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1Clinical and Research Center of AIDS, Beijing Ditan Hospital, Capital Medical University, Beijing, China,
2Division of Medical Record and Statistics, Beijing Ditan Hospital, Capital Medical University, Beijing,

China, 3Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China

Objective: The study aimed to use supervised machine learning models to predict

the length and risk of prolonged hospitalization in PLWHs to help physicians timely

clinical intervention and avoid waste of health resources.

Methods: Regression models were established based on RF, KNN, SVM, and

XGB to predict the length of hospital stay using RMSE, MAE, MAPE, and R2,

while classification models were established based on RF, KNN, SVM, NN,

and XGB to predict risk of prolonged hospital stay using accuracy, PPV, NPV,

specificity, sensitivity, and kappa, and visualization evaluation based on AUROC,

AUPRC, calibration curves and decision curves of all models were used for

internally validation.

Results: In regressionmodels, XGBmodel performed best in the internal validation

(RMSE = 16.81, MAE = 10.39, MAPE = 0.98, R2 = 0.47) to predict the length of

hospital stay, while in classification models, NN model presented good fitting and

stable features and performed best in testing sets, with excellent accuracy (0.7623),

PPV (0.7853), NPV (0.7092), sensitivity (0.8754), specificity (0.5882), and kappa

(0.4672), and further visualization evaluation indicated that the largest AUROC

(0.9779), AUPRC (0.773) and well-performed calibration curve and decision curve

in the internal validation.

Conclusion: This study showed that XGB model was e�ective in predicting the

length of hospital stay, while NN model was e�ective in predicting the risk of

prolonged hospitalization in PLWH. Based on predictive models, an intelligent

medical prediction system may be developed to e�ectively predict the length of

stay and risk of HIV patients according to their medical records, which helped

reduce the waste of healthcare resources.
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Introduction

According to estimates from UNAIDS

(https://www.unaids.org/en) (1), there are 38.4 million people

living with HIV (PLWH), and 1.5 million new PLWH were

diagnosed and 650,000 were dead all over the world by 2021. In

recent years, with the widespread use of antiretroviral therapy

(ART), the lifespan prolonged andmortality decreased significantly

(2, 3). Although survival status had improved among PLWH, HIV-

associated comorbidity, including opportunistic infections (4),

acquired immune deficiency syndrome (AIDS)-defining cancers

and non-AIDS-defining events (NADEs) (5), remained major

problems and posed a great challenge to survival quality among

PLWH in China.

Although HIV infection became a chronic disease,

opportunistic infections (4–6) or AIDS-defining cancers were

diagnosed in some PLWHs due to unware of HIV infection or

ART failure, while NADEs gradually occurred in PLWHs receiving

ART, including cardiovascular diseases, metabolic disorders,

hepatic and renal diseases. The diagnosis and management of

these HIV-associated comorbidity placed a significant burden on

healthcare resources. Indeed, a large portion of health economic

burden associated with HIV was attributed to the cost of hospital

care and treatment for PLWHs (7–9).

Due to dramatic increases in healthcare costs and admission

expenditures, accurate prediction of length of hospital stay and

identify the risk factors of prolonged hospital stay helped physicians

plan interventions in diagnosis and management for PLWHs with

HIV-associated comorbidity, which was important to reduce waste

of hospital resources (10, 11).

Machine learning (ML) algorithms could build complex

nonlinear predictive models, which connected independent

features with the relevant risk factors in large data sets and

presented highly efficient and accurate characteristics (12, 13).

In recent decades, although ML algorithm was widely accepted

and applied to medical and healthcare problems in establishing

predictive models, especially in the field of oncology (14) and

intensive care medicine (15), little was done to develop predictive

models in the field of HIV/AIDS in China. The aim of this study

was to use multiple ML predictive models to predict length of

hospital stay and assess the risk of prolonged hospital stay among

Abbreviations: AIDS, acquired immune deficiency syndrome; ART,

antiretroviral therapy; AUC, area under curve; AUPRC, area under precision

recall curve; AUROC, area under receiver operating characteristic curve;

CI, confidence interval; CNS, central nervous system; DCA, decision

curves analysis; HAART, highly active anti-retroviral therapy; HIV, human

immunodeficiency virus; ICU, intensive care unit; KNN, k-Nearest Neighbor;

LOS, length of stay; MAC, Mycobacterium avium complex; MAE, mean

absolute error; MAPE, mean absolute percentage error; MICE, multiple

imputations by Chained Equations; ML, machine learning; NADEs, non-

AIDS-defining events; NN, neural network; NPV, negative prediction value;

OIs, opportunistic infections; PCP, pneumocystis carinii pneumonia; PLWH,

people living with HIV; PPV, positive prediction value; PRC, precision-recall

curve; R2, R-squared; RF, random forest; RMSE, root mean squard error;

ROC, receiver operating characteristic curve, SVM, support vector machine;

XGB, extreme gradient boosting.

PLWHs, which helped establish an intelligent medical diagnosis

and management system and helped physicians timely clinical

intervention and avoid waste of health resources.

Methods

Ethical consideration

This observational study was carried out in Beijing Ditan

Hospital, Capital Medical University, the largest referral hospital

of HIV/AIDS in China, and all procedures in this study was

approved by the Human Science and Ethics Committee of

Beijing Ditan Hospital, which agreed to waive requirement for

informed consent based on characteristics of observational and

retrospective study.

Study design

A cohort of inpatients was included in the study, who were

enrolled due to different AIDS-defining illnesses and NADEs at

Beijing Ditan Hospital, Capital Medical University, Beijing, from

January, 2008 to June, 2020. After clinical data was collected

and preprocessed, variable importance was evaluated and study

subjects was divided randomly into training and testing sets, and we

established two models based on methodology of machine learning

(ML): (1) a model to predict the risk of prolonged hospital stay,

which was evaluated with accuracy, specificity, sensitivity, positive

and negative predictive value and kappa coefficient, and received

visualization analysis based on confusion matrix, ROC curve,

PR curve, calibration curve and decision curve; and (2)another

model to predict individual length of hospital stay, which was

evaluated with root mean squard error (RMSE), mean absolute

error (MAE), mean absolute percentage error (MAPE) and R-

squared (R2). We validated these 2 kinds of models in the testing

set to perform internal validation to determine the optimal model

(Figure 1).

Data sources

Supplementary Table S1 presented that the study variables

were polytomous variables, including age, marital status, route of

transmission and HAART while other variables as binary variables.

All admitted patients over eighteen years old were included in this

study, while patients admitted for <12 h were excluded due to

incomplete clinical data and more than 30% variable missing in the

study (Supplementary Table S1). Raw clinical data were extracted

from the hospital electronic medical records. Demographic data

included age, gender, marital status, and clinical data included

route of HIV transmission, type of admission, baseline HAART

at current admission, baseline CD4 cell count, baseline viral

load, admission to the intensive care unit (ICU) and final

diagnosis, including different opportunistic infections and NADEs

(Supplementary Table S2).
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FIGURE 1

Study flow diagram of data preparation and model prediction. ROC, receiver operating characteristic curve; PR, precision-recall.

Outcomes

The primary outcome of interest was the numeric length of

hospital stay (duration between the admission and discharge).

The prolonged hospital stay was defined as more than 25

days between the admission and discharge based on literature

reports (16), and the secondary outcome of interest was the risk

of prolonged hospital stay.
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Data pre-processing and preparation

Data pre-processing and preparation were conducted among

the included study subjects, whose missing variables were filled

in Supplementary Table S1 based on the Multiple Imputation by

Chained Equations (MICE) algorithm (17, 18).

After preprocessing of clinical data of study subjects, the

random sampling was carried out using R software (version 4.2.1),

70% of study subjects were randomly sampled and included the

training set, while another 30% as the testing set, which provided

unbiased model validity.

Definition

HIV-infected population had increased risk for non-AIDS-

defining events (NADEs) (19), which included cardiovascular and

cerebrovascular diseases, metabolic diseases, renal diseases, liver

diseases, osteoporosis, and non-AIDS-defining cancers.

Unexplained infections were diagnosed based on routine

and biochemical tests of opportunistic pathogens with different

samples, but no definite pathogens were found (20).

Multiple opportunistic infections (OIs) were defined that two

or more opportunistic pathogens were definitely diagnosed and co-

existed in vivo, which were used into respiratory system or central

neural system (20).

Tuberculosis disseminated in multiple organs meant

tuberculosis was diagnosed in multiple organs, including lung,

lymph nodes, and central neural system.

The diagnosis and treatment of AIDS-defining illnesses,

including OIs and opportunistic malignancies, was carried out

based on Guidelines for Prevention and Treatment of Opportunistic

Infections in HIV-Infected Adults and Adolescents recommended by

the U.S. Centers for Disease Control and Prevention (CDC) (21),

while the diagnosis and management of NADEs was conducted on

the basis of HIVBOOK (22).

Variable importance

Variable importance was evaluated prior to running all models

based on extreme gradient boosting (XGB) model due to a form

of gradient boosting without over-fitting (23), which was prone to

create a suitable model based on the evaluation of variable (24).

Predicting individual length of hospital stay
based on ML regression model

For the training set, 10-fold cross validation and grid search

was used to obtain the best model hyper-parameters, which were

used into four ML regression model algorithms, including random

forest (RF), k-Nearest Neighbor (KNN), support vector machine

(SVM), and extreme gradient boosting (XGB) (25, 26) to predict

the length of hospital stay in PLWHs. The root mean squard error

(RMSE), mean absolute error (MAE), mean absolute percentage

error (MAPE) and R-squared (R2) were calculated respectively to

evaluate the performance of different regression models.

Internally validation of machine learning (ML) predictive

models was performed in the testing set to determine the optimal

model for assessing the risk of prolonged hospital stay and of the

length of hospital stay (LOS).

Predicting risk of prolonged hospital stay
based on ML classification model

In the training set, 10-fold cross validation and grid search were

used to obtain the best model hyper-parameters, which were used

in five ML regression model algorithms, including RF, KNN, SVM,

NN, and XGB, to predict the risk of prolonged hospital stay beyond

25 days (16).

The receiver operating characteristic curve (ROC) and the

precision recall curve (PRC) for the training set were plotted

respectively and the area under the receiver operating characteristic

curves and the precision recall curve (AUROC and AUPRC) were

calculated to evaluate the performance of different classification

models.We further evaluated other performancemetrics, including

accuracy, specificity, sensitivity, positive prediction value (PPV),

negative prediction value (NPV), and kappa coefficient of different

classification models.

The evaluation of the visualization was based on calibration

curves, decision curves analysis (DCA) and confusion matrices

(27, 28).

We validated predictive classification models in the testing

set to determine the optimal model for internal validation for

evaluation of the risk of prolonged hospital stay.

Statistical analysis

The statistical analysis in this study was performed using R

version 4.2.1 (packages caret, yardstick, modEvA and runway),

and the application codes and models were publicly available at

Github (https://github.com/igor-peres).

Result

Based on the inclusion and exclusion criteria, 1,556 inpatients

were included in the study at Beijing Ditan Hospital, Capital

Medical University from January, 2008 to June, 2020. 1418

cases (91.1%) were male and 138 cases (8.9%) were female,

and average age was 45 years among study subjects, in which

average baseline CD4 cell counts was 158 cells/ul, and systemic

multiple OIs were diagnosed in 779 cases (50.1%) while

NADEs were found in 51 cases (3.3%). The average length

of hospital stay was 24.14 days among these study subjects,

and demographic and clinical characteristics was detailed in

Supplementary Table S2.

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1282324
https://github.com/igor-peres
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Li et al. 10.3389/fpubh.2023.1282324

FIGURE 2

The importance of features in the extreme gradient boosting (XGB) model. CNS, central nervous system; ICU, intensive care unit; Ois, opportunistic

infections; NADEs, non-aids-defining events.

Data preparation and preprocessing

In this study, data were prepared and no variable wasmissing by

more than 30%, which were re-evaluated based onMICE algorithm

(Supplementary Table S1) (17, 18). More than 25 days was regarded

as prolonged hospital stay based on literature reports (16), which

corresponded to 36% of study subjects (564 ones) in this study.

Random assignment in 7:3 ratio was carried out among study

subjects to form training cohort (n = 1089) and validation cohort

(n = 467) for predicting the length of hospital stay based on ML

regression model and predicting the risk of prolonged hospital stay

based on ML classification model.

The evaluation of variable importance

The extreme gradient boosting (XGB) model was selected

from multiple machine learning models based on previous

report (24) and used to demonstrate the importance of the

included features that contributed to the prolonged hospital stay

(Supplementary Table S3). Systemic multiple OIs was the most

important variable, followed by unexplained infections, NADEs,

baseline CD4 cell count, admission to the ICU, baseline viral load,

cryptococcal meningitis, multiple OIs in the central nervous system

(CNS), and systemic disseminated tuberculosis (Figure 2).

Predicting the length of hospital stay based
on ML regression model

Four different ML regression models were run to predict

the individual length of hospital stay among PLWHs, which was

described in Table 1. In the training set, KNN model obtained the

best discriminative capability (RMSE= 12.72, MAE= 7.23, MAPE

= 0.60, R2 = 0.68; Table 1).

The internal validation was further carried out in the testing

set, and found that the XGBmodel performed best (RMSE= 16.81,

MAE = 10.39, MAPE = 0.98, R2 = 0.47), followed by SVM model

(RMSE= 18.05,MAE= 10.36,MAPE= 0.85,R2 = 0.39), RFmodel

(RMSE= 18.21,MAE= 10.91,MAPE= 1.11,R2 = 0.37), and KNN
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TABLE 1 Statistical comparison based on Machine Learning Regression

Models to predict individual length of hospital stay.

Models RMSE MAE MAPE R
2

Training set RF 14.67 8.67 0.84 0.58

KNN 12.72 7.23 0.60 0.68

SVM 16.83 8.25 0.63 0.44

XGB 17.11 9.84 0.86 0.42

Testing set RF 18.21 10.91 1.11 0.37

KNN 19.67 11.61 0.99 0.27

SVM 18.05 10.36 0.85 0.39

XGB 16.81 10.39 0.98 0.47

RF, random forest; SVM, support vector machine; KNN, k-nearest neighbor; XGB, extreme

gradient boosting; RMSE, root mean square error; MAE, mean absolute error; MAPE, mean

absolute percentage error; R2 (R-Squared), coefficient of determination.

model (RMSE = 19.67, MAE = 11.61, MAPE = 0.99, R2 = 0.27;

Table 1).

Based on the evaluation of different models, including RF,

KNN, SVM, and XGB in the training and testing sets, the error

and R2 of the XGB model changed slightly and performed stable

(Table 1), which indicated that XGBmodel presented a better fitting

and more stable and effective in predicting the length of stay than

RF, KNN, and SVM.

Predicting the risk of prolonged hospital
stay based on ML classification model

Five different ML classification models were run to predict the

risk of prolonged hospital stay among PLWHs (Table 2). In the

training set, KNNmodel obtained the best discriminative capability

(accuracy = 0.9008, PPV = 0.8982, NPV = 0.9063, sensitivity

= 0.9525, specificity= 0.8096, Kappa= 0.7802; Table 2, Figure 3).

In the testing set, the further evaluation presented as

following: the NN model (accuracy = 0.7623, PPV = 0.7853,

NPV = 0.7092, sensitivity = 0.8620, specificity = 0.5882,

Kappa = 0.4672), XGB model (accuracy = 0.7666, PPV

= 0.7831, NPV = 0.7259, sensitivity = 0.8754, specificity

= 0.5765, Kappa = 0.4727), SVM model (accuracy =

0.7473, PPV = 0.7737, NPV = 0.6857, sensitivity = 0.8519,

specificity = 0.5647, Kappa = 0.4329), RF model (accuracy =

0.7473, PPV = 0.7720, NPV = 0.6884, sensitivity = 0.8552,

specificity = 0.5588, Kappa = 0.4314), and KNN model

(accuracy = 0.7281, PPV = 0.7607, NPV = 0.6525, sensitivity

= 0.8350, specificity = 0.5647, Kappa = 0.3904; Table 2,

Figure 3).

Based on the evaluation of different models, including RF,

KNN, SVM, NN, and XGB in the training and testing sets, the

accuracy, PPV, NPV, sensitivity, specificity and kappa efficiency of

the NN model changed slightly and performed stable (Table 2),

which indicated that NN model presented a better fitting and more

effective in predicting the risk of prolonged hospital stay than RF,

KNN, SVM, and XGB. T
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FIGURE 3

The confusion matrix of classification machine learning models. In the training set: (A) the random forest (RF), (C) k-Nearest Neighbor (KNN), (E)

support vector machine (SVM), (G) neural network (NN), (I) extreme gradient boosting (XGB). In the testing set: (B) the random forest (RF), (D)

k-Nearest Neighbor (KNN), (F) support vector machine (SVM), (H) neural network (NN), (J) extreme gradient boosting (XGB).

Visualization evaluation of ML classification
models to predict the risk of prolonged
hospital stay

In addition, AUROC of all five models exceeded 0.9 in

both the training and testing sets. Compared to RF, KNN,

SVM, and XGB in the training set (AUROCRF = 0.9315,

AUROCKNN = 0.9305, AUROCSVM = 0.9518, AUROCXGB =

0.9674, Figure 4, Supplementary Table S4), the NN model had the

largest area under the ROC curve (AUROCNN = 0.9739, Figure 4,

Supplementary Table S4). Similarly, in the testing set, compared to

the RF, KNN, SVM, and XGB (AUROCRF = 0.9315, AUROCKNN

= 0.9225, AUROCSVM=
0.9419, AUROCXGB = 0.9695, Figure 4,

Supplementary Table S4), the NN model also presented the largest

area under the ROC curve (AUROCNN = 0.9779, Figure 4,

Supplementary Table S4).

The evaluation of PR curves indicated that, in the training

set, the AUPRC of RF, KNN, SVM, NN, and XGB models

was 0.896, 0.862, 0.691, 0.765, and 0.678, respectively (Figure 4,

Supplementary Table S4), while in the testing set, the AUPRC of

RF, KNN, SVM, NN, and XGB models was 0.755, 0.643, 0.679,

0.773, and 0.712, respectively (Figure 4, Supplementary Table S4)

in the testing set. Compared with the PR curves of the

training set, the AUPRC of all models decreased in the testing

set, while the AUPRC of the NN model changed slightly

and performed stable, which indicated it was an optimal

ML model.

At the same time, the calibration curves

(Supplementary Figure S1) indicated that all models including NN

model had good predictive ability, while NN model also presented

the best predictive value based on the decision curves analysis

(Figure 2).

Discussion

Despite of availability of antiretroviral therapy among PLWHs,

opportunistic infections and NADEs were the main reason of

hospitalization in China, and individual and social healthcare

burden was increased due to medical cost and prolonged hospital

stay, which indicated that an intelligent medical system based on

ML models were required to predict individual length of hospital

stay and risk factors of prolonged hospital stay. In addition, the

intelligent medical system based onMLmodels could help improve

diagnosis, treatment and care delivery, reducemedical cost, identify

the individuals with prolonged hospital stay in time and establish

preventive strategies to reduce the cost and shorten the length of

hospital stay.

Previous studies have elucidated the risk factors of prolonged

hospitalization among PLWHs (29), while few studies have

predicted individual length of hospital stay among PLWHs (30).

Coelho et al. (31) studied 30-day readmission rates in a HIV-

infected cohort in Brazil, and found risk factors for readmission,

which contributed to prognosis and early follow-up after discharge.

The above conclusions were made based on PLWHs in foreign

countries, while rarely studies were conducted to predict length

of hospital stay and risk factors of prolonged hospital stay

among HIV/AIDS population in China. In this study, we studied

length of hospital stay and risk factors of prolonged hospital

stay based on ML models for the first time among PLWHs in

China, and we found that systemic multiple OIs, unexplained

infections, NADEs, baseline CD4 cell count, admission to the ICU,

baseline viral load, cryptococcal meningitis, multiple OIs of the

CNS and systemic disseminated tuberculosis were significantly

associated with prolonged hospital stay, which can be used to

develop strategies for diagnosis, treatment and prophylaxis for
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FIGURE 4

The area under ROC and PR of five classification machine learning models. RF, KNN, SVM, NN, and XGB algorithms were included in all ROC and PR

curves. (A) AUROC of the training set, (B) AUPRC of the training set, (C) AUROC of the testing set, (D) AUPRC of the testing set.

HIV-associated OIs and NADEs and shortening length of hospital

stay and reduced medical cost.

Sensitivity analysis had important applications in model

calibration, where focusing on sensitive parameters could be used

to simplify the calibration phase and improved model performance

in calibrated models with large parameters. Hyper-parameters had

a considerable impact on the model performance in ML, and

optimization of hyper-parameters of ML models was needed to

improve their performance (32). The improper selection of hyper-

parameters can significantly affect the prediction model results,

and 10-fold cross-validation and grid search were recommended

to use to achieve the optimal hyper-parameters in the training

set (33). In this study, the original set was randomly divided

into training set for establishing predictive models and testing set

for validating models based on stratified sampling (34). Ten-fold

cross-validation and grid search were performed to reduce model

over-fitting and obtain superior parameters based on relevant

literature recommendation.

In this study, several ML models were established separately to

predict the length of hospital stay and the risk of prolonged
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hospitalization in people living with HIV/AIDS. Better

performance of the metrics and smaller differences in metrics

between the training and test sets represents a more stable

and better model, in which XGB performed best in prediction

of individual length of hospital stay while NN model was the

optimal one for predicting the risk of prolonged hospitalization in

this study.

ML models can be applied to predict the length of

hospitalization for diseases. Extreme Gradient Boosting (XGB)

Algorithm is a machine learning one which can improve the

integration of multiple decision trees by gradient boosting method,

which is characterized by high accuracy, difficulty of adaptation and

good scalability. Chen et al. (24) indicated that the XGB algorithm

was a suitable ML model for predicting length of hospital stay in

ischemic stroke patients with high accuracy, less over-fitting and

scalability and Grovu et al. (35) showed that the XGB model has

higher accuracy and better performance in predicting the length of

hospitalization compared with other algorithms. Morgan et al. (36)

indicted that the accuracy and stability of MLmodels was improved

and presented less over-fitting as the sample size increased and a

more stable ML model in training and testing sets was necessary

to be selected in clinical practice. In this study, we found that

the best models for the training and testing sets were different

due to relative small sample size, the RF, KNN, and SVM models

presented increased error and decreased R2 values between training

and testing sets, which indicated unstable and over-fitting models,

while XGB presented stable and excellent fitting features between

training and testing sets, which indicated that XGB was an optimal

ML model to predict individuals length of hospital stay among

HIV-infected population.

The risk factors of prolonged hospital stay were evaluated

based on ML classification model, and we found that the accuracy

of all models was higher than 70% and the AUROC was more

than 0.9, indicating that the ML models were feasible tools to

predict risk of prolonged hospital stay. Ahlstrom et al. (37) also

reported ML models were applied to predict HIV status, which

was similar with our conclusion that ML models could be used

in clinical prediction. In this study, we used the ML models

to predict the risk of prolonged hospital stay in HIV-infected

individuals in China, and we found that NN model presented best

performance and less over-fitting in predicting risk of hospital

stay. Neural networks were a ML modeling method that used data

obtained from previous experiments to adapt to new situations or

to control unknown systems, and could be considered as a tool

for molecular data analysis and interpretation (38). Kulkarni et al.

(39) indicated that neural networks could be used to predict l

prolonged length of hospital stay in clinical work. Van der Ploeg

et al. (40) indicated that modern models including SVM, NN, and

RF may require more than 10 times the number of study subjects

per variable to achieve stable models, and for small samples of

data, any models may be prone to perform unstable. We found

that the evaluation of KNN and RF models presented unstable

features, in which accuracy, sensitivity, specificity, PPV and NPV,

and kappa decreased significantly between training and testing sets,

while NN and XGB presented stable and excellent fitting features

between training and testing sets, further analysis indicated that the

indicators of NN model performed better than XGB model, which

indicated that NN model was an optimal ML model to predict risk

of hospital stay among HIV-infected population.

The evaluation of visualization indicated that the NN model

performed better in both training and testing sets in terms of

AUROC, AUPRC, calibration curves and decision curves. The

predicted values of the calibration curves of all models presented

similar results with the true values, indicating that these models,

including NN ones, performed well based on calibration curves.

For the decision curves, the NN model had the larger net gain

than other models after intervention. Comprehensive assessment,

instead of using only one indicator such as the AUC (41, 42), was

also used in this study, which helped find the optimal model, NN

model, for prolonged hospital stay (43).

Based on ML model prediction, medical and nursing service

may be reduced by identifying individuals at risk for prolonged

stay at the time of admission or hospitalization, assigning dedicated

physicians, and conducting schedule of reasonable discharge after a

continuum of care. The medical cost and insurance that was often

considered as important socioeconomic factors also significantly

affected the length of hospital stay (44, 45), and the predictive

models in this study helped individuals’ stratification based on risk

factors of prolonged hospital stay, and reduce excessive waste of

healthcare resources (9).

This study has some advantage. First, we used ML regression

and classification models to predict individual length of hospital

stay and risk factors of prolonged hospital stay, which helped

adequately evaluate length of hospital stay among PLWHs. Second,

several different ML algorithms were used and internal validation

was performed in these two kinds of models, which indicated good

accuracy and credibility in these predictive models. Third, 12-year

clinical data were used to establish predictive models, based on

stable spectrum of HIV-associated diseases (46), which indicated

its reliability.

This study had several limitations. First, this study was a

retrospective study and potential selection bias and information

bias was inevitable (47–49). Second, this was a single-center

study so that our findings may not be generalizable to other

hospitals where discharge criteria may differ due to difference

in understanding of HIV/AIDS in different hospital, but not

referral pattern bias. Third, the individual’s social environment

such as social discrimination and rehabilitation care after discharge

could easily influenced the prognosis and admission. In addition,

external validation was not conducted in this study. Some of the

established models have performed well in internal validation, but

it is necessary to validate their generalizability in separate study to

further update the models.

In this study, we found that the ML models, based on existing

technology, medicine, and specialized wards to treat patients, may

play a meaningful role in predicting length of hospital stay and

the risk factors of prolonged stay among PLWHs in Beijing Ditan

Hospital, Capital Medical University. These predictive models

may help healthcare workers determine the likelihood and risk of

prolonged length of hospital stay among PLWHs to adjust strategies

of diagnosis, treatment and care delivery. Understanding the main

influencing factors about individual hospital stay based on the

predictive model will allow us to contribute to the scheduling of

reasonable discharges and early recovery for PLWHs.
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Conclusion

In conclusion, the study aimed to adopt various machine

learning techniques to predict the length of hospital stay and risk

of prolonged hospitalization in PLWHs. The results indicated that

XGB model was effective in predicting length of hospital stay of

PLWHs, while NN model was effective in predicting the risk of

prolonged hospitalization of PLWHs with high accuracy, which

indicated well-performing calibration curve and decision curve.

Our study also identified important features that could be used

for these models, including systemic multiple OIs, unexplained

infections, NADEs, baseline CD4 cell count, admission to the ICU,

baseline viral load, cryptococcal meningitis, multiple OIs of the

CNS and systemic disseminated tuberculosis. Based on predictive

models, an intelligent medical prediction system may be developed

to effectively predict the duration and risk of prolonged length of

stay in PLWHs according to their medical records to help reduce

the waste of healthcare resources.
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