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Much of the global population now has some level of adaptive immunity to 
SARS-CoV-2 induced by exposure to the virus (natural infection), vaccination, 
or a combination of both (hybrid immunity). Key questions that subsequently 
arise relate to the duration and the level of protection an individual might expect 
based on their infection and vaccination history. A multi-component composite 
correlate of risk (CoR) could inform individuals and stakeholders about protection 
and aid decision making. This perspective evaluates the various elements that need 
to be accommodated in the development of an antibody-based composite CoR 
for reinfection with SARS-CoV-2 or development of severe COVID-19, including 
variation in exposure dose, transmission route, viral genetic variation, patient 
factors, and vaccination status. We provide an overview of antibody dynamics to 
aid exploration of the specifics of SARS-CoV-2 antibody testing. We further discuss 
anti-SARS-CoV-2 immunoassays, sample matrices, testing formats, frequency of 
sampling and the optimal time point for such sampling. While the development 
of a composite CoR is challenging, we provide our recommendations for each 
of these key areas and highlight areas that require further work to be undertaken.
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Introduction

The COVID-19 pandemic, caused by severe acute respiratory coronavirus 2 (SARS-CoV-2) 
led to unprecedented, accelerated vaccine development (1) and expansive roll-out programs (2, 
3). Much of the global population now has some level of adaptive immunity to SARS-CoV-2 
induced by exposure to the virus (natural infection), vaccination, or a combination of both 
(hybrid immunity).
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Natural infection induced by, and/or vaccination against, SARS-
CoV-2 leads to the development of both binding and neutralizing 
antibodies (nAbs) (4, 5), and the induction of T-cell responses during 
active immune reaction and clearance of infection (6). Key questions 
that subsequently arise relate to the duration and the level of 
protection an individual might expect based on their infection and 
vaccination history. Studies of those infected early in the pandemic 
documented that natural SARS-CoV-2 infection afforded some level 
of protection against reinfection in most individuals, and that 
subsequent reinfections were typically less severe than the primary 
episode (Table 1). However, SARS-CoV-2 has high rates of mutation 
and heavily mutated variants have emerged (21). Most significant are 
the “variants of concern” (VOCs) (22), and there is now ample 
evidence that protection against reinfection with the B.1.1.529/21 K 
(Omicron) variant (23, 24) is dramatically reduced compared with 
previous variants (Table 1).

Any descriptor of immunity based on patient history will 
encompass a population of individuals with vastly variable exposure 
to vaccines and viral variants with differing orders of immune 
challenge intensity. Unrecognized “silent infections,” especially in 
Omicron-positive subjects with underlying immunity, further 
complicate the assessment. Therefore derivation of potential immunity 
based on patient history requires assistance from a surrogate 
composite score to inform about protection and to aid 
decision making.

Correlates of protection or risk

In vaccinology, a correlate of protection (CoP) reflects a statistical 
non-causal relationship between an immune marker and protection 
after vaccination (25). Most accepted CoPs are based on antibody 
measurements (26) and vary depending on the clinical endpoint, for 
example protection from (symptomatic) infection or severe disease. 
In contrast, a correlate of risk (CoR) can be used as a measurement of 
an immunologic parameter that is correlated with a study endpoint 
(27) and can predict a clinical endpoint in a specified population with 
a defined future timeframe. Notably, antibody markers have been used 
as correlates of immune function in clinical trials of SARS-CoV-2 
vaccine efficacy (VE) (28–33), and for identifying the risk of 
symptomatic infection by VOCs (34, 35). In VE trials, a CoR can be a 
CoP if the CoR reliably predicts VE against the clinical endpoint, 
thereby acting not just as an intrinsic susceptibility factor or marker 
of pathogen exposure. In this case, the CoR could be a surrogate of the 
endpoint and could be useful for licensure of new vaccines.

A CoR would likely comprise a measure of the immune 
component plus determinants that act to modify such a measure (a 
multi-component composite CoR). While there is no scientific 
evidence for an absolute humoral or cellular CoP against SARS-
CoV-2, identification of a multi-component composite CoR might 
be useful to guide the use of vaccines or patient management. In 
general, the immune component of a composite CoR should be easily 
measured by widely available technologies that are amenable to 
automation, are scalable, cost-efficient, and have a rapid turn-around 
time. Given the relative complexity, cost and pre-analytic requirements 
for cellular immune response testing, the preferred candidate for the 
immune component of a CoR would be detection of humoral immune 
response(s) (i.e., antibody). This perspective evaluates the various 

elements that need to be accommodated in the development of an 
antibody-based composite CoR for reinfection with SARS-CoV-2 or 
severe COVID-19.

A composite CoR: a brief summary of 
extrinsic viral and intrinsic host 
elements that should be considered

Variation in exposure dose and 
transmission route

Viral load varies widely between infected individuals and over 
time (36), with viral emissions independent of symptom severity (37). 
Exposure to SARS-CoV-2 is tempered by the use of personal 
protective measures and, at the population level, adherence to public 
health measures that reduce exposure has been variable (38, 39), 
making assessment of exposure dose complex.

Controlled human infections to directly study the impact of viral 
inoculum and disease severity are controversial (40), and only one 
human challenge trial of SARS-CoV-2 using a single low inoculum 
dose has been reported to date (41). However, the initial infective dose 
of SARS-CoV-2 is thought to be associated with disease severity (42–
44), since relationships between dose and severity exist for many other 
viral infections (44). Evidence from SARS-CoV-2 animal models 
suggests that the route of transmission similarly affects disease 
severity (45).

Viral genetic variation

Risk reduction depends on the dominant variant in circulation. 
Continued evolution of SARS-CoV-2 can lead to significant changes 
in viral transmission and impact reinfection rates (46). Mechanistically, 
the receptor binding domain (RBD) within the viral spike (S) 
glycoprotein engages in initiation of infection via interaction with the 
angiotensin converting enzyme-2 (ACE2) receptor (47). The RBD is a 
target for many nAbs (47) and mutations are frequently located at the 
RBD–ACE2 interface (48). It is therefore not surprising that changes 
to the viral epitope can reduce antibody binding (48), helping to drive 
immune escape from anti-RBD nAbs (49), decreasing previously 
generated protective immunity (50–52), and leading to variant-
specific risks of severe illness (53, 54).

Patient factors

Patient differences impact susceptibility to reinfection and disease 
severity. The immune response declines with increasing age (55, 56), 
and age is the strongest predictor of SARS-CoV-2 infection–fatality 
ratio (57). Older individuals have been shown to exhibit reduced 
binding antibody titers and neutralization following vaccination (58–
60). Pregnant women are also at high risk of severe outcomes (61). 
Similarly, immunocompromised or immunosuppressed individuals, 
or those affected by cancer or human immunodeficiency virus (HIV), 
exhibit reduced immune responses to infection or an increased risk of 
hospitalization (62–66). Other co-morbidities are frequently observed 
in those with severe COVID-19 (67, 68).
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TABLE 1 Selection of peer-reviewed publications assessing reinfection or risk of severe COVID-19 after natural infection (ordered by study end date, 
earliest to most recent).

Study Outcome measures of protection or risk

Total size 
(enrolled; 
before 
exclusions)

Time 
period

Reported 
lineage

Reported 
outcome 
measure 
(protection, 
risk, 
reinfection 
rate)

Repeat infection 
outcome (selected 
comparisons, 
terminology as 
reported)

Severe 
COVID-19 
outcome 
(selected 
comparisons, 
terminology as 
reported)

Primary publications

Hansen et al. (7)

Non-vaccinated 

individuals

Denmark

~ 4 million 

individuals

February 26, 

2020–

December 31, 

2020

 • None Protection Protection against repeat 

infection in those1

 • < 65 years:

80.5% (95% CI: 75.4–84.5)

 • ≥ 65 years:

47.1% (96% CI 24.7–62.8)

 • Not assessed

Abu-Raddad et al. (8)

Non-vaccinated 

individuals2

Qatar

192,984 individuals April 16, 2020–

December 31, 

2020

 • None
Protection Efficacy of natural infection 

against reinfection3

 • 95.2% (95% CI: 94.1–96.0)

 • Not assessed

 • Of 129 cases with 

good or some 

evidence of 

reinfection, one 

reinfection was 

severe, two were 

moderate, and none 

were critical or fatal

Hall et al. (9)

Non-vaccinated and 

vaccinated 

individuals

UK

30,625 individuals June 18, 2020–

January 11, 

2021

 • Not specified

 • B.1.1.7

Risk Risk of reinfection causing4

 • COVID-19 symptoms:

aIRR 0.074 (95% CI: 0.06–0.10)

 • All events (COVID-19 

symptoms, other symptoms, 

asymptomatic):

aIRR 0.159 (95% CI: 0.13–0.19)

 • Not assessed

Lumley et al. (10)

Non-vaccinated and 

vaccinated 

individuals

UK

13,109 individuals March 27, 

2020–February 

28, 2021

 • Non-S-gene 

target failure

 • B.1.1.7

Risk Risk of PCR-positive result 

(symptomatic or asymptomatic) 

in

 • Unvaccinated seropositive5:

aIRR 0.02 (95% CI: 0.01–0.18)

 • Not assessed

Abu-Raddad et al. (11)

Non-vaccinated and 

vaccinated 

individuals

Qatar

193,233 individuals Before 

November 1, 

2020–March 3, 

2021

 • B.1.1.7

 • Variants of 

unknown status

Protection Efficacy of natural infection 

against reinfection with6

 • B.1.1.7, prior 

PCR-confirmed infection:

97.5% (95% CI: 95.7–98.6)

 • B.1.1.7, prior antibody-

positive result:

97.0% (95% CI: 92.5–98.7)

 • Unknown variant, prior 

PCR-confirmed infection: 

92.2% (95% CI: 90.6–93.5)

 • Unknown variant, prior 

antibody-positive result: 

94.2% (95% CI: 91.8–96.0)

 • Not assessed

(Continued)
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TABLE 1 (Continued)

Study Outcome measures of protection or risk

Total size 
(enrolled; 
before 
exclusions)

Time 
period

Reported 
lineage

Reported 
outcome 
measure 
(protection, 
risk, 
reinfection 
rate)

Repeat infection 
outcome (selected 
comparisons, 
terminology as 
reported)

Severe 
COVID-19 
outcome 
(selected 
comparisons, 
terminology as 
reported)

Chemaitelly, et al. 

(12)

Unvaccinated 

individualsQatar

380,914 individuals Before January 

1, 2021–April 

21, 20217

 • B.1.351

 • B.1.1.7

 • Variants of 

unknown status

Protection Efficacy of natural infection 

against reinfection with8

 • B.1.351:

92.3% (95% CI: 90.3–93.8)

 • B.1.1.7:

97.6% (95% CI: 95.7–98.7)

 • Variants of unknown status:

87.9% (95% CI: 84.7–90.5)

 • Not assessed

Nordström et al. (13)

Non-vaccinated and 

vaccinated 

individuals

Sweden

~3.5 million 

individuals (3 

cohorts)

March 20, 

2020–

September 5, 

2021

 • Alpha B.1.1.7

 • Beta B.1.351

 • Gamma P.1

 • Delta B.1.617.2

Risk Risk of reinfection in those 

with

 • Natural immunity9:

aHR 0.05 (95% CI: 0.05–0.05)

 • One-dose hybrid immunity10:

aHR 0.42 (95% CI: 0.38–0.47)

 • One-dose hybrid immunity11:

aHR 0.55 (95% CI: 0.39–0.76)

 • Two-dose hybrid immunity, 

overall12:

aHR 0.34 (95% CI: 0.31–0.39)

Risk of hospitalization 

(HR)

 • Two-dose 

hybrid immunity13:

0.10 (95% CI: 0.04–

0.22)

Altarawneh et al. (14)

Non-vaccinated and 

vaccinated 

individuals

Qatar

~2.3 million 

individuals

March 23, 

2021–

November 18, 

2021

 • Alpha

 • Beta

 • Delta

 • Omicron

Protection Effectiveness of previous 

infection in preventing 

reinfection with14

 • Alpha:

90.2% (95% CI: 60.2–97.6)

 • Beta:

85.7% (95% CI: 75.8–91.7)

 • Delta:

92.0% (95% CI: 87.9–94.7)

 • Omicron:

56.0% (95% CI: 50.6–60.9)

Effectiveness of 

previous infection in 

preventing severe, 

critical, or fatal disease 

caused by

 • Alpha: 69.4% (95% 

CI: −143.6 to 96.2)

 • Beta: 88.0% (95% 

CI: 50.7–97.1)

 • Delta: 100% (95% 

CI: 43.3–100)

 • Omicron: 87.8% 

(95% CI: 47.5–97.1)

Pulliam et al. (15)

Non-vaccinated and 

vaccinated 

individuals

South Africa

~2.9 million 

individuals

March 4, 2020–

January 31, 

2022

 • Beta (B.1.351)

 • Delta (B.1.617.2)

 • Omicron 

(B.1.1.529)15

Risk Risk of reinfection during16

 • Wave 2 (Beta-driven) versus 

Wave 1: relative HR 0.71

(95% CI: 0.60–0.85)

 • Wave 3 (Delta-driven) versus 

Wave 1: relative HR 0.54

(95% CI: 0.45–0.64)

 • Wave 4 (Omicron-driven) 

versus Wave 1: relative 1.70

(95% CI: 1.44–2.04)

 • Not assessed

(Continued)
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TABLE 1 (Continued)

Study Outcome measures of protection or risk

Total size 
(enrolled; 
before 
exclusions)

Time 
period

Reported 
lineage

Reported 
outcome 
measure 
(protection, 
risk, 
reinfection 
rate)

Repeat infection 
outcome (selected 
comparisons, 
terminology as 
reported)

Severe 
COVID-19 
outcome 
(selected 
comparisons, 
terminology as 
reported)

Guedes et al. (16)

Non-vaccinated and 

vaccinated 

individuals

Brazil

25,750 real-time 

RT-PCR tests 

performed

March 10, 

2020–March 

20, 2022

 • Pre-VOC

 • Gamma

 • Delta

 • Omicron

Reinfection rate Reinfection rate during the 

Omicron variant period17:

 • Before 0.8% vs. after 4.3%;

p < 0.001

 • Not assessed

 • 281/281 reinfections 

were mild

Chemaitelly et al. (17)

Unvaccinated 

individuals

Qatar

Up to 3.3 million 

individuals

February 28, 

2020– June 5, 

202218

 • Pre-Omicron 

(ancestral, 

Alpha, 

Beta, Delta)

 • Omicron (BA.1, 

BA.2, 

BA.4, BA.5)

Protection Effectiveness of pre-Omicron 

primary infection19

 • Against pre-Omicron 

reinfection: 85.5% (95% CI: 

84.8–86.2%)

 • Effectiveness peaked at 

90.5% (95% CI: 88.4–92.3%) 

in the 7th month after the 

primary infection, waning to 

~70% by the 16th month

 • Against Omicron reinfection: 

38.1% (95% CI: 36.3–39.8%), 

declining with time since 

primary infection

Effectiveness of pre-

Omicron primary 

infection20

 • Against severe, 

critical, or fatal 

COVID-19 due to 

Omicron reinfection:

88.6% (95% CI: 70.9–

95.5)

 • Against severe, 

critical, or fatal 

COVID-19 

reinfection 

(irrespective of the 

variant of primary 

infection 

or reinfection):

97.3% (95% CI: 94.9–

98.6)

Bowe et al. (18)

Non-vaccinated and 

vaccinated 

individuals

USA

~ 5.8 million 

individuals

March 1, 2020–

June 25, 2022  • Pre-Delta

 • Delta

 • Omicron

Risk
 • Not assessed

Risk of all-cause 

mortality (HR)21

 • 2.17 (95% CI: 

1.93–2.45)

Risk of hospitalization 

(HR)

 • 3.32 (95% CI: 

3.13–3.51)

Yang et al. (19)

Non-vaccinated and 

vaccinated 

individuals

Malaysia

482 individuals January 31, 

2022–July 31, 

202222

 • Non-Omicron

 • Omicron

Risk Risk of reinfection in those 

with

 • Pre-Omicron natural 

infection23: aHR 0.41 (95% 

CI: 0.27–0.62)

 • Not assessed

Meta-analyses

(Continued)
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Vaccination status and exposure history

COVID-19 vaccines include recombinant subunit, nucleic acid, 
viral vector and whole virus vaccines, among others, and some 
vaccines have been adapted for Omicron variants (69). The use of 
different vaccines, combinations, the number of boosters received, the 
interval between boosters, the occurrence of natural infection, and 
combinations thereof, trigger the immune system to varying degrees 
in depth, breadth or duration of response (35, 66, 70–83). Pre-existing 
heterotypic immunity, due to past infections with other coronaviruses, 
may also influence the immune response to SARS-CoV-2 (84, 85).

Following primary infection, severely ill patients exhibit higher 
binding and neutralizing antibody titers or activity compared with 
individuals with mild disease (86–91). Persistence of nAbs has also 
been associated with disease severity (92). In the event of reinfection, 
there is an implicit assumption that nAb titers ameliorate severe 
COVID-19 (93, 94). In brief, in infection-naïve individuals, post-
vaccination antibody titers (anti-S IgG and nAbs) correlate with 
higher vaccine efficacy (71), and post-vaccination anti-RBD IgG and 

nAbs levels associate with protection against infection and 
symptomatic disease even during the Omicron era (95) or inversely 
correlate with risk of death (anti-S IgG below 20th percentile) (96). 
Generally, individuals with higher nAbs (levels or capacity) are 
considered increasingly protected from infection (97–99), 
symptomatic reinfection (99–101), severe disease (100), or death (102) 
compared with individuals with lower nAbs. There is evidence that 
neutralization capacity can be strain specific (103).

In summary, viral and host elements modify the risk of reinfection 
or development of severe COVID-19 in various manners (Figure 1).

A composite CoR: antibody dynamics, 
serology in practice and challenges, 
and expert recommendations

The antibody component of a composite CoR should be developed 
under defined conditions. To provide insight into these conditions, an 
understanding of antibody dynamics is required.

TABLE 1 (Continued)

Study Outcome measures of protection or risk

Total size 
(enrolled; 
before 
exclusions)

Time 
period

Reported 
lineage

Reported 
outcome 
measure 
(protection, 
risk, 
reinfection 
rate)

Repeat infection 
outcome (selected 
comparisons, 
terminology as 
reported)

Severe 
COVID-19 
outcome 
(selected 
comparisons, 
terminology as 
reported)

Stein et al. (20)

Global

systematic review and 

meta-analysis of 65 

studies from 19 

countries

Various Up to 

September 31, 

2022

 • Ancestral

 • Mixed Alpha 

(B.1.1.7)

 • Beta (B.1.351)

 • Delta (B.1.617.2)

 • Omicron BA.1 

variants

Protection Pooled estimate of protection 

from past infection (with 

various variants) against 

reinfection with

 • Ancestral:

84.9 (95% UI 72.8–91.8)

 • Alpha: 90.0% (95% UI 

54.8–98.4)

 • Beta: 85.7% (95% UI 

83.4–87.7)

 • Delta: 82.0 (95% UI 

63.5–91.9)

 • Omicron BA.1: 45.3% (95% 

UI 17.3–76.1)

Pooled estimate of 

protection against 

severe disease caused 

by

 • Ancestral: 78.1% 

(95% UI 34.4–96.5)

 • Alpha: 79.6% (95% 

UI 43.3–95.3)

 • Beta: 88% (95% UI 

50.7–97.1)24

 • Delta: 97.2% (95% 

UI 85.2–99.6)

 • Omicron BA.1: 

81.9% (95% UI 

73.8–88.0)

1Derived as 1− adjusted relative risk. The rates of infection during the second surge were compared across those with a positive or negative PCR test from the first surge. The rate of infection 
was calculated as the number of individuals with positive PCR tests during the second surge divided by the cumulative number of person-days at risk. 2Qatar launched its vaccination 
campaign on December 21, 2020, around the time this study was concluded (December 31, 2020), so very few individuals had been vaccinated at time of this study. 3Derived as 1− the ratio of 
the incidence rate of reinfection in the antibody-positive cohort to the incidence rate of infection in the antibody-negative cohort. 4Derived as 1− adjusted incident rate ratio. 5Compared 
incidence in each follow-up group to unvaccinated seronegative healthcare workers. 6Derived as 1− the ratio of the incidence rate of reinfection in the PCR-confirmed (or antibody-positive) 
cohort to the incidence rate of infection in the antibody-negative cohort. 7This timeframe coincided with the beginning of the decline of the B.1.1.7 wave and the rapid expansion of the B.1.351 
wave that peaked early April 2021. 8Derived as 1− the ratio of the incidence rate of reinfection in the cohort of individuals with a prior PCR-confirmed infection to the incidence rate of 
infection in the antibody-negative cohort. 9Calculated vs. no immunity and after 3 months of follow-up. 10Calculated vs. natural immunity and during the first 2 months of follow-up. 
11Calculated vs. natural immunity and after 2 months of follow-up. 12Calculated vs. natural immunity. 13Calculated vs. natural immunity. 14Derived as 1− odds ratio of prior infection in cases 
(PCR-positive persons with variant infection) vs. controls (PCR-negative persons). 15Period of Omicron emergence: November 1, 2021 to November 30, 2021. 16Estimated relative hazard ratios 
for reinfection during specified wave versus primary infection during the first wave. 17Calculated as number of reinfection cases before and after the Omicron variant considering the total 
accumulated number of SARS-CoV-2 infections in both periods. 18Three individual studies (pre-Omicron reinfection, Omicron reinfection, COVID-19 severity reinfection) spanning different 
time periods. 19Derived as 1– adjusted hazard ratio, where the hazard ratio compared incidence of infection in both cohorts. Incidence rate of infection in each cohort defined as the number of 
identified infections divided by the number of person-weeks contributed by all individuals in the cohort. 20Cox regression analysis. Severity, criticality, and fatality defined as per WHO 
guidelines. 21Calculated for reinfection vs. no reinfection. 22The Omicron-dominant period in Malaysia was estimated to start from early February 2022. 23Calculated vs. Omicron-dominant 
period. 24Single study. aRR, adjusted risk ratio; aIRR, adjusted incidence risk ratio; aHR, adjusted hazard ratio; CI, confidence interval; HR, hazard ratio; OR, odds ratio; PES, effectiveness of 
prior infection in preventing reinfection; real-time RT-PCR, real-time reverse transcription polymerase chain reaction; UI, uncertainty interval.

https://doi.org/10.3389/fpubh.2023.1290402
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Holdenrieder et al. 10.3389/fpubh.2023.1290402

Frontiers in Public Health 07 frontiersin.org

SARS-CoV-2 antibody dynamics

Natural infection with SARS-CoV-2 elicits a diversity of antibodies 
including those targeting S and nucleocapsid (N) antigens (75, 109) 
and the development of anti-RBD IgG antibodies is associated with 
improved patient survival (110). A detailed systematic review of 66 
studies investigated antibody responses (111). Collectively, the 
evidence supports the induction of IgM production in the acute phase 
of natural infection (peak prevalence: 20 days) followed by IgA (peak 
prevalence: 23 days), IgG (peak prevalence: 25 days), and nAbs (peak 
prevalence: 31 days) after symptom onset (111).

Serum IgG has the longest half-life compared with the relatively 
transient IgA or IgM (112). A longitudinal analysis of 4,558 
individuals, measuring total anti-N antibodies, revealed that, while 
total antibodies begin to decline after 90–100 days, they may persist 
for over 500 days after natural infection (113). Specifically measuring 
nAb via plaque reduction neutralization test (PRNT) shows that 
infection yields a robust nAb response in most individuals (86). Some 
studies report that anti-S antibodies show greater persistence than 
anti-N antibodies (114, 115).

Dramatic inductions of anti-S or anti-RBD IgG antibodies is 
indicative of vaccination (75, 116, 117). Primary vaccination by some 
vaccines [but not all (118)], or boosters generates high nAb titers (117, 
119, 120) or neutralizing responses (116). Notably, nAbs wane over 
time (35) with a half-life of 108 days (100)—although the level of 
decay may be assay or variant dependent (119) – and multiple clinical 
factors affect the duration of neutralization responses after primary 
vaccination (66) (see also Figure 1).

Anti-SARS-CoV-2 antibody testing

Commercial high-throughput immunoassays
Numerous immunoassays for the detection of antibodies against 

SARS-CoV-2 are available, differing in the immunoglobulin class 
detected, target viral antigen, format, and output [qualitative, (semi)-
quantitative] [reviewed in detail (121, 122)].

Head-to-head comparisons from the pre-Omicron era reveal 
variable levels of performance between the assays (123–127), caused 
by numerous technical factors including assay methodology, format 
and antibodies used, timing of testing, and the targeted viral antigen. 
Comparison studies show that sensitivity for detecting prior infection 
by different serologic assays changes over time (128). Commercial 
assays developed early during the pandemic are based on ancestral/
wild-type antigens. Subsequently, there is potential for differential 
performance in the Omicron-era: in particular, S- and RBD-specific 
immunoassays have shown significantly reduced performance (129–
131), and decreased comparability of quantitative results (132).

Most common commercial immunoassays detect both binding 
and nAbs without differentiating between them, however certain 
assays measuring IgG or total antibodies correlate well with 
neutralizing capacity (28, 97, 133–139), acting as surrogates of 
neutralization. Cell-based virus neutralization tests can be used to 
measure neutralizing capability, but these are typically not readily 
available in clinical laboratories due to inherent test performance 
challenges associated with their methodology (including the need for 
biosafety level 3 containment for live-virus neutralization assays), time 
and cost (140).

Expert recommendations
Mature immune responses are dominated by IgG. Serologic assays 

that measure IgG or total antibodies (if skewed toward IgG) that 
correlate with neutralizing activity and focus on anti-RBD should 
be used for the serologic component of a composite CoR; anti-N 
antibodies are unlikely to be neutralizing as the N protein is located 
within the viral envelope (75).

Assays should be  adapted for accurate measurement of the 
modified antigen, if applicable. However, frequent adaptation of 
assays is unlikely if several variants are circulating in parallel and 
due to regulatory requirements for assays. Therefore, studies are 
needed to determine assay applicability in the present conditions, 
especially since RBD mutations frequently occur and recombinant 
versions of RBD or S are commonly used in immunoassays (122). 
Accordingly, the upper and lower thresholds of any CoR may 
need modification.

External ring trials show poor comparability of assays from 
different manufacturers (141, 142) and there are significant 
challenges with the current binding antibody units (BAU) 
standardization, due to multiple factors, including different assay 
methods, antibody class(es) detected and target antigen used. Of 
note, BAU reference materials were derived from UK convalescent 
individuals infected in 2020 (143) (pre-Omicron), and there are 
vastly different BAU standardized values (144). While new reference 
materials include VOCs, they still contain antibodies derived 
during the pre-Omicron era (145). Antibody measurements should 
be  harmonized across assays from different manufacturers, 
irrespective of the different epitopes utilized, to reduce variability. 
To support this, there is an urgent need for external quality 
assessment, production of robust traceable certified reference 
materials, standards for different variants, and improved 
documentation of the methods on laboratory reports. Age-specific 
normalization of reference intervals in defined groups, by means of 
z-log transformation and documentation in antibody passes, may 
further improve the comparability of assays. Stakeholders should 
agree on minimum performance-based criteria to develop the gold 
standard for CoR, allowing validation of secondary assays.

Finally, systemic cellular assays could provide a comprehensive 
profile of the immune response, especially in immunocompromised 
and susceptible individuals who are not able to mount a robust 
antibody response. Currently, they lack scientific evidence and their 
use in clinical practice still remains uncertain.

Sample matrices
Systemic anti-SARS-CoV-2 antibody testing can be performed 

on blood, plasma/serum, or dried blood spots (DBS) (122, 146–
148). An advantage of whole blood or DBS collection is the ease in 
obtaining the sample. While many methodologies focus on systemic 
testing, infection with SARS-CoV-2 or vaccination against 
COVID-19 induces mucosal antibodies (149, 150), thus secretions 
such as saliva offer another possibility. Antibody dynamics will 
differ depending on the material in question (151), and sample 
types are subject to specific idiosyncrasies, such as additional 
pre-processing, that need to be accounted for (152). Of note, the 
collection protocol (passive drool versus swab-stimulated saliva, for 
instance) can influence the antibody yield (153). Currently 
secretion-based testing is less suitable for a composite CoR as 
performance is variable (154).
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Expert recommendations
A composite CoR will likely be sample matrix-specific. Our 

preference is for plasma/serum, as this sample matrix has the largest 
evidence base, shows the least variability, experiences less 
interference than whole blood, and is consistent with CoRs 
established for other infectious diseases. DBS would be  also 
possible, but variability is high, and few laboratories have an 
established workflow.

Serologic testing formats
Formats include high-throughput automated enzyme 

immunoassay/ electrochemiluminescence immunoassay/enzyme-
linked immunosorbent assay (certified and used in central laboratories 
and hospitals), point-of-care (POC) testing (used in emergencies and 
outpatients setting), and direct-to-consumer testing (at-home use with 
online services). POC testing is gaining in popularity, but 
methodological variation is higher (155) and any method that relies 

upon sampling from untrained individuals is less reliable for (semi)
quantitative measurements (156).

Expert recommendations
We recommend automated assays that are approved by location-

specific regulatory agencies and performed in certified and centralized 
laboratories. Home sampling/DBS would contribute to a reduction in 
clinician workload, particularly in high-density residential facilities, 
but methods are not yet sufficiently robust. Currently, there is no clear 
benefit in POC testing as urgent results are not critical.

Frequency of sampling and optimal time point
Considering antibody dynamics, several important questions 

arise: what is the optimal time point for measurement; would the 
timing differ depending on the vaccine schedule, and/or the presence 
of previous infection of a specified severity; should antibody levels 
be measured once or serially? While single values can be plotted into 

FIGURE 1

Summary of host and viral elements that can impact the immune response and response to SARS-CoV-2 (selected examples, not exhaustive, variables 
ordered alphabetically within figure [not according to importance]). (A) Viral factors include genetic variation (50–54), the exposure dose (42–44), and 
route of transmission (45). (B) Host factors include patient factors, such as: ancestry, for example, non-European ancestry (68); frailty (45) and older 
age (55–60, 68); genetic predisposition (68, 104–107), including gene variants at 3p21.31 (68, 107) and variants involved in immune signaling [e.g., TLR7 
(105) and interferon (106)]; male sex (68); and current or recent pregnancy (61). Equally, past infection with other coronaviruses (84, 85), whether an 
individual has received monoclonal antibodies (108), and exposure history or vaccination status (type, provision of boosters, or intervals) (35, 66, 70–
83) are also relevant. Comorbidities similarly affect the immune response, such as: whether an individual has a history of malignancy (66) or has 
received recent chemotherapy for cancer (63); has disorders of lipid metabolism (67); is a transplant recipient (62); has uncontrolled HIV (65); has 
hypertension (67); is obese (67, 68); or takes immunosuppressants (64). Other relevant variables include air pollution (45), microbiota composition (45), 
presence of co-infections (45), and socioeconomic status (45, 68).
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modeled curves showing decrease rates over time, serial measurements 
could further refine the composite CoR. Only individuals with 
symptomatic disease or vaccination are known to stabilize the curve—
infections that are sufficiently mild to lack detection will impact the 
composite CoR model.

Expert recommendations
As most individuals have experienced infection or vaccination, 

and titers are generally high and more stable than with single 
exposures, sampling should be  performed annually or less. 
Serologic evaluation should be conducted more frequently in the 
older adult or immunocompromised than the general population 
(time interval to be defined), depending on any underlying disease 
and/or treatment.

Discussion

A composite CoR would be  helpful particularly for high-risk 
groups, such as solid organ transplant recipients (157), and those in 
occupations with high risk of exposure to SARS-CoV-2. However, 
whether a composite CoR would operate at the individual or 
population level is yet uncertain.

For health policymakers, a composite CoR could be useful for: (1) 
predicting the durability of protection, supporting serosurveys to 
determine the protection levels of individuals and populations; (2) 
aiding decision-making with regard to monitoring vaccination 
efficacy and identifying individuals who would benefit from booster 
vaccinations; (3) evaluating the need for extra protection of vulnerable 
communities in the face of new variants with low cross protection and 
less efficacious vaccines; (4) licensing new vaccines; and (5) developing 
clear immunologic vaccine trial endpoints.

A previous systematic review by Perry and colleagues found 
mixed evidence for a serologic CoP, with the lack of standardization 
between laboratory methodology, differing assay targets and 
sampling time points, and the lack of information on the SARS-
CoV-2 variant confounding interpretation (158). We  have 
highlighted various parameters that should be controlled for in any 
measure of risk, some of which will be challenging to obtain (such 
as host genetics). Comparing different protection studies is also 
difficult as infectious pressure in the observation time period is 
often uncertain as, in reality, community data are incomplete and 
the number of oligosymptomatic infections is unclear. Of course, 
individual responses to infection and vaccination with regards to 
antibody production will make long-term assessment difficult, 
intrinsic risk will vary by age and protection will not be linear (139, 
159). To ensure an acceptable level of accuracy, it will also 
be important to assess the composite CoR in geographic settings 
where extrinsic environmental factors, host genetic backgrounds, 
and circulating variants contribute to the overall effect on the 
immune response. All the variables previously described need to 
be  thought of in the general context of laboratory diagnostics, 
paying attention to sensitivity, specificity, positive/negative 
predictive value, reliability, precision, dilution, linearity, robustness, 
stability, preanalytics, scalability (automation), cost-efficiency, In 
Vitro Diagnostic Regulation certification, and the use of qualified 
standard and control materials. Laboratory quality is essential for 
meaningful follow-up of quantitative antibody levels.

While the development of a composite CoR is a sizeable 
undertaking, steps can be taken to address this need. Studies need to 
adapt to the requirements of new variants, controlling for patient 
settings (vaccination types, earlier infections), and levels of disease 
severity. The emergence of VOCs means that a CoR will undoubtedly 
be variant-specific and the timing of infections and vaccination, how 
variants impact disease severity, antibody kinetics, and assay reactivity, 
must be respected. Frequently revisiting the data would be helpful as 
overall epidemiology changes; since almost all epidemiologic 
population-based studies have ended, background data is increasingly 
difficult to acquire, and this must be reversed. While serologic testing 
has retreated from the political agenda and public interest, we have an 
obligation to broaden the scientific knowledge base, and collect data 
to inform public health authorities, given that COVID-19 still causes 
a significant number of deaths and there is a considerable population 
of those with post-acute sequelae of SARS-CoV-2 infection [long 
COVID; (160)].

A composite CoR will differ depending on the clinical endpoint 
(26). Definitions of symptomatic or severe disease are often not 
consistent across studies (100). Clinical outcomes must be precisely 
defined: an evaluation of the primary endpoints of 19 clinical trials for 
severe COVID-19 revealed the complexity of this task, reporting 12 
different primary endpoints (161). In addition, the ideal timeframe for 
predictive ability is yet to be determined.

While we support the development of a composite CoR and 
serologic testing by high- quality controlled assays, viruses such as 
influenza have significant strain variation and similar disease 
severity, so the importance of a composite CoR for SARS-CoV-2 
should be judged against other pathogens of interest. Assessment 
of cost-effectiveness will likely inform upon the need for a 
composite CoR.
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