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Introduction: COVID-19, being a new type of infectious disease, holds 
significant implications for scientific prevention and control to understand 
its spatiotemporal transmission process. This study examines the diverse 
spatial patterns of COVID-19 within Wuhan by analyzing early case data 
alongside urban infrastructure information.

Methods: Through co-location analysis, we assess both local and global 
spatial risks linked to the epidemic. In addition, we use the Geodetector, 
identifying facilities displaying unique spatial risk characteristics, revealing 
factors contributing to heightened risk.

Results: Our findings unveil a noticeable spatial distribution of COVID-19 in 
the city, notably influenced by road networks and functional zones. Higher risk 
levels are observed in the central city compared to its outskirts. Specific facilities 
such as parking, residence, ATM, bank, entertainment, and hospital consistently 
exhibit connections with COVID-19 case sites. Conversely, facilities like subway 
station, dessert restaurant, and movie theater display a stronger association with 
case sites as distance increases, hinting at their potential as outbreak focal points.

Discussion: Despite our success in containing the recent COVID-19 
outbreak, uncertainties persist regarding its origin and initial spread. Some 
experts caution that with increased human activity, similar outbreaks might 
become more frequent. This research provides a comprehensive analytical 
framework centered on urban facilities, contributing quantitatively to 
understanding their impact on the spatial risks linked with COVID-19 
outbreaks. It enriches our understanding of the interconnectedness between 
urban facility distribution and transportation flow, affirming and refining the 
distance decay law governing infectious disease risks. Furthermore, the study 
offers practical guidance for post-epidemic urban planning, promoting the 
development of safer urban environments resilient to epidemics. It equips 
government bodies with a reliable quantitative analysis method for more 
accurately predicting and assessing infectious disease risks. In conclusion, 
this study furnishes both theoretical and empirical support for tailoring 
distinct strategies to prevent and control COVID-19 epidemics.
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1 Introduction

In late 2019, an unidentified pneumonia outbreak emerged in 
Wuhan, Hubei Province, China, later termed COVID-19 by the 
World Health Organization (WHO). This event captured global 
attention, and in the following months, the COVID-19 outbreak 
spread rapidly worldwide, originating in Wuhan and posing 
significant challenges. By early March 2020, the WHO officially 
designated it as a global pandemic (1). Governments implemented 
preventive measures to curb its spread, but the varied characteristics 
of urban infrastructure and differences in population density created 
challenges for authorities in gathering quantitative evidence of spatial 
patterns and formulating more targeted policies (2). Decision-makers 
were tasked with assessing the impact of these facilities on virus 
transmission risk, determining whether natural and socioeconomic 
factors influenced the severity of the outbreak, and understanding 
their role in urban virus propagation (3–6). Which factors 
significantly contribute to spatial risk discrepancies in outbreaks 
(7–9)?. What factors warrant comprehensive consideration for 
effective epidemic control (10, 11)?. This study aims to pinpoint 
variations in epidemic spread risk linked to various types of urban 
facilities to enhance public health protection. While there have been 
advancements in controlling the overall COVID-19 pandemic, the 
specific origins of this novel infectious disease outbreak and the 
mechanisms driving its rapid initial dissemination remain 
inconclusive (12, 13). Experts suggest that as human activity 
increases, the likelihood of similar infectious disease outbreaks 
persists.Although respiratory diseases share similarities in 
transmission, understanding the precise transmission dynamics of 
each major outbreak, especially in their early unnoticed stages, proves 
vital for early detection and control. Thus, this research zeroes in on 
the spatiotemporal transmission factors during the specific initial 
phase of this epidemic outbreak, carrying significant academic and 
practical importance.

In the strategy of effectively responding to the COVID-19 
epidemic, the integration of multi-source big data and the use of 
geographic information systems (GIS) have become a new trend (14). 
Many scholars have used GIS and spatial analysis methods to study 
various aspects, such as natural environment (3), population factors 
(6), urban facilities (15), and human behavior (16), showing diverse 
features in data and method usage. At the level of natural environment, 
some studies have found that natural factors have a significant impact 
on COVID-19 risk (17, 18). For example, under the same natural 
environmental factors, the number of COVID-19 cases shows a 
certain correlation. Specifically, under the condition of controlling 
population migration, weather conditions with low temperature, small 
diurnal temperature range, and low humidity are more conducive to 
the spread of the epidemic (17). In terms of urban spatial factors, 
existing research has used hotspot analysis to explore COVID-19 
high-risk areas, focusing on possible outbreak points in the city (19). 
Furthermore, various regression models have been used to analyze the 
main factors of COVID-19 epidemic aggregation (20). However, in 
large cities, the factors influencing COVID-19 spatial risks become 
more complex, and a single influencing factor appears inadequate in 
attribution analysis. It is necessary to combine multi-source socio-
economic data and analyze the relationship between COVID-19 
epidemic spatial distribution characteristics and urban geometric 
morphology and population social structure (21). At the individual 

level, previous studies have used big data to obtain people’s 
spatiotemporal behavior and explore the spatial risks of the epidemic. 
For example, using social media data to explore the spreading 
characteristics of the early COVID-19 epidemic in Wuhan, China 
(22); based on individual spatiotemporal behavior and epidemic risk. 
Using multi-level Bayesian models to quantify the probability of a 
person being infected on a train based on their seating position and 
riding time and interval (23). The above scholars have studied the 
development and risk of COVID-19 epidemic in time and space from 
multiple perspectives, and by integrating multi-source data and 
various spatial analysis methods, the research results are more guiding 
and scientific.

However, COVID-19 is more likely to spread within highly 
populated cities, as people stay for different lengths of time in different 
types of facilities (e.g., longer in hotels and shorter in bus stations), 
facilities have different levels of enclosure (e.g., hotels are enclosed 
spaces while bus stations are open spaces), and people have different 
protective measures in different city facilities (e.g., removing masks to 
eat in restaurants but wearing masks in crowded subway stations). 
This leads to varying levels of risk for people to be  infected with 
coronavirus 2019-nCoV when engaging in activities in different types 
of facilities in the city. However, there is limited research quantifying 
the risk of infection from these facilities. In fact, there are many 
reasons why people may become infected in these facilities and places. 
It is necessary to know the distance from these facilities that can 
greatly reduce the risk of infection, and this is a prerequisite for 
exploring the factors that contribute to the risk of infection from 
different facilities in the context of COVID-19. Although COVID-19 
has been ongoing for 3 years, current research results cannot well 
explain the following three issues: (1) what are the differences in 
COVID-19 epidemic risk among different city facilities, (2) what is the 
maximum distance that these facilities can make people infected with 
COVID-19, and (3) whether there are other factors that work together 
with some facilities to explain the spatial risk patterns of 
COVID-19 infection.

This research use the multiscale co-location method, exploring 
the spatial patterns between the early COVID-19 epidemic in Wuhan, 
Hubei Province, China, and urban facilities, calculates the epidemic 
risk distance of different facilities, and then quantitatively analyzes and 
tests the coordination of key facilities, discovering the hidden features 
of the COVID-19 epidemic in spatial diffusion in Wuhan. The 
research results have two practical implications: (1) they can guide 
relevant infectious disease departments to pay attention to facilities 
and factors that pose high transmission risks in cities, optimize the 
allocation of infectious disease prevention and control resources; (2) 
in the post-epidemic era, when similar infectious diseases occur, 
different attitudes can be taken towards the risks of different types of 
facilities in the city to avoid large-scale indiscriminate prevention and 
control. In terms of theoretical methods, this study uses a global scale 
coordination location analysis to screen facilities with more obvious 
spatial coordination patterns for in-depth discussion, and combines 
other natural and socio-economic factors to analyze the interaction of 
facility types with unknown coordination influence to discover the 
spatial risk heterogeneity of COVID-19 caused by multiple factors. 
This study is divided into three parts: the study area, study data, and 
research methods will be introduced in Part 2; the research results will 
be discussed in Part 3; and the research conclusions will be discussed 
in Part 4.
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2 Materials and methods

2.1 Study area

Wuhan is located in central China, at the confluence of the 
Yangtze River and the Han River. Wuhan has a subtropical monsoon 
climate, with hot and rainy summers and mild and humid winters. 
Wuhan is the capital of Hubei Province and the city with the largest 
population in Hubei Province. As Wuhan is located in the Jianghan 
Plain, it is the largest comprehensive transportation hub for river, 
railway, and air transportation in the inland regions of China. The 
high-speed railway network covering almost half of China passes 
through Wuhan, and its airport provides direct flights to the five 
continents of the world. Therefore, the flow of people and goods is 
very frequent, leading to the rapid spread of COVID-19 to China and 
the world. The administrative divisions of Wuhan include the central 
area and the suburbs. The central area includes Jiang’an District, 
Jianghan District, Qiaokou District, Hanyang District, Wuchang 
District, Qingshan District, and Hongshan District. The suburbs 
include Dongxihu District, Hannan District, Caidian District, Jiangxia 
District, Huangpi District, and Xinzhou District (Figure 1).

2.2 Data sources

2.2.1 COVID-19 cases data
Through our efforts, we have obtained COVID-19 case data used 

in the research, which comes from confirmed cases by the Chinese 
Center for Disease Control and Prevention (CDC). This database not 
only records the diagnosis time of cases, but also conducts 
retrospective investigations on the onset date of cases, which is more 
important for studying the temporal and spatial process of the disease. 
Therefore, when selecting cases, we all use the onset time, which is 
relatively more accurate in reflecting the temporal sequence of the 
disease compared to the newly diagnosed cases announced daily by 
the Wuhan municipal government. This data has been de-identified 

and obtained permission from the relevant responsible units. The 
onset date of the case data for this study starts from the onset date of 
the first confirmed case in China, which was at 0:00 on December 2, 
2019, until the day before Wuhan implemented the close policy, which 
was at 24:00 on January 22, 2020. This data set includes 8,929 case 
data, and the main fields included in each case include the onset date, 
diagnosis time, reporting unit, home address, and population 
classification, which provide a good foundation for our more accurate 
spatial analysis.

2.2.2 Urban facility data
The facility POI points used in this study are all from the 

download platform opened by Gaode (https://lbs.amap.com/), with 
main fields including facility name, major category, subcategory, 
latitude and longitude coordinates, and administrative region. Recent 
studies have shown a correlation between the spatial distribution of 
COVID-19 cases and facility distribution. Therefore, this study 
selected 27 facilities based on factors that may contribute to the 
occurrence of clustered COVID-19 outbreaks, and analyzed 
them separately.

2.2.3 Remote sensing datasets
The remote sensing data used in this study are divided into four 

types: land surface temperature (LST), Normalized Difference 
Vegetation Index (NDVI), Normalized Difference Building Index 
(NDBI), and Night Light Index (NLI). This study selected images 
from January 1, 2020 to January 22, 2020 for normalization, 
mosaicking, and clipping, resulting in normalized image data for 
Wuhan from January 1, 2020 to January 22, 2020. All images were 
directly called and processed in Google Earth Engine (Figure 2). 
Google Earth Engine is a cloud-based remote sensing image 
processing platform developed by Google that can perform online 
processing and analysis of large-scale remote sensing images. The 
programming language used is JavaScript, and by referring to the 
Google Earth Engine help, code examples can be  modified for 
execution, and the final results are presented in the form of output 

FIGURE 1

Study area.
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images. The specific image products and parameters for each type are 
shown in Table 1.

Land Surface Temperature (LST) refers to the temperature of the 
Earth’s surface as measured from a remote sensing perspective, 
typically using satellite-based sensors. It represents the heat energy 
emitted by the land surface, including natural features like soil, 
vegetation, and water bodies, as well as human-made structures.

Normalized Difference Vegetation Index (NDVI) and Normalized 
Difference Building Index (NDBI) is remote sensing and image 
analysis techniques. They are derived from the analysis of multispectral 
or hyperspectral data captured by sensors on satellite platforms or 
aircraft. NDVI is a widely used remote sensing index that quantifies 
the presence and health of vegetation in a given area. It is an essential 

tool in various fields such as agriculture, forestry, ecology, and 
environmental science. It enables the monitoring of vegetation growth, 
health, and distribution over time. Normalized Difference Building 
Index (NDBI) focuses on quantifying the spectral differences between 
urban impervious surfaces (like buildings and roads) and natural 
surfaces (such as vegetation or soil) in the imagery. By comparing the 
near-infrared (NIR) and shortwave infrared (SWIR) bands of the 
spectrum, the NDBI highlights areas with high reflectance in the 
SWIR band and low reflectance in the NIR band, which are typical 
characteristics of man-made structures like buildings and roads.

Night Light Index (NLI), is an index published by NASA, which 
calculates the NLI that characterizes changes in human activities by 
comparing images of nighttime lights projected onto the Earth’s 

FIGURE 2

Remote sensing image map of Wuhan from Jan 1th to Jan 22nd, 2020 (averaging). (A) Land surface temperature; (B) NDVI; (C) NDBI; (D) Night light.
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surface from space with images of standard day/night patterns and 
analyzing the locations where changes occur. The measurement and 
analysis of night lights have become essential tools for various 
applications, including urban planning, environmental monitoring, 
economic analysis, and disaster response.

2.2.4 Other auxiliary datasets
All the administrative boundaries at the scale of 1:4,000,000 maps 

were obtained from National Earth System Science Data Center,1 
which we used for the study.

2.3 Methods

2.3.1 Co-location analysis methods
The co-location pattern refers to the spatial distribution pattern 

of an event at different scales, used for the analysis of clustering 
patterns of point sets in space (24). The co-location pattern analysis 
method will use the Co-location Quotient (CLQ), which was 
proposed by Timothy (25). There are two key indicators in this 
method, the Global Co-location Quotient (GCLQ) and the Local 
Co-location Quotient (LCLQ). The GCLQ result can reflect the 
degree to which a feature as a whole affects another feature and can 
quantify spatial synergies. The LCLQ is an improvement based on the 
GCLQ, which is used to measure the local scale co-location pattern 
between two types of point features, explaining the spatial variability 
between one feature and each feature of another feature class 
(Figure 3). In recent years, the development of big data technology 
has improved the efficiency of obtaining massive amounts of data 
(26). Point of interest (POI) data is increasingly used for urban 
analysis due to its low cost and high temporal resolution (27–31). 
Many POI data use categorical variables instead of interval and ratio 
variables, requiring specific analytical methods to measure the spatial 
correlation and heterogeneity of categorical point data (32). 
Compared with other methods of measuring spatial correlation, such 
as Moran’s I for interval and ratio data, the shared co-location pattern 
among multiple categories is particularly suitable for urban analysis. 
Leslie & Kronenfeld developed the GCLQ (25), and Cromley et al. 
developed the LCLQ by incorporating geographically weighted 
methods into the GCLQ and optimizing it (33). CLQ is now widely 
used in urban research, such as job-residence relationships within 
cities (34), industrial layout characteristics of urban clusters (35), the 
impact of industrial location patterns on cities (36), and spatial 
co-location patterns of urban crime (37). The Formula (1) for GCLQ 
is as follows:

1 http://www.geodata.cn/
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LCLQA Bi→  represents the extent to which feature point B is 
influenced by point Ai; In Formula (2-1), NA Bi→  represents the 
weighted average of point B near Ai; fij  represents whether j  belongs 
to feature point B (1 for yes, 0 for no); wij represents the weight of j , 
indicating its importance to Ai; dijrepresents the distance between Ai 
and j ; dibrepresents the bandwidth distance near Ai. Similarly, when 
the value of LCLQA Bi→  is greater than 1, it indicates that feature point 
Ai has a spatial co-location pattern with feature B. If the value of 
LCLQA Bi→  is less than 1, it indicates that feature point Ai has a spatial 
segregation pattern with feature B. If the value of LCLQA Bi→  is equal 
to 1, it indicates that feature point Ai and feature B have no spatial 
co-location pattern and are in a state of random distribution. The 
Formula (2-2) is a Gaussian density function, which produces 
differentiated effects on each adjacent element B of Ai with specified 

TABLE 1 Remote sensing datasets.

Image Type Product name Band name Spatial resolution

Land surface temperature MYD11A1.006 Aqua Land Surface Temperature and Emissivity Daily Global 1 km LST_Day_1 km 1 km

NDVI MOD13Q1.006 Terra Vegetation Indices 16-Day Global 250 m NDVI 250 m

NDBI USGS Landsat 8 Collection 1 Tier 1 and Real-Time data OLI Raw Scenes B4, B5 30 m

Night light VIIRS Nighttime Day/Night Band Composites Version 1 avg_rad 500 m
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weights, so that the elements B near Ai can be marked with bandwidth 
instead of being limited to the influence of spatial distance.

In this study, COVID-19 confirmed cases are used as element 
points A, and various types of facility points are used as element points 
B. This study attempts to use GCLQ and LCLQ values to analyze the 
spatial correlation features between Wuhan’s COVID-19 confirmed 
cases and different types of facilities, providing a new perspective for 
studying the diffusion process and influencing factors of the 
COVID-19 epidemic within the city. Currently, this method can 
be calculated using ArcGIS Pro 2.8. In the calculation process, by 
setting different bandwidth distances, the co-location patterns at 
different spatial levels can be measured and observed.

2.3.2 COVID-19 risk influencing factor analysis 
methods

For factors that may have interactive effects, this study used 
Geodetector for analysis. Geodetector were proposed by Jingfeng 
Wang in 2010 (38). Geodetector can segment a set of spatial data 
according to its scale to form spatial heterogeneity features, and test 
the interaction of multiple variables beyond the correlation of 
conventional independent variables. Spatial stratified heterogeneity 
uses the core measurement indicator q value in Geodetector for 
statistical testing. There are four spatial heterogeneity testing 
indicators in Geodetector, namely, interaction detector, risk detector, 
factor detector, and risk detector (39). The core idea is to make a 
hypothesis for a set of dependent variables: if a independent variable 
(must be discrete) has a significant impact on this dependent variable 
(which can be continuous or discrete), then the spatial distribution of 
the independent variable and dependent variable should be similar. 
Geodetector are good at analyzing categorical data, but for ordinal, 
ratio, or interval data, appropriate discretization is required before 
using Geodetector for statistical analysis. Geodetector default to 
comparing data one by one. If multiple independent variables are 
tested with the dependent variable at the same time, the independent 
variables need to be simply connected to achieve the purpose of jointly 
testing the dependent variable with multiple independent variables 
and other independent variables, but the independent variable data 
must be  discrete. Therefore, Geodetector can detect various 
combinations of numerical data and qualitative data, which is a major 

advantage of Geodetector (40). Compared with traditional correlation 
analysis, the biggest advantage of Geodetector is to detect the 
interaction between two factors and the dependent variable, and the 
independent variable factors can be either separate or combined. In 
traditional methods, the general way to identify the interaction is to 
multiply two groups of independent variables in regression analysis 
and conduct statistical testing to observe their significance indicators. 
However, the interaction between many factors may not necessarily 
be a multiplication relationship. Geodetector precisely make up for 
this shortcoming. It will traverse all independent variables for double 
combination, calculate and compare the q values of each single factor 
and the q value after the two factors are superimposed, and compare 
the independent q value with the interaction q  value to determine 
whether there is an interaction between the two factors. Based on the 
results of independent and interaction, the strength, direction, 
linearity or non-linearity of the interaction can be judged, and all 
relationships can be output and visualized. The core Formula (3) of 
the q value test model is as follows:
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In the Formula (3), h represents the discretization or stratification 
(Strata) of the variable Y or factor X. The numerical labels after 
stratification only represent inter-group differences, and there is no 
difference in weight. Nh and N  are the numbers of units in layer h and 
the whole region, respectively. σh

2 and σ 2 are the variances of the 
stratified Y values in layer h and the whole region, respectively. SSW  
in Formula (3-1) and SST  in Formula (3-2) are the sum of within-
group variances and the total variance of the entire region, respectively. 
The value range of q is [0,1]. The closer q is to 1, the more obvious the 

FIGURE 3

Schematic diagram of the co-location pattern.
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spatial heterogeneity of Y is, and the stronger the explanatory power 
of the independent variable X on attribute Y. If the value of q is equal 
to 1, it indicates that the factor X completely controls the spatial 
distribution of Y. If the value of q  is 0, it means that there is no 
relationship between the factor X and Y. Therefore, the value of q 
represents to what extent the independent variable X explains the 
dependent variable Y.

This study will conduct an attribution analysis of the COVID-19 
pandemic through multiple factors, explore the main influencing 
mechanisms, and use spatial stratification heterogeneity testing 
methods to verify the results and quantify the specific modes and 
degrees of differences. In terms of the correlation between the 
COVID-19 pandemic and socio-economic attributes, this article will 
fit continuous independent variables such as linear correlation and 
curve estimation to identify the main socio-economic influencing 
factors of the pandemic. For exploring the interaction effects of 
multiple variables, the q statistic will be  used to stratify the 
independent variables according to certain rules, traverse all possible 
interaction possibilities, and find the composite influencing factors.

3 Result

3.1 COVID-19 spatial pattern analysis

Figure  4 shows the spatial location of COVID-19 cases. The 
epidemic’s spatial risk distribution can be depicted through hotspots 
formed by the clustering of case points, reflecting the concentration 
of clustered outbreaks and the level of epidemic risk. Analyzing the 
spatial pattern of these hotspots can be  achieved through kernel 
density analysis, which categorizes the COVID-19 case clustering 
distribution into five levels. In Wuhan city, the overall risk distribution 
of the epidemic appears continuous and clustered in the central urban 
area, indicating a higher risk level. Conversely, the suburbs display 
scattered and smaller risk zones with lower risk levels. Moreover, the 
central urban area on the west bank of the Yangtze River exhibits a 
higher risk level and larger scale compared to its counterpart on the 
east bank. Specifically, due to Jianghan District’s high population 
density and its status as the outbreak center, residents face an 
extremely high risk of infection, making it the area with the highest 
spatial risk in Wuhan. The southern part of Jiang’an District also faces 
heightened risk due to its proximity to Jianghan District and its 
position as the administrative district with the largest population in 
Wuhan. While other central urban areas exhibit clustered case 
distributions, far suburban counties also display risk zones within 
towns with population concentrations, albeit with weaker spatial 
continuity and correlation. The spatial distribution pattern of epidemic 
risk is influenced not only by the population size and density but also 
by the distance to the outbreak center and spatial adjacency. In 
Wuhan, the Yangtze River, as a natural feature, runs through the 
urban, causing spatial variations in transportation accessibility, which 
impacts the spread of the epidemic.

To explore the global correlation of COVID-19 in Wuhan and its 
fine-scale spatial heterogeneity, this study will conduct spatial 
correlation tests on epidemic risk areas in the city. It aims to analyze 
the spatial distribution patterns of epidemic hotspots and risk based 
on distance and adjacency at a local scale. The global-scale spatial 
correlation test employs Moran’s I spatial autocorrelation index. The 

obtained Moran’s I index is 0.543538, with a z-score of 11.700299. 
Passing the global test indicates a high degree of spatial correlation 
between streets with COVID-19 cases and their spatial distance and 
adjacency, setting the stage for further exploration of hotspots and 
clustering at a finer scale.

3.2 COVID-19 co-location analysis

3.2.1 GCLQ
The use of spatio-temporal scan statistics and spatial 

neighborhood methods can only describe the overall distribution 
characteristics of spatial epidemic risk in cities from a global and 
large-scale perspective of epidemic risk and prevention and control. 
In fact, the city is a space with a very complex structure and various 
facilities, which can generate great spatial heterogeneity at a very small 
scale. Therefore, this article takes various facilities in the city as 
important variables that affect the spatial heterogeneity of epidemic 
risk and conducts a refined risk characteristic study. Based on the 
co-location pattern analysis method, this article analyzes the synergy 
of epidemic spatial risk for 27 major urban facilities in Wuhan one by 
one, summarizes and quantifies the impact of different facilities on 
epidemic spatial risk. In the global synergy location analysis, the 
results of the Wuhan City 27 urban facilities’ GCLQ for early 
COVID-19 cases in Wuhan are shown in Table 2.

Using the co-location analysis tool in ArcGIS Pro and after 
multiple experiments, the bandwidth was ultimately set to 500 meters, 
1,000 meters, 1,500 meters, and 2000 meters for scanning. Monte 
Carlo simulation was used for 1,000 iterations to conduct significance 
tests and obtain the results of the GCLQ (Table 2). Overall, as the 
distance of the bandwidth increased, the influence of Wuhan’s urban 
facilities and COVID-19 cases became more and more significant. 
However, the spatial coordination represented by the GCLQ values of 
different bandwidth distances was not entirely the same. Based on the 
results of the GCLQ from Table 2, we categorize the spatial risk of 
facilities into four co-location types. The first type of co-location 
pattern facilities in Table 2 is summarized as a sustained collaborative 
type, such as parking lots, residential areas, ATMs, banks, 
entertainment venues, and hospitals. The specific feature is that the 
GCLQ values are all greater than 1, indicating that these facilities have 
a significant collaborative impact on COVID-19 cases, regardless of 
short or long distances. The second type of co-location pattern 
facilities in Table 2 is summarized as a long-distance collaborative 
type, such as subway stations, dessert restaurants, and movie theaters. 
The specific feature is that they are not significant in short distances, 
but the value of GCLQ becomes significant and greater than 1 as the 
distance increases, indicating that the impact of these facilities on 
COVID-19 cases gradually increases over a longer distance. The third 
type of co-location pattern facilities in Table 2 is summarized as a 
collaborative trend type, such as shopping centers, convenience stores, 
enterprises, long-distance bus stations, train stations, Chinese 
restaurants, foreign restaurants, fast food restaurants, 
accommodations, life services, and libraries/cultural centers and 
scenic spots. The specific feature is that the GCLQ values are less than 
1 in short distances, showing an isolation pattern. However, as the 
distance increases, the GCLQ value gradually increases, indicating 
that the impact of these facilities on COVID-19 cases is initially 
dispersed in short distances, but the dispersed impact weakens and 
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the trend of collaborative impact strengthens as the distance increases. 
The fourth type of co-location pattern facilities in Table  2 is 
summarized as a non-collaborative type, such as bus stops, toilet, 
primary and secondary schools, and colleges. The specific feature is 
that the GCLQ values are all less than 1, showing an isolation pattern. 
As the distance increases, the collaborative impact of these facilities 
on COVID-19 cases does not increase significantly. The fifth type of 
co-location pattern facilities in Table 2 is summarized as an unknown 
risk type, such as farmers’ markets and clinics. The specific feature is 
that the collaborative impact of these facilities on COVID-19 cases is 
unknown because their GCLQ values were not significant in multiple 
bandwidth calculations. Based on the above co-location pattern 
characteristics and the display meaning represented by GCLQ, the risk 
characteristics were summarized and shown in Table 3.

Due to the existence of collaborative features or collaborative 
trends in the space of sustained collaborative, long-distance 
collaborative, and collaborative trend types, in other words, there is a 
risk of clustered infections in activities carried out in these types of 
places or in scenarios that involve them. Therefore, there is a certain 
level of spatial risk, and higher-level health monitoring should 

be conducted for people and close contacts involved in activities in 
facilities of this type. Non-collaborative types do not exhibit 
collaborative features at short or long distances, nor do they exhibit 
collaborative trends at multiple distances. Therefore, there is no 
apparent spatial risk for activities carried out in places containing this 
type, and residents participating in activities in facilities of this type 
are advised to implement lower-level prevention and control measures. 
Unknown risk types do not exhibit significant isotopic patterns at 
multiple distance scales, and the epidemic spatial risk of activities 
carried out in facilities of this type cannot be simply explained by 
distance and may be influenced by other factors, resulting in other 
unknown risks. The uncertainty of such risks is extremely high, so this 
article determines the spatial risk level of this type as a high-level risk.

According to the results of GCLQ, the multi-distance isomorphic 
patterns are all shown to be clustered and validated facilities (Parking, 
Residential, ATM, Bank, Entertainment, Hospital).

3.2.2 LCLQ
Using the LCLQ for spatial visualization and analysis of results, 

each facility is discussed one by one, analyzing its co-location with 

FIGURE 4

COVID-19 cases in Wuhan from Jan 1th to Jan 22nd, 2020.
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COVID-19 case points in spatial view, and summarizing its facility risk 
characteristics. When the LCLQ is greater than 1, the larger its value, 
the more significant the aggregation pattern presented. Conversely, 
when the LCLQ is less than 1, the smaller its value, the more obvious 
the “Isolated” co-location pattern presented. Meanwhile, when the 
value of p tends to 0, there is a high confidence level for the co-location 

pattern presented by LCLQ. Based on the LCLQ values and value of ps, 
we categorize co-location patterns into the following four cases: The 
LCLQ value is greater than 1 and the p value is less than or equal to 
0.05, indicating a significant “Colocated” co-location pattern. The 
LCLQ value is greater than 1 and the p value is less than or equal to 
0.05, indicating a not-significant “Colocated” co-location pattern. The 

TABLE 2 GCLQ results.

Category Name GCLQ500  m GCLQ1000m GCLQ1500  m GCLQ2000m

Work Enterprise 0.75 0.83 0.87 0.90

Shopping

Farmers’ market 1.04* 1.00* 0.98* 0.97

Shopping mall 0.86 0.93 1.01* 1.02*

Convenience 1.02* 0.96 0.93 0.96

Transportation

Subway station 1.15* 1.16 1.11 1.16

Bus stop 0.75 0.73 0.72 0.73

Parking 1.02 1.02 1.03 1.03

Long-distance bus 

station
0.53 0.57 0.63 0.65

Railway station 0.37 0.69 0.77 0.94*

Dining

Chinese restaurant 0.94 0.96 0.98 0.99

Foreign restaurant 0.75 0.87 0.97 1.01*

Fast food restaurant 0.87 0.93 0.97 0.99*

Dessert restaurant 0.95 1.03* 1.07 1.10

Residence

Accommodation 0.79 0.84 0.93 0.95

Residential building 1.15 1.08 1.05 1.05

Toilet 0.77 0.81 0.82 0.80

Living

Life service 0.98 0.99 0.99* 1.00*

ATM 1.05 1.05 1.05 1.06

Bank 1.13 1.09 1.09 1.10

culture facilities

schools 0.99* 0.89 0.93 0.89

Library and cultural 

center
0.95 0.98* 1.00* 1.05

University 0.62 0.60 0.65 0.67

entertainment

Scenic spots 0.80 0.82 0.84 0.88

Entertainment 1.05 1.05 1.05 1.06

Movie theater 0.98 1.01* 1.02 1.02

Medical
Hospital 1.11 1.14 1.17 1.15

Clinic 1.00* 1.00* 0.97* 0.96

* represents a value of p greater than 0.05 and did not pass the significance test, while the others passed the significance test.

TABLE 3 Co-location patterns between facility types and COVID-19 risk.

Type of co-
location mode

Short-range co-
location mode

Long-range co-
location mode

Whether there is a 
co-location trend

Spatial risk level

Continuous collaborative Collaboration Collaboration Yes +++

Remote collaboration Insignificant Collaboration Yes ++

Collaboration trend Insignificant Insignificant Yes +

Non-synergistic Isolation Isolation No −

Unknown risk Insignificant Insignificant No +++

“+” represents the risk level, and the more of them, the greater the risk.
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LCLQ value is greater than 1 and the p value is less than or equal to 
0.05, indicating a significant “Isolated” co-location pattern. The LCLQ 
value is greater than 1 and the p value is less than or equal to 0.05, 
indicating a not-significant “Isolated” co-location pattern. We show the 
LCLQs of the facility sites on the map and observe the co-location 
patterns of each facility type for the COVID-19 case sites (Figure 5).

Based on the spatial distribution characteristics of the LCLQ 
facilities of the six types of facilities in Figure 5, overall, facilities with 
a synergistic spatial pattern show a distribution pattern that extends 
from the outbreak center to the periphery, with strong central synergy 
and strong peripheral isolation. The Jianghan and Jiang’an districts 
on the west bank of the Yangtze River have the highest proportion of 
urban facilities with synergistic street patterns, and many streets in 
the Wuchang district on the east bank of the Yangtze River also show 
a large number of synergistic urban facilities. Among the distribution 
characteristics of the six types of facilities’ spatial patterns, there are 
also some special phenomena. Specifically, parking lots have a large 
number of distribution in the north–south direction, but in the 
complex urban land-use areas of Jianghan District, they have a 
distribution pattern of isolation. Similarly, banks have a larger 
number of distribution in the city center with an isolation pattern, 
often located near residential and office buildings.

3.3 COVID-19 risk influencing factor 
analysis

The risk of the spread and diffusion of the epidemic in space is not 
only related to spatial adjacency and distance. Since the city is a space 
where human resources and facilities are highly concentrated, natural 
and human environments can change greatly over short distances. 
Therefore, the factors behind the risk of epidemic transmission in the 
city need to consider the influence of the city’s natural and socio-
economic factors, especially the unknown facility risks that cannot 
be explained by spatial autocorrelation patterns. Attribution needs to 
be  combined with other factors. However, these factors may not 
necessarily independently affect the spatiotemporal risk characteristics 
of the epidemic and may produce interaction patterns of influence. 
Based on the attribution analysis method mentioned, this study 
comprehensively analyzes the use of the factor detector and interaction 
detector in the geographical detector.

In this study, the street scale is used as the geographical 
detection unit, and the road network density, subway stations, 
hospitals and clinics, and the number of farmers’ markets are 
counted as independent variables of social environmental elements. 
At the same time, surface temperature, normalized difference 
vegetation index (NDVI), normalized difference building index 
(NDBI), and nighttime light index are used as independent 
variables of natural environmental elements to test the spatial risk 
differentiation characteristics of urban factors. This study takes the 
total number of epidemic cases in each street of Wuhan in the early 
stage of the epidemic from January 1 to January 22, 2020, as the 
dependent variable Y, and the above natural and socio-economic 
elements as well as clustering elements as independent variables X, 
and conducts spatial differentiation detection in the geographical 
detector. According to the calculation rules of the geographical 
detector, this study needs to first discretize the independent 

variables, and the grading method uses the mean and standard 
deviation grading method, and the threshold values and calculation 
methods of each category are shown in Table 4.

Discretize the independent variables according to Table 4 and use 
Geodetector to explore the spatial risk factors of COVID-19. The q 
value, an important indicator of Geodetector, is one of the important 
results of spatial heterogeneity, as shown in Table 5.

According to the q-values in Table 5, it can be seen that among all 
the aforementioned urban factors, the number of farmers’ markets, 
hospitals, and clinics have a certain spatial differentiation in their 
impact on COVID-19 cases. In other words, the influence of facilities 
on the spatial transmission risk of COVID-19 varies at different levels 
in different environmental combinations. To further explore the 
common factors behind the risk differentiation of the epidemic, the 
interaction detector in the geographic detector is used for quantitative 
interpretation. In the interaction detector, when q X X1 2�� � is less 
than the minimum value of q(X1) and q(X2), the explanatory power 
of X1 and X2 on Y exhibits a nonlinear decreasing relationship. When 
q X X1 2�� � is greater than the minimum value of q(X1) and q(X2), 
but less than the maximum value of the two, the explanatory power of 
X1 and X2 on Y exhibits a single-factor nonlinear decreasing 
relationship. When q X X1 2�� � is greater than the maximum value 
of q(X1) and q(X2), the explanatory power of X1 and X2 on Y exhibits 
a two-factor enhancement relationship. When q X X1 2�� � equals the 
sum of q(X1) and q(X2), the explanatory power of X1 and X2 on Y are 
independent of each other. When q X X1 2�� � is greater than the sum 
of q(X1) and q(X2), the explanatory power of X1 and X2 on Y exhibits 
a nonlinear enhancement relationship.The results of the interaction 
detector in this study are shown in Figure 6.

The lower left part of Figure 6 shows the results of the interaction 
detection between two factors, while the upper right part summarizes 
the interaction pattern based on the comparison between the 
interaction detection results and the detection results. The results 
indicate that all interaction results show enhancement, among which 
q X X q X q X and q X X q X q X1 4 0 7 1 4 4 9 0 7 4 9�� � � � � � � � � �� � � � � � � � �. . ,  
indicating that the spatial risk of clinics for COVID-19 is also 
influenced by the density of road networks and the functional dense 
areas with more night lights in cities, possibly because people tend to 
choose this type of clinics for medical treatment if they are located in 
dense urban areas or areas with higher road network density, rather 
than choosing medical facilities that are closer in straight-line 
distance. In addition, q X X q X q X1 5 0 65 1 5�� � � � � � � � �. , 
indicating that the spatial risk of COVID-19 in agricultural markets 
is also influenced by the density of road networks. Taking the South 
China Seafood Market as an example, the market is located in the 
central area of Jianghan District in Wuhan City, and is also located 
near the Second Ring Road of Wuhan City, which directly connects 
both sides of the Yangtze River (Erqi Yangtze River Bridge), so the 
frequent movement of people in this area contributes to the rapid 
spatial transmission of the epidemic, forming an outbreak center.

The above results explain the unknown spatial risks of epidemic 
transmission in clinics and agricultural markets in Tables 4, 5 from a 
multi-factor perspective. From the final results, there are still 
differences in spatial risks, and the spatial risk of an establishment for 
people’s epidemic is not only influenced by distance but also requires 
comprehensive judgment and detection based on urban social and 
natural environmental factors.
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FIGURE 5

Spatial distribution about urban facilities of local Co-location quotient (LCLQ).
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4 Discussion

4.1 Key findings

This study concentrates on examining the epidemic case points in 
Wuhan city in conjunction with urban facilities for homotopic pattern 

analysis. We explore the intricate spatial structure of the city, analyzing 
the relationships among spatial distances and the distribution of 
epidemic cases. We explore the spatial correlation of epidemic risk, 
delving deeper into attributions from the perspective of urban 
facilities, as well as urban natural and humanistic elements. Our goal 
is to uncover the diverse characteristics defining the spatial 
propagation risk of the epidemic across various elements, elucidating 
the interplay between urban elements and cases. The primary findings 
of our research are outlined below:

COVID-19 cases show a distinct spatial distribution pattern, 
spreading from the city center to the periphery. This propagation is 
influenced by road networks and functional zones, contributing to 
the varied risk distribution observed across the city. Notably, the 
central city holds a higher risk level compared to peripheral areas. 
The Yangtze River acts as a natural barrier, isolating social and 
economic activities on each side and influencing the spatial risk 
distribution of the epidemic. Additionally, areas with dense road 
networks and functional zones exhibiting high nighttime light index 
correlate with higher case numbers, aligning with findings from 
previous research. (41) similarly observed that early in the epidemic, 
confirmed cases were concentrated in Wuhan’s city center before 
spreading outward.

Although residential addresses sometimes do not coincide with 
where people become infected with COVID-19, it has been shown 
that the proximity between these locations remained relatively close 
within the routines of urban inhabitants (42). Data pertaining to the 
spatial correlation between infection origins and affected cases 
frequently lacks comprehensiveness. Spatial data beyond residential 
addresses is notably less accessible. In instances of an outbreak 
occurring within an urban facility proximal to residents’ habitats, 
residential addresses emerge as the most pertinent information. In 
order to explore more comprehensively the spatial relationship 
between sources of infection and cases of infection, we use GCLQ 
and LCLQ analysis revealed a sustained relationship between 
certain facilities—like parking, residential, ATM, bank, 
entertainment, and hospital—and COVID-19 case sites. Conversely, 
the relationship between facilities such as subway station, dessert 
restaurant, and movie theater and case sites grew as the distance 
increased. This indicates that these facilities could be significant 
locations contributing to the concentration and spread of outbreaks. 
Therefore, these findings imply their potential role as crucial 
transmission sites.

Geodetector analysis uncovered a significant revelation: the 
outbreak risk associated with facilities like clinics and farmers’ markets 
wasn’t solely linked to distance but interacted significantly with 
various socioeconomic factors (Figure 7). Specifically, the spatial risk 
of COVID-19 stemming from these facilities wasn’t solely dependent 
on proximity but demonstrated complex interactions with urban road 
density and other factors, as scrutinized through Geodetector analysis. 
For instance, individuals tended to visit clinics situated in densely 
populated areas or areas with higher road network density, thereby 
escalating the risk of infection. This study emphasizes how clinics and 
farmers’ market distinctly impact people’s spatial outbreak risks within 
the urban social and physical environment. For instance, farmers’ 
markets, characterized by high foot traffic and confined spaces, pose 
a higher risk of outbreak transmission compared to clinics. This 
insight lays the groundwork for tailored and nuanced strategies in 
epidemic prevention and control.

TABLE 4 Geodetector variable grading methods.

Classification Methods Grading annotation

X ≤ −1.5 std. Dev 1

-1.5 std. Dev ≤ X ≤ −0.5 std. Dev 2

-0.5 std. Dev ≤ X ≤ 0.5 std. Dev 3

0.5 std. Dev ≤ X ≤ 1.5 std. Dev 4

X ≥ -1.5 std. Dev 5

The numbers in the classification label only represent the category, not the weight or level.

TABLE 5 Geodetector factor detection results.

Independent 
variable

Urban factors q value p value

X1 Road density 0.321982 0.000

X2 Subway availability 0.275692 0.000

X3 Number of hospitals 0.402453 0.000

X4 Number of clinics 0.344355 0.000

X5 Farmers’ market 0.426164 0.000

X6 Land surface temperature 0.028092 0.403309

X7 NDVI 0.07778 0.022947

X8 NDBI 0.0634 0.059879

X9 Night lights 0.299839 0.000

p value of less than 0.05 indicates significant at the 95% level, and p value less than 0.01 
indicates significant at the 99% level.

FIGURE 6

Geodetector Interaction Detection Results.  
Bi stands for bilinear enhancement, Non stands for non-linear 
enhancement.
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4.2 Research contributions

In terms of academic contributions, this study employs a 
multifaceted analysis framework centered on urban facilities to 
quantitatively examine their impact on the spatial risk of COVID-19 
outbreaks, thereby enhancing the methodology used in assessing 
infectious disease risks. The research explores the interconnected 
mechanism of urban facilities distribution and transportation flow, 
deepening our understanding of how infectious diseases spread in 
complex urban settings. Furthermore, the study validates and refines 
the distance decay law governing infectious disease risk, laying the 
groundwork for refining theoretical models.

From a practical standpoint, this research offers both theoretical 
and empirical support for crafting differentiated and scientifically 
informed COVID-19 epidemic prevention and control strategies. It 
extends guidance for urban planning and development in the post-
epidemic era, fostering the creation of safer, epidemic-resistant urban 
environments. Moreover, it equips government departments with a 
reliable quantitative analysis method for more accurate prediction and 
assessment of infectious disease risks. In this study, the early stage of 
the first outbreak in Wuhan (January 1 to January 22, 2020) is used as 
a case study for spatial risk analysis, mainly because people are in a 
state when they are free to move around completely unaffected by 
outbreak prevention and control measures, and the results of the study 
are a more realistic restoration of the COVID-19 transmission process 
with fewer control variables. The context in which this study was 
conducted may not occur again in the future, but the results can 
be  used as a scientific reference for the rapid spread of similar 

infectious diseases in large cities in the future, instead of simply 
closing down the entire city to minimize losses.

5 Conclusion

This study examines the spatial distribution of COVID-19 risk 
using a research framework based on the spatial co-location model. 
This model facilitates the implementation of timely hierarchical and 
segmented control measures to mitigate the risk of infectious disease 
transmission, even in the absence of a comprehensive understanding 
of the transmission pattern. Additionally, it aims to forestall 
unwarranted public panic that might otherwise compel the 
government to enforce excessively restrictive measures. The analytical 
outcomes and research insights presented herein can serve as valuable 
references for decision-making authorities, aiding in the formulation 
of targeted prevention and control strategies. For facilities with a high 
risk of infection but lacking statistical confidence in probability 
results, we use geo-detectors. This approach involves an interaction 
impact analysis that integrates natural and socio-economic factors to 
unveil the epidemic’s spatial spread within urban areas. Though future 
infectious diseases may differ in transmission characteristics and 
influencing factors from those found in this study, the proposed ideas 
provide a quick method to identify urban risk facilities and primary 
influencing factors. Consequently, this study provides a swift method 
for grading urban risk elements, offering a scientific foundation for 
the government to implement differentiated measures in response to 
emerging infectious threats.

FIGURE 7

COVID-19 spatial risk relationship.
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Inevitably, this study has some limitations. First, a major limitation 
of this study is the data acquisition. The selected case points, which 
represent home addresses, might not cover all transmission locations, 
thus incompletely reflecting infection risk. Early in an epidemic, the 
medical community confronts various constraints: insufficient case 
data, limited testing resources, time pressures due to rapid spread, and 
incomplete understanding of the virus and its transmission. These 
factors collectively impede comprehensive epidemiological 
investigations. While this limitation poses a challenge to pinpointing 
infection times and places, it offers a unique opportunity for 
geography to address these gaps through spatial analysis, significantly 
supporting outbreak responses. Our use of patients’ home locations as 
case sites captures general areas of case concentration, complemented 
by urban facility data to assess spatial risk associations. However, 
future efforts could aim to connect cases to specific public exposure 
sites where feasible. Second, it’s essential to highlight that this study 
solely examines early outbreak data in Wuhan, suggesting the need for 
future research tracking outbreaks over time to understand how 
various facilities contribute to outbreak risks. It’s also essential to 
gather outbreak and urban data from other cities for comparative 
studies. Lastly, developing quantitative models to forecast the impact 
of facility distribution changes on outbreak risks can offer insights for 
urban planning.
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