary rehabilitation remains the 
mainstay of management of these patients, with locally available 
resources being at times insufficient to deal with the total flow of 
new convalescents (13–15). In this setting, creation of tools to 
assess the risk of subsequent development of PCS basing 
on pre-discharge data might be  used to optimize the selection 
of candidates for supervised rehabilitation programs 
following hospitalization.

1.1 Objective

To study the in-hospital clinical characteristics of COVID-19 
survivors presenting with self-reported post-COVID-19 syndrome at 
3 months and to identify the early predictors of its development.

2 Materials and methods

2.1 Study design and population

By design, this is a cross-sectional prospective observational 
single-center study that was performed at Kharkiv City Hospital No.13 
that at the time served as a specialized tertiary COVID-19 care center. 
Between January and November 2021, patients that were hospitalized 
with the diagnosis of pneumonia were evaluated for eligibility criteria 
that included the age of ≥18 years and positive polymerase chain 
reaction test for SARS-CoV-2. In total, 265 consecutive eligible 
patients were identified and invited to participate in the study; 44 of 
those have declined participation, and 221 were enrolled. The final 
cohort included 166 patients who have completed the repeated visit at 
3 months post-discharge – see Supplementary Figure S1 for the 
study flowchart.

The study was conducted in compliance with the standards of 
Helsinki Declaration and was approved by the ethical committee of 
Kharkiv National Medical University (No. 3/2021). All participants 
provided written informed consent.

2.2 Clinical data collection

The first visit was performed pre-discharge, in clinically stable 
patients who were meeting clinical criteria of epidemic safety [resting 
capillary blood oxygen saturation (SpO2) >93% on room air, absence 
of acute respiratory symptoms and normal body temperature for 
≥3 days starting from the 10th day after the onset of disease (16)] and 
included the analysis of medical records to collect data on patients’ 
age, gender, laboratory and instrumental findings, and treatment used; 
an interview to obtain data on symptoms and medical history; 
and anthropometry.

Transthoracic echocardiography (TTE) was performed by an 
expert physician who was blinded to patients’ data prior to procedure, 
using Radmir ULTIMA ultrasound system (Radmir Co., Ukraine). 
The measurements were performed in strict accordance with the 
respective guidelines by the American Society of Echocardiography 
(ASE) and European Association of Cardiovascular Imaging (EACVI) 
(17–19) and included cardiac chambers morphometry (left atrial and 
left ventricular [LV] volumes, right atrial area, right ventricular size, 
relative walls thickness and myocardial mass index of the LV), 
assessment of the indices of systolic function (LV ejection fraction 
using Simpson biplane method, mitral and tricuspid annular planes 
systolic excursion, global longitudinal strain [GLS] of ventricles using 
the linear method (20–22), and mitral annular s’ velocity in the tissue 
Doppler mode) and LV diastolic function (mitral e’ velocity and 
E/e’ ratio).

6-min walk test (6MWT) was performed by a physician using the 
standard methodology as recommended by the American Thoracic 
Society guidelines (23), in a self-paced mode, with no use of practice 
tests, warm-up or non-standardized encouragement. A 20-m hallway 
was used, determining the selection of models to calculate the 
individual predicted distance (24). Pulse rate and SpO2 were registered 
at start and every 30 s thereafter using a Bluetooth-connected pulse 
oximeter; levels of fatigue and dyspnea were assessed at the baseline 
and at finish using modified Borg scale. Along with 6-min walk 
distance (6MWD), reached percent of predicted distance (6MWD%), 
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baseline and minimal capillary oxygen saturation (SpO2base and 
SpO2min), baseline and maximal heart rate (HRbase and HRmax) 
were analyzed. Peak oxygen desaturation was calculated as 
SpO2drop = SpO2min  - SpO2base, and reached percent of the 
predicted maximal heart rate as HRmax% = 100% × HRmax / 
(208–0.8 × Age) (25).

A follow-up visit at 1 month after discharge followed the same 
protocol, and the final visit at 3 months was performed distantly (by 
means of telephone, email, and text messengers) and included 
re-assessment of symptoms and detection of the PCS which was 
defined as a self-reported perceived worsening of health status 
compared to the pre-COVID-19 state or persistence of new symptoms 
during the last month before the visit.

2.3 Statistical analysis

The data analysis was performed using StatSoft STATISTICA 
Version 12 software package. Shapiro–Wilk test was used to assess the 
distribution of data. Continuous variables are reported as 
mean ± standard deviation (SD) in case of normal distribution and as 
median [interquartile range] in case of skewed distribution. 
Categorical variables are reported as counts (percentages). 
Independent samples t-test was used to compare normally distributed 
continuous variables, and paired samples t-test was used for 
longitudinal comparisons. For skewed variables, the comparisons 
were made using Mann–Whitney U-test or Wilcoxon signed-rank 
test. Binary and categorical variables were compared using Chi-Square 
test. The differences were considered significant if p < 0.05. Marginal 
effects of potential PCS predictors in logistic regression analysis were 
used as a measure to select inputs for unsupervised machine learning 
based training of simple artificial neural networks (SANN). Random 
sampling was used to select training, test and validation subsets of the 
study cohort in the 70:15:15 proportion. For each set of input 
variables, 500 binary classification models were trained. This number 
represented an empirical balance between computational resource 
allocation and model reproducibility – fluctuating prediction accuracy 
was observed with fewer models, whereas the consistency in results 
was achieved at n = 500; further increasing the model count did not 
yield significant improvements but incurred greater computational 
time. Automated neural architecture search strategy and Broyden-
Fletcher-Goldfarb-Shanno optimization algorithm were used; missing 
data was imputed by mean values. Predictive performance of the 
obtained models was assessed as percentage of correctly classified 
cases from the test and validation subsets. For the final predictive 
model, 10-fold cross-validation was used to ensure its reproducibility, 
and ROC analysis performed. A post-hoc approach incorporating 
assessment of the model accuracy and the dataset effect size using 
Cohen’s d statistic was used to evaluate the sample size adequacy (26).

3 Results

3.1 Baseline characteristics

The final study cohort included 76 male and 90 female patients 
at the mean age of 53.7 ± 13.3 years. Visit 1 was performed at the 
median of 22 days, visit 2 at 53 days, and visit 3 at 116 days after the 

symptoms onset. Among the observed cohort, 124 (75%) were 
reporting ongoing new symptoms and/or self-estimated worsening 
of health status that was classified as post-COVID-19 syndrome. The 
comparative clinical characteristic of study participants with and 
without ongoing symptoms at 3 months is presented in Table 1. The 
patients with PCS were older, more frequently female, had higher 
BMI and comorbidities burden. In their in-hospital laboratory 
profile, patients with ongoing symptoms at 3 months had higher 
values of C-reactive protein, erythrocyte sedimentation rate, and 
higher proportion of patients with very high interleukin-6 values, 
which attested to higher inflammatory activity. The observed lower 
values in estimated glomerular filtration rate were explained by age 
and gender differences. There were no differences in received 
treatment, but PCS patients more frequently required oxygen 
support during hospitalization.

3.2 Physical performance assessment

Analysis of the 6MWT parameters (see Table 2) has revealed that 
the apparent decrease of 6-min walk distance (6MWD) that was 
observed pre-discharge in PCS patients was explained by age and sex 
differences, evidenced by close values of the reached percent of 
individually predicted distance (6MWD%). Moreover, the PCS group 
has paradoxically demonstrated larger between-visits increment of 
both parameters, resulting in higher 6MWD% values at 1 month. At 
the same time, the level of subjective symptoms in these patients was 
significantly higher at visit 2, being explained by much worse 
improvement from the pre-discharge baseline compared to non-PCS 
participants. This difference was not explained by the observed values 
of capillary oxygen saturation throughout the test (there was no 
difference between groups), nor could it be  attributed to worse 
dysautonomia – despite initially lower heart rate (HR) increment 
during the test at visit 1, the PCS patients have demonstrated better 
dynamics of utilization of HR reserve, which resulted in higher 
reached percent of the individual HR maximum at 1 month. MRC 
dyspnea scale score at both visits was also higher in PCS participants 
with the mean values of 2.5 ± 1.1 vs. 2.0 ± 1.0 pre-discharge (p = 0.005) 
and 1.8 ± 0.8 vs. 1.3 ± 0.6 at visit 2 (p = 0.002).

3.3 Echocardiographic assessment

Retrospective assessment of echocardiographic features of 
observed patients has only revealed minor differences between PCS 
and non-PCS study participants (see Table  3). Both groups were 
showing a strong trend to concentric LV remodeling [refer to (27) for 
the detailed comparison to matched control], and patients who were 
subsequently reporting long-lasting symptoms had somewhat smaller 
ventricular cavities. Despite this fact, systolic atrioventricular annuli 
excursion was comparable to PCS-free patients, translating into 
somewhat higher longitudinal strain values (reaching statistical 
significance in case of RV). The borderline changes in diastolic LV 
parameters became more apparent at visit 2, with significantly lower 
e’ velocity (9.4 ± 2.6 vs. 10.7 ± 3.1 cm/s, p = 0,025) and higher E/e’ ratio 
(7.6 ± 2.4 vs. 6.4 ± 1,6, p = 0,020) being observed in the PCS group; the 
only other difference that persisted at 1 month was the slightly higher 
RV free wall strain values in the PCS cohort.
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3.4 Prediction of post-COVID-19 syndrome 
development

To create a tool that would predict the PCS development, 
unsupervised machine learning was used to train SANN-based 
binary classification models. In order to avoid overfitting effect in 
the setting of a relatively small sample size, we applied a two-step 
approach, where the list of potential inputs was first narrowed down 
using the assessment of their marginal effects in the logistic 
regression analysis. In the order of decreasing prognostic value, 
significant pre-discharge predictors included pre-discharge 6MWD, 
eGFR, heart rate increment during 6MWT, SBP, RV free wall strain, 

ESR, LV end-diastolic index, BMI, in-hospital oxygen 
supplementation, Charlson’s comorbidity index, height, sex, age, and 
obesity (see Supplementary tables 1–2 and Supplementary figure 2 
for exact Somers’ D values and the resulting regression model 
parameters). As a next step, identified parameters were used as 
inputs for SANN-based classification model.

The use of the complete set of significant pre-discharge predictors, 
however, did not result in generation of high-performance models: the 
best predictive accuracy in the test/validation subset was 83%, which 
(given the 75% prevalence of PCS) meant that only 1/3 of otherwise 
false-positive cases could be correctly reclassified compared to the 
blunt assumption that all participants will develop the PCS. Addition 

TABLE 1 Demographics and pre-discharge clinical characteristics of the study participants with and without post-COVID-19 syndrome.

Parameters No post-COVID-19 
syndrome

Post-COVID-19 
syndrome

Difference
(95% CI)

2-sided p

Subjects 42 124

Female sex 16 (38) 74 (60) 0,015

Age, years 48,7 ± 17,0 55,4 ± 12,1 6,7 (1,9; 11,5) 0,006

BMI, kg/m2 27,3 ± 4,9 29,6 ± 5,2 2,3 (0,5; 4,1) 0,012

Comorbidities

Hypertension

Obesity

Diabetes mellitus, type 2

History of peptic ulcer

History of cancer

History of stroke / TIA

Chronic kidney disease

Bronchial asthma

COPD

Angina pectoris

Chronic liver disease

Charlson comorbidity index

15 (36)

10 (24)

2 (5)

0 (0)

0 (0)

0 (0)

0 (0)

0 (0)

1 (2)

0 (0)

0 (0)

0,19 ± 0,40

50 (40)

51 (41)

15 (12)

12 (10)

7 (6)

6 (5)

4 (3)

4 (3)

2 (2)

3 (2)

2 (2)

0,57 ± 0,82

0,597

0,044

0,175

0,036

0,116

0,147

0,239

0,239

0,747

0,309

0,408

0,005

Active smoking status 7 (17) 16 (13) 0,542

Pulmonary involvement by CT, % 37,8 ± 25,5 30,6 ± 18,7 −7,2 (−17,0; 2,6) 0,147

Minimal in-hospital SpO2, % 90,0 ± 6,4 87,6 ± 7,9 −2,4 (−5,1; 0,2) 0,072

Oxygen supplementation

Via nasal cannula

Noninvasive/invasive ventilation

16 (38)

4 (10)

77 (62)

5 (4)

0,007

0,174

Laboratory parameters

Peak IL-6, pg./mL

Peak CRP, mg/L

Peak ESR, mm/h

Peak procalcitonin, ng/mL

Peak D-dimer, ng/mL

Peak creatinine, μmol/L

Lowest eGFR, ml/min/1,73m2

Hemoglobin, g/dL

8,6 [3,3; 11,7]

11 [6; 27]

26,8 ± 10,6

0,06 [0,05; 0,11]

323 [199; 432]

99,0 ± 21,0

76,9 ± 25,1

14,1 ± 1,7

11,7 [3,0; 47,0]

25 [12; 74]

32,2 ± 13,0

0,06 [0,04; 0,12]

279 [156; 508]

104,6 ± 23,0

60,7 ± 13,7

13,8 ± 1,5

13,4 (0,2; 26,7)

27,7 (0,0; 55,3)

5,4 (0,2; 10,5)

0,3 (−0,7; 1,2)

−18 (−253; 217)

5,5 (−4,7; 15,8)

−16,2 (−24,2; 8,2)

−3,1 (−9,4; 3,3)

0,458

0,007

0,044

0,750

0,524

0,285

< 0,001

0,342

Treatment

Dexamethasone

Methylprednisolone

Remdesivir

40 (95)

28 (67)

21 (50)

107 (86)

83 (67)

53 (43)

0,115

0,975

0,413

BMI, body mass index; TIA, transient ischemic attack; COPD, chronic obstructive pulmonary disease; CT, computed tomography; SpO2, peripheral capillary oxygen saturation; IL-6, 
interleukin 6; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; eGFR, estimated glomerular filtration rate by CKD-EPI equation.
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of the parameters obtained during the first follow-up visit that was 
performed 1 month after discharge (see Supplementary Table 3 for 
marginal effects in logistic regression analysis) with subsequent 
stepwise deletion of excessive variables based on the results of global 
sensitivity analysis of the current version of the model have resulted 
in creation of the model that was characterized by a 93% predictive 
performance in the training and 89% in the randomly selected test/
validation subsets of the study group (91% for sensitivity, 82% for 
specificity). The model utilized 13–7-2 SANN architecture and used 
age, sex, in-hospital levels of CRP, eGFR and need for oxygen 
supplementation, and level of post-exertional symptoms at 1 month 
after discharge (fatigue and dyspnea in 6MWT and MRC Dyspnea 
score) as inputs (Figure 1; see Supplementary Table S4 for network 
weights and connections; source file available at https://doi.
org/10.5281/zenodo.8395451). 10-fold cross-validation that was 
performed by re-training the neural networks using alternative 
sampling has allowed to consistently obtain non-inferior accuracy in 
the test/validation subsets.

4 Discussion

Despite the end of the COVID-19-related public health emergency 
that was declared by the World Health organization on May 5, 2023, 
it remains an ongoing global health issue (28). Moreover, 
asynchronous trends of its spread and non-uniform levels of 
vaccination worldwide contribute to the possibility of persistence of 
epidemic process in separate areas, being associated with a potential 
for selection of new SARS-CoV-2 variants. Another issue of growing 
concern is the frequent transition of symptomatic COVID-19 to the 
chronic phase. Moreover, the recent large meta-analysis shows that the 
unusually high incidence of post-acute sequelae as assessed at 1 to 
3 month after onset of disease (6, 12) is translating into a long-lasting 
trail of impaired health status: 50% of COVID-19 survivors continue 
to report at least one new symptom 1 year after acute infection, with 
the most typical manifestations (such as fatigue, dyspnea, psychiatric 
symptoms, cognitive deficit, memory impairment) having a potential 
to impose a long-term debilitating effect (29). Thus, despite having 

TABLE 2 One-month post-discharge dynamics of 6-min walk test parameters in patients with and without post-COVID-19 syndrome.

Parameters No post-COVID-19 
syndrome

Post-COVID-19 
syndrome

Difference
(95% CI)

2-sided p

Distance:

6MWD at Visit 1, m

6MWD% at Visit 1, %

6MWD at Visit 2, m

6MWD% at Visit 2, %

Delta 6MWD between visits, m

Delta 6MWD% between visits, %

444 ± 57

62,5 ± 9,8

490 ± 64

68,2 ± 11,6

49 ± 33

7,3 ± 5,0

380 ± 64

62,5 ± 9,6

454 ± 63

75,1 ± 9,5

77 ± 44

13,4 ± 7,1

−64 (−90; −38)

0,0 (−4,1; 4,0)

−36 (−65; −8)

6,9 (2,4; 11,3)

28 (9; 46)

6,1 (3,0; 9,1)

< 0,001

0,986

0,012

0,003

0,004

< 0,001

Heart rate:

HRbase at Visit 1, bpm

HRmax at Visit 1, bpm

HRmax% at Visit 1, %

HRrise at Visit 1, bpm

HRbase at Visit 2, min−1

HRmax at Visit 2, min−1

HRmax% at Visit 2, %

HRrise at Visit 2, bpm

81,1 ± 11,0

109,0 ± 9,2

61,2 ± 6,0

26,7 ± 9,7

78,6 ± 15,7

108,2 ± 11,3

60,7 ± 5,8

29,1 ± 9,9

83,3 ± 13,2

105,0 ± 15,6

60,4 ± 12,5

21,5 ± 11,5

82,2 ± 13,5

110,5 ± 14,6

65,3 ± 8,3

27,7 ± 12,1

2,2 (−2,8; 7,2)

−4,0 (−10,4; 2,4)

−0,8 (−5,7; 4,0)

−5,2 (−10,1; −0,3)

3,6 (−2,5; 9,8)

2,4 (−3,8; 8,6)

4,6 (1,1; 8,1)

−1,4 (−6,6; 3,9)

0,388

0,216

0,734

0,039

0,239

0,451

0,010

0,608

Oxygen saturation:

SpO2base at Visit 1, %

SpO2min at Visit 1, %

SpO2drop at Visit 1, %

SpO2base at Visit 2, %

SpO2min at Visit 2, %

SpO2drop at Visit 2, %

95,2 ± 5,6

94,7 ± 3,9

2,5 ± 2,5

98,2 ± 0,6

95,7 ± 2,8

2,5 ± 2,8

95,1 ± 5,2

93,8 ± 4,2

3,1 ± 2,7

98,0 ± 0,8

95,8 ± 2,1

2,2 ± 1,9

−0,1 (−2,0; 1,8)

−0,9 (−2,6; 0,8)

0,6 (−0,5; 1,7)

−0,2 (−0,6; 0,1)

−0,1 (−0,9; 1,1)

−0,3 (−1,3; 0,6)

0,887

0,293

0,317

0,155

0,837

0,520

Symptoms*:

Dyspnea at start, Visit 1, pts.

Fatigue at start, Visit 1, pts.

Dyspnea at finish, Visit 1, pts.

Fatigue at finish, Visit 1, pts.

Dyspnea at start, Visit 2, pts.

Fatigue at start, Visit 2, pts.

Dyspnea at finish, Visit 2, pts.

Fatigue at finish, Visit 2, pts

1,1 ± 1,3

2,1 ± 1,6

2,6 ± 1,8

3,1 ± 2,4

0,4 ± 0,8

0,8 ± 1,2

1,3 ± 1,0

0,9 ± 1,0

1,4 ± 1,6

2,5 ± 2,3

3,8 ± 1,9

3,5 ± 1,8

0,9 ± 1,1

1,5 ± 1,3

3,2 ± 1,7

2,9 ± 1,9

0,3 (−0,3; 1,0)

0,4 (−0,5; 1,3)

1,2 (0,1; 2,3)

0,4 (−0,7; 1,4)

0,5 (0,1; 1,0)

0,7 (0,1; 1,3)

2,0 (1,1; 2,8)

2,0 (1,1; 2,9)

0,346

0,379

0,027

0,482

0,022

0,014

< 0,001

< 0,001

*Assessed using modified Borg scale; CI, confidence interval; 6MWD, 6-min walk distance; 6MWD%, reached % of predicted 6-min walk distance; HRbase, baseline heart rate; HRmax, 
maximal reached heart rate; HRmax%, reached percent of the individual maximum heart rate; SpO2base, baseline oxygen saturation; SpO2min, minimal oxygen saturation; SpO2drop, peak 
oxygen desaturation.
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hopefully stabilized the acute COVID-19 problem, we are currently 
facing a new protracted global health challenge presented by the post-
COVID-19 syndrome, and the timely identification of patients at risk 
of its development might be instrumental for subsequent targeted 
attempts to improve their expected poor trajectory.

The current study was focused on the assessment of pre- and early 
post-discharge characteristics of hospitalized COVID-19 survivors 
who presented with ongoing symptoms or a self-reported persistent 
decline in the general health status at 3 months after discharge. 
Compared to the patients who have completely recovered by this term, 
subjects with PCS were characterized by older age, higher BMI, were 
more frequently female, had higher burden of comorbidities and more 
intensive inflammatory response during the acute phase, as evidenced 
by higher values of CRP, ESR, and larger share of patients with very 
high IL-6 levels. Despite non-inferior physical functional status as 
assessed by the 6MWT, PCS patients were reporting higher levels of 
fatigue and dyspnea, which became more pronounced at 1 month 
post-discharge due to worse dynamics of improvement compared to 
symptom-free individuals. Considering an insignificant difference in 
the minimal SpO2 levels between groups, it was most likely the higher 
level of subjective symptoms that was driving more frequent 
in-hospital oxygen supplementation in the PCS cohort. 
Comprehensive TTE has revealed similar changes in both groups that 
persisted at 1 month and foremost included a high incidence of 
concentric LV remodeling and grade I diastolic dysfunction; PCS 
patients were characterized by smaller ventricular cavities 
pre-discharge and worse diastolic filling at 1 month but higher RV 
longitudinal strain throughout the period of follow-up.

Compared to the set of predictors of poor physical functional 
recovery at 1 month post-discharge in the same cohort of patients 
(30), age, ESR, eGFR, need for in-hospital oxygen supplementation, 
and pre-discharge 6MWD have retained their prognostic value for 
predicting the outcome at 3 months, whereas the extent of radiological 
pulmonary involvement, pre-discharge SpO2, and history of 
hypertension became insignificant. At the same time, we revealed a 
subset of additional predictors of PCS that were either irrelevant (sex, 
height, BMI, SBP) or had not been analyzed at 1 month (RV free wall 
strain, LV end-diastolic index, and Charlson’s comorbidity index).

Despite the large number of studies that assessed the epidemiology 
of PCS, the data on its predictors differ according to different sources, 
and the strength of observed associations is frequently weak (29). 
Among the variety of potential predictors, the few that have been 
identified regularly in different studies include older age (31, 32), 
history of smoking and/or lung disease (31, 33, 34), disease severity 
(31, 33, 35), longer hospital stay (35, 36), higher levels of CRP (32, 37), 
severity of symptoms (36), grade of pulmonary CT changes (35, 38), 
and requirement of in-hospital and post-discharge oxygen support 
(34, 35, 39), which puts the results of our study in line with the 
available body of knowledge.

Despite the poor pre-discharge results of 6MWT and evidence of 
incomplete early physical functional recovery, we did not find these 
parameters to be independently predictive of preserved self-reported 
COVID-19 sequelae at 3 months when accounted for sex, age, and 
anthropometrical parameters, thus confirming the conclusion of 
Ladlow et al. (40) about the lack of association between the objective 
functional limitations and the level of residual symptoms in the setting 

TABLE 3 Pre-discharge echocardiographic characteristic of hospitalized COVID-19 patients.

Parameters No post-COVID-19 
syndrome

Post-COVID-19 
syndrome

Difference
(95% CI)

2-sided p

Left chambers morphometry

LA volume index, ml/m2 28,7 ± 7,7 28,7 ± 6,3 0,1 (−2,3; 2,4) 0,961

LV end-diastolic volume index, ml/m2 51,2 ± 8,2 47,5 ± 9,2 −3,8 (−6,9; −0,6) 0,020

LV end-systolic volume index, ml/m2 17,8 ± 5,0 16,4 ± 4,7 −1,4 (−3,1; 0,2) 0,093

LV relative wall thickness 0,44 ± 0,07 0,46 ± 0,08 0,01 (−0,01; 0,04) 0,298

LV mass index (height2,7), g/m2,7 38,5 ± 10,7 37,8 ± 8,6 −0,7 (−3,9; 2,6) 0,674

Left ventricular function

LV ejection fraction, % 65,3 ± 7,5 65,5 ± 6,6 0,2 (−2,3; 2,6) 0,900

Lateral MAPSE, mm 15,2 ± 2,8 15,2 ± 2,2 0,0 (−0,1; 0,1) 0,961

LV global longitudinal strain, % 16,9 ± 2,3 17,6 ± 2,4 0,7 (−0,2; 1,6) 0,137

LV s’, cm/s 9,8 ± 1,6 9,7 ± 1,8 −0,1 (−0,7; 0,5) 0,787

LV e’, cm/s 9,7 ± 2,2 9,0 ± 2,2 −0,7 (−1,5; 0,1) 0,070*

LV E/e’ ratio 7,4 ± 2,0 7,5 ± 1,7 0,1 (−0,5; 0,7) 0,763

Right chambers evaluation

RA area index, cm2/m2 8,1 ± 1,1 8,2 ± 2,4 0,0 (−0,8; 0,9) 0,908

RV size (proximal outflow tract), mm 31,2 ± 3,7 32,0 ± 3,2 0,8 (−0,5; 2,1) 0,241

RV longitudinal size, mm 70,7 ± 5,9 67,6 ± 7,4 −3,1 (−5,8; −0,5) 0,021

TAPSE, mm 24,5 ± 4,9 25,0 ± 4,1 0,4 (−1,2; 2,1) 0,604

RV free wall longitudinal strain, % 33,5 ± 5,0 37,2 ± 7,1 3,7 (0,9; 6,4) 0,009

*1-sided p = 0,034; CI, confidence interval; LA left atrium; LV, left ventricle; MAPSE, mitral annular plane systolic excursion; RA, right atrium; RV, right ventricle; TAPSE, tricuspid annular 
plane systolic excursion.
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of PCS. We  also have not found significant differences in cardiac 
structure and function both pre-discharge and after a one-month 
follow-up: patients with and without the PCS seemed to express 
similar changes that were in line with those reported before (41, 42).

The difficulties in predicting the development of post-COVID-19 
syndrome might be  related to the heterogenous underlying 
mechanisms, differences in vaccination status at the population level, 
and the constantly changing landscape of temporarily and locally 
prevailing SARS-CoV-2 variants. The literature search has allowed us 
to identify several finished studies proposing tools for predicting the 
outcomes of the acute phase of disease (43), effects of post COVID-19 
rehabilitation (44), development of post-acute cardiovascular 
complications (45), and dynamics of the radiological recovery (46). 
Additionally, we have identified a published protocol of the study 
directed at solving the problem of predicting the development of the 
long COVID syndrome (47). To our knowledge, the current study is 
the first to date presenting a classification model that allows to predict 
the development of self-reported post-COVID-19 syndrome based on 
the acute phase parameters in the cohort of hospitalized patients that 
were shown to be at higher risk of PCS.

Logistic regression analysis is a traditional first line tool to solve 
the binary classification tasks; at the same time, it is vulnerable to 

overfitting when using smaller datasets (n < 500) (48). Machine 
learning approach in our study has allowed to overcome this obstacle; 
minimization of the input variables number led the training subset to 
meet the usual sample size requirements for ML projects with a cases-
to-predictors ratio of 15.4:1 (49). Post-hoc analysis involving the input 
dataset effect size (Cohen’s d statistic = 0,684) and the model’s 
predictive accuracy of 89% additionally confirmed the appropriateness 
of the sample size (26).

4.1 Limitations of the study

The limitations of our study include possible center-related effects, 
potential selection bias related to inclusion of less severe cases as a 
result of inability of persistently O2-dependent patients to participate, 
negligible level of vaccination in the study population and different 
prevailing SARS-CoV-2 variants at the time of enrollment compared 
to today. Hence, the results of the study should be  cautiously 
generalized to the current post-COVID-19 care practice. Given the 
ever-changing landscape of the acute SARS-CoV-2 infection setting, 
any types of newly developed predictive tools would require an 
external validation on the current local cohorts of COVID-19 

FIGURE 1

SANN-based classification model to predict post-COVID-19 syndrome at 3  months post-discharge. (A) Receiver operator characteristic analysis. 
Area under curve  =  0,955. (B) 13–7-2 SANN architecture. (C) Lift chart for predicting PCS-positive cases. (D) Gains chart for predicting PCS-positive 
cases.
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convalescents as a part of their proper implementation. The proposed 
model should, therefore, be perceived both as a potential ready-to-use 
predictive tool and as a proof of concept for the development of 
similar models based on the more recent data from local populations.

5 Conclusion

Hospitalized patients with SARS-CoV-2 infection were 
characterized by a 75% prevalence of post-COVID-19 syndrome at 
3 months after discharge, with PCS subjects being older, more 
frequently female, having higher BMI, more intensive acute 
inflammatory response, and lower eGFR. Higher level of symptoms 
in the PCS group was not associated with worse physical functional 
recovery or significant changes on TTE compared to symptoms-free 
participants. Despite identification of a set of pre-discharge predictors, 
inclusion of parameters obtained at 1 month proved necessary to 
obtain a high accuracy ML-based classification model of PCS 
development; the final list of inputs included age, sex, in-hospital 
levels of CRP, eGFR and need for oxygen supplementation, and level 
of post-exertional symptoms at 1 month after discharge (fatigue and 
dyspnea in 6MWT and MRC dyspnea score).
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