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Objective: Fatal road accidents are statistically rare, posing challenges for accurate

estimation through the classic logit model (LM). This study seeks to validate the

e�cacy of a rare events logistic model (RELM) in enhancing the precision of fatal

crash estimations.

Methods: Both LM and RELMwere employed to examine the relationship between

pertinent risk factors and the incidence of fatal crashes. Crash-injury datasets

sourced from Hillsborough County, Florida served as the empirical basis for

evaluating the performance metrics of both LM and RELM.

Results: The analysis revealed that RELM yielded more accurate predictions of

fatal crashes compared to LM. Receiver operating characteristic (ROC) curveswere

constructed, and the area under the curve (AUC) for each model was computed

to o�er a comparative performance assessment. The empirical evidence notably

favored RELM over LM as substantiated by superior AUC values.

Conclusion: The study o�ers empirical validation that RELM is demonstrably

more proficient in predicting fatal crashes than the LM, thereby recommending

its application for nuanced tra�c safety analytics.

KEYWORDS
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1 Introduction

The persistently high mortality rates from traffic crashes have intensified their

classification as a significant global public health issue (1, 2). According to the World Health

Organization (3), fatalities attributed to traffic crashes witnessed a 25% increase, rising from

1.08million in 1990 to 1.35million in 2016. This uptick not only represents a societal tragedy

but also imposes considerable economic strain on communities and families.

Numerous studies have been undertaken to explore the relationships between various

risk factors—such as sex, age, educational attainment, weather conditions, and alcohol

consumption—and the outcomes of traffic crashes (4–10). Given that crash severity

is generally categorized by levels, discrete outcome models have been instrumental in

investigating the correlations between fatal crashes and contributory factors (11–16).
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Among the models utilized, the binary logit model (LM) is

predominant. However, this approach has limitations when dealing

with rare events, such as fatal crashes. For instance, the Hong Kong

Transport Department’s statistics from 2015 reveal that, of 16,170

injury-related crashes, only 117 were fatal, representing a meager

0.72% of the total dataset (17). Extant literature corroborates that

LM tends to significantly underestimate the occurrence of such rare

events (18).

Against this empirical backdrop, the present study deploys a

rare events logistic model (RELM) to enhance the precision of

fatal crash estimations. The RELM has been successfully applied

in other domains such as geomorphology, social science, and

epidemiology (19–21). To the authors’ best knowledge, this study

involves the inaugural application of RELM in the specific field of

fatal crash estimation.

2 Methodology

2.1 Logit model

Logistic regression is the most used method in crash injury

severity analyses. To model the relationship between fatal crashes

and the risk factors, the outcome variable yi in the ith crash was

set to be one of the two values: yi = 1 representing fatal crashes

and yi = 0 representing non-fatal crashes. The probability of

yi = 1 is denoted by Pr(yi = 1), which is calculated using the

following equation:

Logistic regression is the predominant method employed in

the analyses of crash injury severities. To elucidate the relationship

between fatal crashes and associated risk factors, we define the

outcome variable yi for the ith crash as binary: yi = 1 signifies a

fatal crash, while yi = 0 indicates a non-fatal crash. The probability

that yi = 1, denoted as Pr(yi = 1), is calculated using the

logistic function:

Pr
(

yi = 1
)

=
1

1+ e−βx
′

i

(1)

In Equation (1), e−βx
′

i encapsulates the linear combination

of predictor variables, known as the utility function, which is

expressed as:

βx
′

i = β0 + β1x1i + · · · + βkxki (2)

Here, xki represents the value of the kth variable for the ith

observation and βk is the corresponding coefficient.

There is another way to formulate the aforementioned

question. Let us assume an unobserved continuous variable y∗i ,

which represents the propensity of where a fatal crash occurred.

y∗i follows a logistic distribution, which is close to normal

(mathematically, the difference exists but is trivial). If we want to

know the effects of xi, the standard approach is to run a regression

with xi as the dependent variable. To determine whether the crash

is fatal or not, we observed whether this propensity is greater

than a specific threshold. As documented by King and Zeng (19),

this mechanism turns out to be the chief troublemaker in bias

induced by rare events. The coefficients of β are estimated using

the maximum-likelihood method with the following equation over

a dataset of n observations:

Pr
(

yi = 1
)

=
1

1+ e−βx
′

i

(3)

In Equation (3), e−βx
′

i is the multiple linear combinations of

explanatory variables, which are also known as the utility function,

and can be represented as:

βx
′

i = β0 + β1x1i + · · · + βkxki (4)

where xki denotes the value of variable k for sample i and βk is the

coefficient of variable k.

Alternatively, one may conceptualize the problem using a

latent variable y∗i , which signifies the propensity for a crash to

be fatal. This latent variable follows a logistic distribution, which,

despite its mathematical distinctiveness, is practically akin to a

normal distribution. The impact of the predictors xi is typically

assessed by regressing them against this unobserved variable.

The determination of the crash outcome—fatal or otherwise—

is contingent upon whether the propensity surpasses a specified

threshold. As highlighted by King and Zeng (19), this threshold

mechanism introduces a primary source of bias in the presence

of rare events. The logistic regression coefficients β are estimated

by employing the maximum-likelihood estimation method applied

across a dataset comprising n observations:

L (β) =

n
∏

i=1

[

(
1

1+ e−βx
′

i

)
yi

(1−
1

1+ e−βx
′

i

)
1−yi

]

(5)

It is imperative to acknowledge that, in the analysis of rare

events data, additional occurrences of the event of interest (coded

as “1”) provide greater informational value than non-occurrences

(coded as “0”). During the estimation phase, the standard error of

the estimated coefficient β is derived from the variance:

V
(

β̂
)

=
1

∑n
i=1 πi(1− πi)x

2
i

(6)

In Equation (6), the summation
∑n

i=1 πi(1− πi) is notably

influenced by the rarity of the event under study. The term πi(1 −

πi) attains its maximum when πi = 0.5 and approaches zero as

πi converges to either extremity of the probability spectrum. Given

that rare events data typically yield minuscule estimates of πi for

all observations, it is crucial to consider that these estimates will

be substantially smaller than 0.5. Nonetheless, if the logit model

possesses explanatory significance, the estimated probabilities πi

corresponding to the occurrences of “1” will be markedly higher

than those associated with “0”. These estimates will also lie nearer

to the apex of informational value at 0.5. Consequently, this results

in the additional occurrences of “1” being more informative for the

model than the additional occurrences of “0”.
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2.2 Rare events logistic model

To ameliorate the bias in estimation attributed to the use of

LM in rare events data, King and Zeng (18) introduced the RELM.

RELM not only mitigates underestimation bias but also enhances

the efficiency of data collection and reduces the requirements for

data storage space during the sample selection phase.

2.2.1 Sample selection
As highlighted in the preceding discussion, the LM exhibits

suboptimal performance when instances of yi = 1 are infrequent

within the dataset. To address this limitation, a strategic alteration

in data collection is proposed. By archiving all observations where a

fatal crash occurred (yi = 1) and a random subset of non-fatal crash

observations (yi = 0), we can refine the accuracy of the standard

logit model’s estimations.

2.2.2 Adjustment of estimates for selection bias
To correct for selection bias inherent in choice-

based sampling, two primary methods are employed:

the prior correction and the weighting correction. The

subsequent sections will elucidate these approaches

in detail.

Research by King and Zeng (18) demonstrates that

the logit model coefficients remain statistically consistent

between population estimates and those derived from

selected data. The objective of the prior correction method

is to adjust the intercept β̂0 in the logit model using the

following formula:

β0 = β̂0 − ln

[

(
1− τ

τ
)(

y

1− y
)

]

(7)

where τ represents the proportion of yi = 1 within the population,

while y signifies the proportion of yi = 1 within the sampled

dataset. The calculation of the probability of rare events occurrence

is contingent upon accurate estimations of both β0 and βk, as

indicated in Equation (1).

It is essential to note that the prior correction method

necessitates the knowledge of τ , the population proportion

of yi = 1. In the context of this study, τ can be

directly ascertained from the initial dataset of crash data.

A principal benefit of the prior correction method lies in

its user-friendliness; it can be readily implemented with any

statistical software capable of fitting standard logistic models.

For instance, the study by Ren et al. (22) leveraged this

method to adjust estimates concerning the influence of various

factors on red-light running behavior. Next, we will delineate

an alternative approach that can augment the efficacy of

the logistic model (LM) when used in conjunction with

prior correction.

The weighting correction involves assigning weights to

the data to balance the discrepancies in the proportions of

yi = 1 between the sample and the population, which arise

from choice-based sampling. This method entails optimizing a

weighted log-likelihood function rather than the conventional log-

likelihood function:

ln Lw
(

β|y
)

= ω1

∑

{yi=1}

lnπi + ω0

∑

{yi=0}

ln (1− π) = (8)

−

n
∑

i=1

ωi ln
(

1+ e(1−2yi)xiβ
)

In this context, the weights ω1 and ω0 are defined as ω1 = τ/y

and ω1 = τ/y, respectively, where ωi = ω1yi + ω0(1 − yi).

The parameters τ and y retain their definitions from the “prior

correction” section.

Although this method may appear more complex than the

prior correction technique, Equation 6 is formulated to enable

researchers to apply it using any standard logit software package.

Xie and Manski (23) posited that weighting correction could

surpass prior correction in effectiveness when the available sample

is substantial, and there is a mis-specification of the functional

form. Conversely, Amemiya and Vuong (24) indicated that, while

weighting correction may be marginally less efficient than prior

correction, the difference in efficiency is typically negligible.

2.2.3 Computing probability estimates
Subsequent to implementing the prior correction and

weighting methods, we adapt modifications suitable for both

cohort and choice-based sampling designs in rare events logistic

models. The bias in the estimated coefficients β̂ is appraised using

the weighted least-squares method, formulated as:

bias
(

β̂
)

=
(

X
′

WX
)−1

X
′

Wξ (9)

where ξi = 0.5Qii

(

(1+ ω1) π̂i − ω1

)

symbolizes an adjustment

factor, where Qii are the diagonal constituents of the matrix Q =

X
(

X′WX
)−1

X′ andW = diag
{

π̂i(1− π̂i)ωi

}

is a diagonal matrix

with elements π̂i(1− π̂i)ωi. Consequently, the adjusted coefficients

β̃ are calculated as follows:

β̂ − bias
(

β̂
)

= β̃ (10)

The final corrected probability Pi can be approximated by the

following expression:

Pi = π̃i + Ci (11)

where the correction term Ci is delineated as follows:

Ci = (0.5− π̃i) π̃i (1− π̃i)XiV
(

β̃
)

X
′

i (12)

Within this equation, V
(

β̃
)

denotes the estimated variance-

covariance matrix of the adjusted coefficients β̃ . Xi = (1, xi)

represents the vector of predictors, including the intercept for
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the ith observation, and X
′

i is its transpose. Collectively, these

amendments constitute the methodology of the RELM. To the

authors’ knowledge, this is the first instance of applying RELM

within the domain of fatal crash estimation.

3 Data description

Data on crash-related injuries that occurred in the year

2006 in Florida were procured from the Florida Department

of Highway Safety and Motor Vehicles (DHSMV). The dataset

encompasses 107,464 driver-vehicle units implicated in 53,732

traffic incidents. A meager 0.34% of these incidents resulted

in fatalities, highlighting their infrequency. The variables under

scrutiny encompass critical attributes, such as those associated with

the driver, the vehicle, the roadway, and the environmental context,

as delineated in prior research (25–28). Table 1 delineates the

variables and their corresponding characteristics as encapsulated

within the Florida dataset.

Notably, the “speed ratio”—defined as the quotient of the

estimated speed prior to the collision and the statutory speed

limit post-collision—is posited to correlate positively with injury

severity (25). Furthermore, the analysis includes “points of impact”

(POIs) on the vehicle, enumerated in the Florida crash reports and

illustrated in Figure 1. These POIs are categorized in alignment

with the schema proposed by Huang et al. (29), where Level 1

encompasses nine POIs (nos. 1–2, 5–7, 9–10, 14, and 21) located

peripherally relative to the driver’s seat, such as the front and rear

passenger sides. Level 2 consists of five POIs (nos. 3, 8, 11, 15, and

17) situated in closer proximity to the driver than those in Level 1.

Level 3 includes POIs (nos. 4, 12–13, 18, and 20), which are nearest

to the driver, comprising the windshield and the front passenger

and driver sides. The final category, Level 4, is assigned to two POIs

(nos. 16 and 19).

4 Model evaluation

In the evaluation of our models, namely, RELM and the LM,

we quantify the predictive performance using the area under the

receiver operating characteristic curve (AUC-ROC). The AUC

is a widely accepted metric for model performance evaluation,

particularly in binary classification problems. It provides an

aggregate measure of performance across all possible classification

thresholds. The calculation of the AUC involves plotting the

true positive rate (sensitivity) against the false positive rate (1-

specificity) at various threshold settings (30). The AUC value ranges

from 0 to 1, where an AUC of 1 indicates perfect predictive

accuracy and an AUC of 0.5 suggests performance no better than

random chance.

To estimate the AUC accurately, we employ the trapezoidal

rule for numerical integration as this method is well-suited for

the discrete data points that characterize an empirical ROC curve

(31). Furthermore, we validate the robustness of our AUC estimates

through K-fold cross-validation, which mitigates the potential for

overfitting by ensuring that each observation is used for both

training and validation. This process involves partitioning the data

into K equal-sized segments, training the model on K−1 segments,

TABLE 1 Variables contained in the dataset.

Factor Attributes Count Proportion

Injury severity Fatality 363 0.34%

Non-fatal or no

injury

107,101 99.66%

Driver age Under 25 years 27,685 25.76%

25–65 years 69,677 64.84%

Above 65 years 10,102 9.40%

Driver sex Male 60,567 56.36%

Female 46,897 43.64%

Alcohol/drug use No drink or drugs 103,218 96.05%

Drink or drugs 4,247 3.95%

Seat belt Not using a seat belt 5,531 5.15%

Using a seat belt 101,933 94.85%

Driver fault At fault 44,690 41.59%

Not at fault 62,774 58.41%

Vehicle year 1996–2006 81,704 76.03%

<1996 25,760 23.97%

Vehicle type Passenger car 73,492 68.39%

Van 8,550 7.96%

Light truck/pick-up 21,832 20.32%

Medium/heavy

truck

3,590 3.34%

Speed ratio <0.5 36,676 34.13%

0.5–1.0 65,641 61.08%

>1 5,147 4.79%

POI Level 1 74,949 69.74%

Level 2 18,381 17.10%

Level 3 13,816 12.86%

Level 4 318 0.30%

Day of week Weekday 81,930 76.24%

Weekend 25,534 23.76%

Location Rural 50,384 46.88%

Urban 57,080 53.12%

Light condition Daylight 81,980 76.20%

Dark 25,484 23.80%

Weather Clear 79,720 74.18%

Not clear 27,744 25.82%

Surface Dry 94,726 88.15%

Not dry 12,738 11.85%

Vision Not obscured 99,718 92.79%

Obscured 7,746 7.21%

Highway Divided highway 60,014 55.85%

Undivided highway 47,450 44.15%

Number of observations= 107,464.
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FIGURE 1

An illustration of the points of impact.

and validating it on the remaining segment. This is repeated K

times, with each segment used exactly once for validation. The

average AUC across all K iterations provides a reliable estimate

of the predictive performance of the models. In this study, K was

set to 5.

5 Results

5.1 Data sampling

As previously mentioned, the initial step involves the partial

extraction of the complete dataset for regression analysis. This

entails retaining all instances of fatal crashes while selectively

including a subset of non-fatal crashes. To ascertain the optimal

proportion of “1” events in the newly constituted dataset, this study

computes the coefficients employing both the prior correction

and weighting correction methods, incrementally adjusting by 1%

within a range from 0.05 to 0.95. The variation in classification

accuracy is further assessed using two metrics: the accurate

classification rate (ACR), defined as the quotient of correctly

identified fatal accidents to the total number of actual fatal

accidents; and the false classification rate (FCR), computed as the

quotient of erroneously classified incidents to the total number

of events.

Figure 2 delineates the interplay between the three

aforementioned variables: ACR, FCR, and the ascending fraction

of “1” events in the sampled data. The depiction includes red dots

representing outcomes via the prior correction method and blue

stars indicating results from the weighting method. A 3D subgraph

within Figure 2A visualizes the pairwise interactions among these

factors, with the remaining panels (Figures 2B–D) presenting

projections along different axes.

Analysis of Figure 2 reveals a close alignment between the

trajectories of ACR and FCR across both correction methodologies.

A trend emerges where an elevated ACR correlates with a

heightened FCR. Notably, the ACR ascends more precipitously

than the FCR within the “1” event ratio spectrum from 0.05 to 0.5,

while this growth rate inverts for ratios between 0.5 and 0.95.

Figure 3 presents the AUC for both methods across varying

proportions of fatal to non-fatal crashes. The diagram indicates that

the AUC for the prior correction method remains unaffected by the

percentage of “1” event post-selection. In contrast, the weighting

method demonstrates superior predictive performance at most “1”

event ratios. Green stars mark the coordinates with the maximum

AUC values, which inform the selection of rates for the weighting

method in the rare events logistic model—specifically, 43% in the

corrected dataset. For the implementation of the rare events logistic

model, the Stata statistical software package was employed.

5.2 The parameters of models

The parameter estimates for the RELM and the LM are

consolidated in Tables 2, 3, respectively. These tables encapsulate

the significant parameters deduced from the empirical analysis,

illustrating that the magnitude and direction of the coefficients for

both models are largely consistent. The significance and impact

of the variables, with the salient exception of the POI, are in

concordance with the injury severities reported in antecedent

research, notably by Zeng and Huang (26).

Our analysis of driver demographics indicates a heightened risk

of fatality for older drivers following a collision, corroborating the

findings from existing literature that underscores age as a critical

determinant in traffic injury severity. In relation to vehicular and

environmental factors, the data suggest that more recent vehicle
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FIGURE 2

The relationship between measurements and the ratio of rare events. (A) The relationship between accurate classified rate, false classified rate, and

the fatal event ratio. (B) The relationship between false classified rate and the fatal event ratio. (C) The relationship of accurate classified rate versus

the fatal event ratio. (D) The relationship between accurate classified rate and false classified rate.

models correlate with a reduction in injury severity, supporting the

premise that advancements in vehicular safety technologies have

ameliorated crash outcomes. In clear contrast, while operators of

medium/heavy trucks exhibit a lower fatality likelihood, drivers of

passenger cars show an increased fatal outcome propensity. This

disparity may be attributable to inherent variations in vehicle safety

features, structural mass, and design specifications.

5.3 Comparative analysis of classification
e�cacy

Table 4 delineates the predicted outcomes derived from both

the RELM and the LM, incorporating statistically significant

variables at the 0.05 level into the classification procedure.

The predictive classifications of the models are juxtaposed

against the actual incident outcomes, with Table 4 providing

a comprehensive summary of these predictions. The data

articulated in Table 4 highlights the superior performance of

RELM in comparison with LM. A notable deficiency of LM

is its significant underestimation of fatal accident risk, failing

to identify any incident as fatal. In contrast, RELM achieves

an accurate classification rate of 77.7%. Despite an increase in

the false alarm rate by 12.8%, RELM is deemed tolerable when

juxtaposed against the grave implications of underestimating fatal

accidents; for instance, Aguero-Valverde (32) equates the impact

of 1 fatal crash to that of 20 property-damage-only (PDO)

crashes.
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FIGURE 3

AUC values for the weighting method and the prior correction

method.

TABLE 2 Model parameters of RELM.

Variable Coe�cient 95% confidence interval

Age level 3 (above

65 years)

2.553 2.192 2.914

Drug use 1.854 1.495 2.213

Using seat belt 2.279 1.940 2.619

Veh_year (<2006) −0.415 −0.720 −0.110

Medium/heavy

truck

0.492 0.160 0.824

Speed ratio (<0.5) −1.703 −2.226 −1.180

Speed ratio

(0.5–1.0)

−1.308 −1.791 −0.825

POI 1.536 1.217 1.855

Not at fault −2.609 −3.118 −2.100

Rural 1.017 0.709 1.325

Daylight −0.843 −1.160 −0.526

Constant 0.036 −0.615 0.687

An extended evaluation of the performance of the two models

was conducted through the ROC curves, as exhibited in Figure 4.

The predictive accuracy for fatal and non-fatal cases is contingent

upon a predetermined probability threshold. An observation is

designated as a fatal accident if its predicted probability transcends

this threshold; otherwise, it is categorized as non-fatal. The ROC

curves graphically represent the tradeoff between the true positive

rate and the false positive rate as the threshold varies from 0 to

1. The AUC for each model is computed, revealing that the ROC

curve for the RELM generally resides above that of the LM for

thresholds below 0.8, indicative of enhanced predictive accuracy

of RELM. Moreover, a juxtaposition of the AUC values in Figure 4

TABLE 3 Model parameters of LM.

Variable Coe�cient 95% confidence interval

Age level 3 (above

65)

1.970 1.722 2.219

Drug use 2.016 1.711 2.322

Using seat belt 2.122 1.873 2.371

Veh_year (<2006) −0.281 −0.512 −0.050

Medium/heavy

truck

0.411 0.158 0.663

Speed ratio (<0.5) −0.926 −1.294 −0.557

Speed ratio

(0.5–1.0)

−0.984 −1.315 −0.653

POI level 3 1.489 1.260 1.717

Not at fault −2.957 −3.397 −2.516

Rural 1.003 0.773 1.233

Daylight −0.396 −0.639 −0.154

Constant −5.934 −6.418 −5.451

TABLE 4 The prediction results of LM and RELM.

LM RELM

Number of crashes 107,464

Number of fatal crashes 363

Number of predicted fatal

crashes

0 14,013

Number of true positives 0 282

Accuracy / 77.7%

confirms the integrated predictive superiority of the RELM model

over the LM.

6 Discussion

This study employs the rare events logistic model to scrutinize

the relationship between various risk factors and the incidence of

fatal road accidents in Florida. The analysis identifies six variables—

older adult casualties, substance abuse, non-usage of safety

equipment, passenger car, POI at level 3, and rural accidents—

as positively correlated with driver fatalities. Conversely, five

variables—vehicle age, speed ratios 1 and 2, driver at fault,

and daylight incidents—exhibited a negative correlation with

accident risk.

The findings unequivocally show that RELM supersedes LM

in estimating fatal crash risks. As hypothesized, LM systematically

underestimates these risks, a shortfall that RELM substantially

rectifies, achieving an accuracy rate of ∼80%. While a slight

increase in false classification is noted, this tradeoff is deemed

acceptable given the enormity of losses associated with each

fatal accident. The AUC values further corroborate the superior

performance of RELM over LM in this context.
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FIGURE 4

ROC curves for RELM and LM methods.

The findings of this study have several implications for

stakeholders involved in road safety. It is recognized that

annual inspections cannot alter the fundamental crashworthiness

of older vehicles; however, ensuring that aging vehicles are

maintained can help mitigate risks where possible. Nevertheless,

the intrinsic limitations in safety offered by older vehicle designs

compared to their modern counterparts must be acknowledged.

Thus, stakeholders should focus on enhancing public awareness

regarding the potentially increased risks associated with older

vehicles and should advocate for policies that encourage the use

of vehicles with advanced safety features. For demographic groups

such as older adult drivers and men who are statistically at a greater

risk, targeted safety campaigns and driving aids could be beneficial.

This could involve educational initiatives that promote defensive

driving techniques and raise awareness about the increased risk

factors these demographics face. Furthermore, urban planners and

transportation authorities should take into account the findings

regarding speed limits. While not the sole factor, the data suggest

that higher speed limits can contribute to the severity of crashes.

Therefore, a holistic approach to road design that incorporates

traffic calming measures and considers the impact of speed on

traffic incident severity is warranted. These measures could help in

reducing the likelihood of fatal outcomes in crashes.

This study is subject to certain constraints that warrant

acknowledgment. The classification of POIs into predefined levels,

a method predicated on established literature, may not capture the

entirety of POIs that may significantly influence crash severity.

The dataset utilized provided a finite array of POIs, thereby

omitting potentially crucial impact points not recorded within it.

This omission could lead to a partial portrayal of crash dynamics.

Moreover, spatial correlation, a factor that could yield valuable

insights into the patterns and causes of fatal crashes, was not

incorporated into the RELM used in this analysis. Other influential

variables, such as law enforcement strategies and traffic volume

data, were also not included in our dataset. The absence of these

variables limits the breadth of our analysis, potentially affecting the

robustness of our findings. Acknowledging these limitations, future

investigative efforts in this field should endeavor to integrate amore

detailed classification of POIs, alongside variables capturing spatial

correlation, law enforcement efforts, and traffic metrics. Such

enhancements in data collection and model sophistication would

provide a more holistic understanding of the factors contributing

to fatal crash outcomes.
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