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The intricate relationship between COVID-19 and diabetes has garnered 
increasing attention within the medical community. Emerging evidence suggests 
that individuals with diabetes may experience heightened vulnerability to 
COVID-19 and, in some cases, develop diabetes as a post-complication following 
the viral infection. Additionally, it has been observed that patients taking cough 
medicine containing steroids may face an elevated risk of developing diabetes, 
further underscoring the complex interplay between these health factors. Based 
on previous research, we  implemented deep-learning models to diagnose the 
infection via chest x-ray images in coronavirus patients. Three Thousand (3000) 
x-rays of the chest are collected through freely available resources. A council-
certified radiologist discovered images demonstrating the presence of COVID-19 
disease. Inception-v3, ShuffleNet, Inception-ResNet-v2, and NASNet-Large, four 
standard convoluted neural networks, were trained by applying transfer learning 
on 2,440 chest x-rays from the dataset for examining COVID-19 disease in the 
pulmonary radiographic images examined. The results depicted a sensitivity rate 
of 98 % (98%) and a specificity rate of almost nightly percent (90%) while testing 
those models with the remaining 2080 images. In addition to the ratios of model 
sensitivity and specificity, in the receptor operating characteristics (ROC) graph, 
we have visually shown the precision vs. recall curve, the confusion metrics of each 
classification model, and a detailed quantitative analysis for COVID-19 detection. 
An automatic approach is also implemented to reconstruct the thermal maps and 
overlay them on the lung areas that might be affected by COVID-19. The same 
was proven true when interpreted by our accredited radiologist. Although the 
findings are encouraging, more research on a broader range of COVID-19 images 
must be  carried out to achieve higher accuracy values. The data collection, 
concept implementations (in MATLAB 2021a), and assessments are accessible to 
the testing group.
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1. Introduction

The intersection of COVID-19 and diabetes represents a 
multifaceted area of concern in contemporary healthcare. Diabetes, a 
chronic metabolic disorder characterized by high blood sugar levels, 
has emerged as a significant risk factor for severe COVID-19 outcomes 
(1). Emerging research has illuminated a complex relationship, 
revealing that individuals with diabetes are more susceptible to severe 
COVID-19 complications and adverse consequences, such as 
hospitalization and mortality. This heightened vulnerability is thought 
to be linked to the dysregulation of the immune system and impaired 
inflammatory response often associated with diabetes. The COVID-19 
pandemic has raised concerns about the potential development of 
new-onset diabetes in individuals infected with the virus. Several 
studies have reported cases of acute or transient diabetes occurring in 
COVID-19 patients with no prior history of the condition (2). While 
the mechanisms behind this phenomenon remain under investigation, 
it is believed that the virus may directly impact pancreatic function or 
trigger an autoimmune response, resulting in temporary or long-
term diabetes.

Beyond the realm of COVID-19, another facet of the diabetes 
narrative emerges in the context of cough medicines containing 
steroids (3). Steroids are known to influence blood sugar levels, and 
patients who require these medications to manage respiratory 
conditions such as asthma or chronic obstructive pulmonary disease 
(COPD) can face an increased risk of developing steroid-induced 
diabetes (4). Physicians must exercise caution and closely monitor 
patients with pre-existing diabetes or those at risk of developing the 
condition when prescribing such medications (5). However, the 
positive RT-PCR rate for the sample of nose swab samples is expected 
to be between 30 % and 60 % (30–60%) (6), resulting in undiagnosed 
patients that can infect a considerable amount of those people who are 
young and healthy (7). The daily use of the X-ray imaging method for 
diagnosing pneumonia is fast and straightforward. COVID-19 may 
be diagnosed with elevated Sensitivity using chest CT scans (8, 9). The 
images of chest X-ray images reveal sensory cues linked to the 
coronavirus (10). Multipolar involvement and opacities in the 
peripheral airspace are seen in chest imaging studies. Frosted glass (57 
percent) and mixed mitigation (29 percent) are the most often 
mentioned opacities (11). A frosted glass pattern can be seen in areas 
bordering the pulmonary vessels at the start of COVID-19, which is 
challenging to determine visually (12). COVID-19 has also been 
linked to airspace opacities that are uneven or diffusely asymmetric 
(13). Expert radiologists are the only ones that can interpret these 
apparent anomalies. Automatic methods to detect these subtle 
anomalies may facilitate the diagnostic process and increase the early 
detection rate considerably, given many suspicious individuals and the 
small number of qualified radiologists.

The COVID-19 outbreak, generally regarded as the third 
coronavirus outbreak, affected over 209 countries, one of which was 
Pakistan. The COVID-19 epidemic, which first broke out in China, 
severely impacted the countries that border Pakistan, including China. 
China was also the country where the epidemic began. Italy had the 
highest mortality rate of COVID-19 in the western region, while Iran 
had the second-highest mortality rate in the northern part (14). Italy 
was also the country with the highest incidence of COVID-19. The 
COVID-19 virus was identified in Pakistan’s first patient on February 
26, 2020, by the Ministry of Health under the administration of the 

Pakistani government. The patient’s location was determined to be in 
Karachi, which is the largest city and provincial capital of Sindh. On 
the same day, a second confirmed case was found in Islamabad, which 
is the location of the Federal Ministry of Health of Pakistan (15, 16). 
Within fifteen days, the total number of confirmed cases in the 
province of Sindh reached twenty (17) out of a total of 471 suspected 
cases. This was followed by the region of Gilgit Baltistan, which had 
the second-highest number of confirmed disease cases. All of the 
people whose cases have been verified have a history of having recently 
traveled from London, Tehran, or Syria. These reports are currently 
rising rapidly, which paints an even more dire picture of the situation 
than was previously presented.

The relationship between COVID-19 and diabetes is complex and 
multifaceted. People with diabetes are at increased risk of developing 
severe COVID-19, and COVID-19 can also worsen diabetes 
management. This is due to a variety of mechanisms, including 
increased ACE2 expression, insulin resistance, chronic inflammation, 
and cytokine storms. COVID-19 can also trigger new-onset diabetes 
in some people, and pregnant women with diabetes are at even higher 
risk of developing severe COVID-19. People with diabetes who have 
had COVID-19 may be more likely to experience long-term effects of 
the virus. It is important for people with diabetes to take steps to 
protect themselves from COVID-19 and to manage their 
diabetes carefully.

Artificial intelligence (AI) and deep learning solutions can be very 
effective in addressing these issues (18). Detailed reports documenting 
solutions for automated identification of coronavirus from chest X-ray 
images are not accessible at this time due to a shortage of public 
images of COVID-19 patients. A limited collection of data on images 
was recently obtained. This enables the researchers to create a 
machine-learning model that can diagnose COVID-19 via X-ray 
images of the chest (19). All of these photos were taken from research 
papers that reported on COVID-19 X-ray and C-Cmometric picture 
results. We re-labeled these X-ray images with a trained radiologist’s 
aid, keeping just the simple sign of the coronavirus. Our radiologist 
defines these labeled X-ray images. Figure 1 shows three samples of 
images with their labeled regions. Then, as negative samples for 
COVID-19 identification, we used a subsection of medical images 
from the ChexPert dataset (20). The consolidated dataset (called 
COVID-Xray-3k) contains approximately 3,000 thoracic X-ray 
pictures, split into 2,100 training and 900 research samples.

In order to develop a reliable deep learning based COVID-19 
detection model, the size of the dataset plays a significant role, and it 
has a direct impact on model generalization. For augmentation of the 
dataset, various image processing techniques were applied, including 
sharpening, blurring, contrast adjustment, intensity modification in 
the red, green, and blue channels, shearing effects, and rotation. The 
augmentation process enlarges the dataset size; the model receives a 
lot of COVID-19 image data to learn and recognize a broader 
spectrum of patterns and variations in chest X-ray images. 
Furthermore, data augmentation also contributes to clinical relevance. 
In medical imaging, patient diversity and variations in image quality 
are prevalent. Augmenting the dataset with various transformations 
helps the model better account for these real-world complexities. For 
instance, rotation and shearing effects mimic potential variations in 
patient positioning during imaging procedures, while adjustments in 
image intensity account for differences in equipment settings and 
patient characteristics.
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COVID-19 was predicted from thoracic X-ray images using a 
machine learning framework. We went in-depth on an end-to-end 
learning system that explicitly forecasts the raw images of COVID-19 
diseases without the need to extract characteristics, in contrast to 
traditional approaches to the classification of images, also called 
medical image classification that adopts a two-step process (extraction 
of artisanal features – recognition). In recent years, studies (17, 21–23) 
have shown that in-depth learning-based models, i.e., Convolutive 
Neural Networks (CNN), surpass the traditional AI techniques in the 
domain of computer vision and medical image processing. Thus, these 
models are being applied to analyze problems ranging from 
classification, segmentation, and facial recognition to achieving high 
resolution and enhancing the images.

We use the COVID-Xray-3k dataset to create four standard 
convoluted networks that have shown promise in many tasks over 
the last few years and study their success in COVID-19 detection. 
The training steps could not be done from scratch for these networks 
since there are just a few widely accessible X-ray photos for the 
COVID-19 range. To resolve the issue of COVID-19 images absence, 
in this study, two techniques were used: We used the increased data 
to produce a modified version of COVID-19 pictures (such as 
spinning, a minor rotation, and inserting a small number of 
distortions) for increasing the images in the dataset by a factor of 
five. We optimize the former layer of a variant of the models on 
ImageNet rather than driving them from scratch. In this, the model 
can be  built up with fewer tagged samples. These samples can 
be separated from each class in this manner. The two techniques 
described above aided in forming these networks using the accessible 
images and achieved good results on the test range of 30 0 0 images. 
We also quantify the trust interval of performance measurements 
since, in the COVID-19 class, the number of samples is small. The 
curves of receiver operating characteristics (ROC) and the region 
under or below the curve (AUC) of the proposed classification 

models are provided to summarize their output. Below are the 
article’s significant contributions:

 • To diagnose COVID-19 from pulmonary radiographs in the 
form of images, we prepared a data set of three thousand images 
with binary tags. For the testing group, this data collection should 
be used as a tool. A board-certified radiologist marks the pictures 
in the COVID-19 class. Only those images that were used for 
research purposes got clear and visible signs or marks.

 • Using this dataset, we qualified four successful deep learning 
models and tested their output on a test collection of three 
thousand X-ray images. The top model that performed had a 
sensitivity rate of ninety-eight (98%) percent and a precision rate 
of ninety-two (92%) percent.

 • We presented an experimental study based on the systematics of 
these models. This experimental study was a performance 
comparison between several CNN models where the 
performance evaluation is performed using the accuracy, 
F1-score, and the curve of ROC and AUC. The expected 
probability distribution for three classes is performed using the 
pie chart. Using a specific visualization method, we generated 
thermal maps of the most probable areas infected by COVID-19.

 • This study leverages state-of-the-art CNN transfer learning 
models to design a sophisticated system capable of achieving 
heightened accuracy in the detection of two distinct categories: 
COVID-19 without comorbidity and COVID-19 with diabetes. 
Additionally, the system excels in precisely localizing the affected 
regions within X-ray images, providing valuable insights for 
medical diagnosis.

The objective of this study is to develop a deep-learning model for 
COVID-19 patient prediction. We are also working to identify clinical 
data characteristics that may influence the COVID-19 outcome 

FIGURE 1

The above images are the 3 COVID-19 imageries samples and equivalent marked infected areas by our radiologist.
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prediction. With the number of coronavirus-positive cases increasing 
daily, testing is impossible due to time and cost constraints. In recent 
years, machine learning in the medical field has become extremely 
reliable. The currently available models are developed on a relatively 
modest dataset, and the vast majority of the researchers have made use 
of a dataset that was not annotated by subject matter specialists 
(radiologists). The majority of the work that has been done in the field 
of machine learning has been accomplished through the use of hand-
crafted methods and traditional approaches. The traditional methods 
have several performance flaws. To save human lives, a reliable and 
effective COVID detection system is required.

In the notice, although the results of this work are promising 
considering the volume of data tagged, they are only tentative, and a 
more definitive conclusion would take more studies in a broader 
dataset of COVID-19-labeled X-ray pictures. This study should 
be deemed as a starting point for potential research and comparisons.

The following is the outline for the remainder of this paper. 
Section 2 summarizes the prepared COVID-Xray-3k dataset. The 
proposed general structure has been explained in section 3. 
Experimental studies and parallels with previous work are presented 
in section 4. Lastly, the essay is closed in the 5th section.

2. The Xray-3k COVID dataset

The thoracic X-ray image from two datasets was combined to 
generate Covid X-ray 3,000 dataset images comprising 2,100 images 
for training and 900 images for testing purposes. The newly issued 
Covid-Chestxray-Dataset, which includes collecting X-ray images of 
articles published on the topic of coronavirus, was compiled by Cohen 
et al. https://github.com/ieee8023/ covid-chest-ray-dataset (2020). The 
dataset uses a mixed combination of CT scans with the images of chest 
X-rays. The dimension of CT images is 512x512x28 with a bit depth 
of 16 bits, and the file format is volumetric DICOM; similarly, the 
X-ray image size is 1024x1024x1 with a bit depth of 12 and 16 bits 
DICOM images. The images generated until May 3, 2020, contained 
two hundred and fifty X-ray images of corona-infected patients, with 
two hundred and three images corresponding to anteroposterior 
views. This data collection is continually modified according to the 
description. It also includes information about each patient, such as 
gender and age. Collecting images from both the CT scans and Xray 
diverse sources is a strategy employed in our study to enhance the 
comprehensiveness and robustness of our COVID-19 detection 
model. While domain adaptation and shifts pose challenges, our 
rigorous approach to data preprocessing, feature extraction, and 
model calibration is designed to mitigate these effects. By addressing 
these challenges head-on, we strengthen our model’s reliability and 
real-world applicability, ultimately advancing the field of medical 
image analysis for COVID-19 diagnosis. This dataset provided us with 
all of our COVID-19 images. According to our accredited radiologist’s 
recommendation, only anteroposterior X-ray samples are held to 
forecast COVID-19, as the previous samples were not considered 
appropriate for that reason. A qualified radiologist analyzed the 
anteroposterior images, and those lacking even the tiniest X-ray 
symbol of coronavirus were omitted from the data collection. 19 of the 
203 COVID-19 indoor-outdoor X-ray images were discarded, leaving 
184 for our radiologist to examine (which depicted clear indications 
of COVID-19). As a result, we  would include a more accurately 

labeled data collection for the world. Among these images, 100 images 
per class are used for the testing (to achieve the highest value of 
confidence interval), while the remaining images are used as the 
training set. As previously mentioned, the data improvement is added 
to the learning kit to escalate the number of COVID-19 samples to 420.

Both patient X-ray images are transmitted only on one of the 
training courses, as we have ensured. Our radiologist highlighted the 
areas of clear Covid-19 signs due to the low number of images with no 
coronavirus collected on the dataset (20). This dataset includes 0.22 
million images and three hundred and sixteen (224,316) chest X-ray 
images of sixty-five thousand two hundred and forty (65,240) patients. 
It is marked with the indication of 14 subcategories (non-finding, 
edema, pneumonia, etc.). We  used only images from a single 
subcategory for non-COVID samples from the learning package, 
which consisted of seven hundred (700) pictures from the 
non-research class and one hundred (100) image from every other 
thirteen (13) subclasses, totaling two hundred (200) non-COVID 
images. We picked 1,700 images from the unsearched division.

We picked approximately a hundred (100) images from each of 
the other thirteen (13) subclasses in different sub-files for non-COVID 
samples from the research dataset, totaling 30,000 images. Table 1 
shows the exact amount of X-ray images from each class used for 
preparation and research. Figure  2 displays 16 photos from the 
COVID-Xray-3k dataset, comprising four Coronavirus images (1st 
row), four regular ChexPert images (2nd row), and eight images of one 
of the 13 ChexPert images (3rd and 4th row).

It should be remembered that the resolution of the photos in this 
data collection varies significantly. Low-resolution COVID-19 images 
(less than 400 × 400 pixels) and high-resolution COVID-19 images 
(over 1900 × 1,400 pixels). This is a plus for models who can reach a 
reasonable precision level on this data collection, considering the 
variable image resolution and imaging technique. Although gathering 
all the photos in a highly controlled system, we desired to get ultra-
sharp images with very high-resolution images; it is not always 
possible. As machine learning advances, more focus is put on the 
models and frames that will perform. On low-quality, small-scale 
tagged data sets, it performs reasonably well. Furthermore, the original 
vendor collects COVID-19 class images from various sites, showing 
dynamic variations (and even from ChexPert). However, the whole 
dataset is optimized to the same distribution in the testing phase to 
make the model less vulnerable to this.

Pursuing higher accuracy in COVID-19 diagnosis through deep 
learning models is challenging, and it necessitates an ongoing effort to 
access diverse and extensive datasets. To achieve this, researchers can 
explore several avenues. Public medical databases, such as the 
National Institutes of Health (NIH) Chest X-ray Dataset and the 
COVID-19 Image Data Collection, offer open-access repositories of 

TABLE 1 Each category has no. of images in the Xray-3k COVID dataset.

Dataset 
Split

Non-
COVID 
images

COVID-19 
images

COVID-19  +  Dibetic 
images

No. of 

training sets
700 700 700

No. of test 

sets
300 300 300
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radiographic images that can significantly augment existing datasets. 
Collaboration with medical institutions and hospitals can provide 
access to real-world patient data, capturing different COVID-19 
manifestations and stages.

3. The proposed framework

Transfer learning was used to modify four deep neural networks 
and pre-trained images of the COVID-Xray-3k Dataset to solve the 
small data sizes. The choice of selection of the state-of-the-art transfer 
learning models in our study for COVID-19 detection using the x-ray 
images was based on their diverse architectural characteristics and 
well-established performance in image analysis tasks. These selected 
models are well known for their robustness, efficiency, and ability to 
transfer knowledge from large-scale datasets. This deliberate model 
selection aimed to comprehensively evaluate their suitability for 
COVID-19 detection and contribute to the advancement of medical 
image analysis.

3.1. Method of transfer learning

In this method, a model that has been educated on one task is 
reassigned to a similar task and is expected to respond to the new 
task. For, consider using an ImageNet model used to classify images 
(which includes billions of labeled images/pictures) to kickstart 
learning that will also be  task-specific. This is used to detect 
COVID-19 on minor data collection. Transfer learning is most useful 
for those projects that require only a little effort to build models from 
the scrape, such as medical-based image recognition for evolving 
chronic diseases.

This is true, particularly for deep neural network-based models, 
which have many parameters to learn. In transfer learning, the setting 
of the model has better initial values, which needs a few minor 
improvements to make them more structured for the new mission. 
For each task, the pre-trained model is used in one of two ways. The 
first method is viewed as a model that extracts the characteristics, i.e., 
an extractor. In the second method, the model is trained to classify 
a classifier.

FIGURE 2

Sample of images from COVID-Xray-3k Dataset. First row corresponds to images with COVID-19. The second row corresponds to four sample images 
diagnosed with no COVID-19 infection from ChexPert, belonging to the no-finding category. The third and fourth row corresponds to images with 
eight samples belonging to all other subdomains in ChexPert.
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Another method involves purifying the whole network, or a 
subset of it, for the current mission. We simplify the end layer of 
complicated neural networks because the number of samples in the 
COVID-19 segment is relatively less. Consequently, the weights and 
biases of pre-trained CNN models are used to be a starting point for 
the proposed study, which are revised throughout the learning 
process. We use previously trained models as a characteristic extractor. 
ResNet-18 (24), ResNet-50 (25), Inception-ResNet-v2 (26), and 
NASNet-Large are four standard pre-formed models that we evaluate 
(27). The following segment gives a brief description of the models’ 
design and their implementation to recognize coronavirus.

3.2. Inception-v3 and ShuffleNet based 
COVID-19 detection

The pre-designed Inception-v3 model, formed on the ImageNet 
dataset, is one of the models implemented in our research. 
Inception-v3 is one of the most common CNN architectures, and it 
won the 2015 ImageNet contest. It offers a more effortless gradient 
flow for more effective training. The implementation of an identity 
shortcut link that misses/skips one or more than one layer is at the 
heart of Inception-v3. This will enable the network to have a clear 
route to the network’s first layers, rendering gradient changes far 
simpler for these layers. Supplementary Figure S1 depicts the 
Inception-v3 model’s general theory scheme and its application to 
COVID-19 identification. The Inception-v2 design is similar to 
Inception-v3 but with a number of layers than the Inception-v3. The 
structure design of ShuffleNet CNN features learning and classification 
can be seen in Supplementary Figure S2. Supplementary Figures S4–S7 
illustrates the probabilities estimated by the various CNN models 
when applied to the testing samples. This graphical representation 
provides valuable insights into the model’s confidence scores and its 
decision-making process.

3.3. The inception-ResNet-v2 for 
COVID-19 detection

The Inception-ResNet-v2 is a small CNN model that obtains 
accuracy up to the AlexNet level (28) with 50 times more minor 
settings. Using these techniques, the biographers compressed 
Inception-ResNet-v2 to a smaller amount, i.e., smaller than 0.5 MB, 
making it prevalent for applications requiring lightweight models. 
They substitute one layer 1 × 1 that “tightens” the data entering the 
vertical dimension, followed by the sign of two parallel convoluted 
layers 1 × 1 and 3 × 3 that “extend” the data’s depth again. Inception-
ResNet-v2 services three effective strategies: replacing 3 × 3 filters with 
1 × 1 filters, growing the number of input channels to 3 × 3 filters, and 
subsampling late in the network to ensure massive activation maps for 
convolution layers.

3.4. COVID-19 detection using 
NASNet-large

Another architecture introduced by (29) is the Neural 
Architectural Seach Convolutional Network (NASNet-Large), which 

won the ImageNet 2017 competition. Each layer in NASNet-Large 
receives additional entries from all preceding layers and transmits its 
function cards to all succeeding layers. Each layer gets all of the 
previous layers’ accumulated information. The network can be thinner 
and more lightweight because every layer receives maps for every 
layer. Supplementary Figure S3 depicts the architecture of the 
NASNet-Large example.

3.5. Model training

The cross-entropy loss function, whose goal is to decrease the 
change between expected probability scores and field truth 
probabilities, is used to train all models.

 
L p qCE

i

N
i i= −

=
∑

1

log

 
(1)

Where pi denotes ground truth, whereas qi denotes predicted 
probabilities for every image. A stochastic gradient descent algorithm 
can then be used to minimize this loss function (and its variations). 
We tried to improve the loss feature by including regularization, but 
the resulting model did not improve.

4. Results

4.1. Hyper-parameters model

Each model has been trained with 100 Epochs. The loss function 
is optimized with the use of an ADAM optimizer having a learning 
rate of 0.0001. This optimizer has a size of 20. Since these models are 
typically created with a detailed image resolution, all the images are 
under 224*224 before being submitted to the neural network. All the 
experimental tasks are performed using the MATLAB deep learning 
framework. The confusion matrices for the four classification models, 
each tasked with classifying three distinct classes, are presented in 
Figures 3–6. These visual representations provide a comprehensive 
view of the models’ performance in categorizing instances into 
“Normal,” “Covid-19,” and “Covid-19 + Diabetic” classes.

The Supplementary Table S1 displays the hyperparameters 
used, their corresponding values or methods, and the optimal 

FIGURE 3

Shows the proposed Inception-v3 model’s confusion matrix.
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selections during the training of four transfer learning CNN 
models. The Inception-v3 CNN achieved an average accuracy of 
79.62%, the Figure  3 displays correctly predicted samples in 
green, while incorrectly predicted samples are shown in red. 
Similarly, Figures 4–6 display the confusion matrices obtained 
when validating the test set with ShuffleNet, Inception-
ResNet-v2, and NASNet-Large, each surpassing accuracy rates of 
90.33, 90.67, and 90.67%, respectively. These remarkable 
accuracies underscore the effectiveness of the chosen 
optimal hyperparameters.

4.2. Evaluation metrics

Different metrics, including classification precision, Sensitivity, 
specificity, accuracy, and F1 ranking, may be  used to evaluate 
classification models’ success. Due to the unbalanced nature of the 
current test dataset (80 coronavirus infectious images vs. 2000 
non-coronavirus infectious images), sensitivity and specificity are two 
critical indicators to report model performance:

  

(2)

 

Sensitivity

The number of images 

correctly predicts COVID
=

199

19The total COVID images

  

(3) Specificity

The total number of images 

correctly predicted
=

aas NonCOVID

The total number of NonCOVID images

4.3. The predicted scores of models

We are based on four standard convoluted networks, as previously 
stated. All these models generate a probability score for every X-ray 
image. It also increases the probability factor of the disease being 
identified as COVID-19. We may develop a binary mark to indicate 
whether the image is COVID-19 or not. We  can get this by the 
comparison of the binary Mars with a cut-off threshold. A perfect 
model can detect/predict the chance for every COVID-19 sample, 
which is found to be close to 1. Like this, an ideal model can predict 
the possibility of every non-COVID sample being close to 0. 
Tables 2–5 Present the Sensitivity and Specificity Achieved by Four 
CNN Models for the Detection of COVID-19 with Diabetes. Table 2 
presents the sensitivity and specificity achieved by the Inception-v3 
model across various threshold values. Meanwhile, Tables 3–5 provide 
sensitivity and specificity values for the ShuffleNet, Inception-
ResNet-v2, and NASNet-Large models, respectively.

Supplementary Figures S4–S7 display the model’s distributions of 
expected likelihood scores for the test set photos, respectively. 
We  include the probability distribution of the expected three 
categories: COVID-19, Normal, and other diseases. Our study’s 
non-COVID grouping consists of both standard cases and other forms 
of diseases. As can be said, non-COVID X-ray images of different 
types of infections have significantly better ratings than non-COVID 
examples without other types of diseases. The infected images of 
COVID-19 may have somewhat higher odds than non-COVID 
images, which is promising. We can see that Inception-ResNet-v2 is 
better at work than the other models. Table 6 provides a comprehensive 
overview of the class-specific performance metrics, and the average 
performance of four state-of-the-art CNN models used for chest 
radiography detection. The models were evaluated across three 
distinct classes: “Normal,” “Covid-19,” and “Covid-19 + Diabetic.” The 
metrics examined include Accuracy, Precision, Recall, and F1-score, 
offering valuable insights into the models’ capabilities for each class. 
Additionally, the table presents an “Average” row, summarizing the 

FIGURE 5

Shows the proposed Inception-ResNet-v2 CNN model confusion 
matrix.

FIGURE 4

Shows the proposed ShuffleNet model’s confusion matrix.

FIGURE 6

Shows the proposed NASNet-Large CNN model confusion matrix.
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collective performance of these models across all classes. These 
metrics serve as a vital reference point for evaluating the models’ 
effectiveness in detecting and distinguishing between different chest 
radiography categories.

4.4. The sensitivity and specificity of four 
different models

Every model generates a probability score that indicates the 
likelihood of the image, i.e., the idea being COVID-19. These scores 
are then compared to a criterion to determine whether or not the 

picture is COVID-19. The value of the Sensitivity of all models and the 
importance of the specificity of all models were calculated using 
predicted labels. Tables 2–5 demonstrate sensitivity rates and 
specificity rates for various levels utilizing the four models. It can 
be shown that both of these models provide positive outcomes, with 
the strongest one achieving a sensitivity of 95% (95%) and specificity 
of 91% (91.06%). Inception-ResNet-v2 and Inception-v3 outperform 
the other models by a small margin.

The Inception-ResNet-v2 has the high sensitivity (98%) and 
specificity (91.2%) rates demonstrated by our top-performing model, 
which holds substantial clinical significance. These performances 
reflect the model capability of accurately detecting COVID-19 cases 

TABLE 5 The results of the NASNet-Large model in the form of sensitivity 
and specificity rates.

Threshold Sensitivity Specificity

0.16 97% 77.3%

0.22 94% 89.8%

0.29 92% 96.4%

0.38 81% 99.8%

TABLE 6 Class-specific Performance metrics and average performance of state-of-the-art CNN models for chest radiography detection.

Model Class Accuracy Precision Recall F1-score

Inception-v3

Normal 85.85% 88.57% 89.47% 89.01%

Covid-19 86.00% 86.00% 93.33% 89.33%

Covid-19 + Diabetic 67.00% 67.00% 72.00% 69.33%

Average 79.62% 80.52% 84.97% 82.72%

ShuffleNet

Normal 96.00% 96.00% 96.00% 96.00%

Covid-19 90.00% 90.00% 92.00% 91.00%

Covid-19 + Diabetic 85.00% 85.00% 87.00% 86.00%

Average 90.33% 90.33% 91.67% 90.67%

Inception-ResNet-v2

Normal 91.00% 93.57% 95.56% 94.51%

Covid-19 94.00% 94.00% 96.00% 95.00%

Covid-19 + Diabetic 87.00% 87.00% 89.00% 88.00%

Average 90.67% 91.52% 93.52% 92.52%

NASNet-Large

Normal 87.00% 90.55% 91.89% 91.21%

Covid-19 98.00% 98.00% 98.00% 98.00%

Covid-19 + Diabetic 87.00% 87.00% 89.00% 88.00%

Average 90.67% 91.85% 92.96% 92.41%

TABLE 2 The results of the Inception-v3 model in the form of sensitivity 
and specificity rates.

Sensitivity Specificity Threshold

100% 73.4% 0.19

99% 92.7% 0.18

96% 94.4% 0.22

93% 96.8% 0.23

87% 98.0% 0.31

TABLE 4 The results of the Inception-ResNet-v2 model in the form of 
sensitivity and specificity rates.

Threshold Sensitivity Specificity

0.32 98% 91.2%

0.19 99% 90.4%

0.4 97% 95.8%

0.39 93% 98.2%

0.8 88% 99.7%

TABLE 3 The results of the ShuffleNet model in the form of sensitivity and 
specificity rates.

Sensitivity Specificity Threshold

100% 79.2% 0.17

97% 90.2% 0.24

95% 95.3% 0.21

92% 98.5% 0.29

87% 98.4% 0.36
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and reducing the inaccurate diagnosis. The higher accuracy of the 
model assists in early disease diagnosis and treatment plans, making 
it a vital tool for radiologists and pulmonologists. Moreover, the model 
flexibility for different clinical scenarios is necessary, as indicated by 
various threshold options, to enhance its practical use in real-world 
applications, where balancing sensitivity and specificity is crucial for 
effective COVID-19 diagnosis.

4.5. The reliability of the model with a few 
cases of COVID-19

It should be mentioned whether the sensitivity and specificity 
rates shown earlier can be or cannot be accurate because there was a 
minimal amount of accurately annotated COVID-19 X-ray images by 
the experts who are available to date besides the fact that the 
COVID-19 dataset consists of several hundred X-ray samples. More 
studies on more test samples are required to get a more accurate 
estimate. To see the potential range of these values in every class, 
we will measure the confidence interval at 95% of sensitivity and 
specificity rates recorded here. The accuracy rate trust interval can 
be determined as follows:

  

(4)

 

r
accuracy accuracy

N
z=

−( )1

Where z is the confidence interval’s degree of significance, 
accuracy is the approximate accuracy (in our case, sensitivity rates 
and specificity rates), and N is the total number of samples. In this 
case, we used a 95 percent trust interval, which corresponds to a 
z-value of 1.96. Since a responsive model is critical for the COVID-19 
diagnosis, we select a cut-off threshold for each model that fits a 
sensitivity rate of 98 % (98%) and can also evaluate their specificity 
values. Supplementary Table S2 shows how these four models 
performed throughout the test range. Since we have around three 
thousand samples for this class, the confidence interval for specificity 
values is minimal (around 1%). In contrast, the sensitivity rate has a 
somewhat higher confidence interval (about 2.7%) due to the smaller 
number of samples. The performance comparison is presented in 
Table  7, incorporating the latest advancements from state-of-
the-art research.

4.6. The operating characteristics curve 
(ROC)

Since cut-off limits vary, it is challenging to equate various 
models. We ought to test all potential threshold values to see how 
these models compare overall. The precision-recall curve is one way 
to do this. Recall or Sensitivity is the Ratio of true positives to total 
(actual) positives in the data. Recall and Sensitivity are one and the 
same. Whereas the accuracy is calculated using the accurately 
detected +ve images and the total number of +ve images in the test 
set using the ROC curve. Figure 7 depicts the curve created using the 
precision and recall values of the proposed CNN models. The ROC 
curve is plotted by taking the precision values on the y-axis and recall 
values on the x-axis of the 2D line plot. Supplementary Figure S8 

shows the ROC curves of these four models. Both versions work 
equally according to AUC.

It should be noted that the AUC might not be a suitable predictor 
of model success for very unbalanced test sets (because it can be very 
high) and that examining the medium accuracy curve and precision 
and recall may be  a safer option in this case. For the sake of 
completeness, we  have included all curves here. The confusion 
matrices of the two highest-performing CNN models, Inception-v3 
and Inception-ResNet-v2, on a test set of 2080 Xrays can be observed 
in Figures 3, 5. These matrices provide an exact count of suitable 
samples, i.e., samples that are positive for COVID-19 and samples that 
are negative for COVID-19.

4.7. Hardware resources and simulation 
environment

The allocation of robust computational resources listed in 
Supplementary Table S3 was pivotal in successfully developing and 
training our deep learning models for COVID-19 diagnosis from 
chest X-ray images. Utilizing high-performance hardware 
components, including the Intel Core i7-12700K CPU and NVIDIA 
GeForce RTX 3080 Ti GPU, allowed us to efficiently process vast 
volumes of data and perform complex matrix computations, thus 
expediting the training process. This strategic choice significantly 
reduced training times and enabled the exploration of intricate model 
architectures. Furthermore, the abundant 32GB of RAM and the 
extensive 1 TB or more SSD storage were instrumental in ensuring the 
seamless loading of data, preventing potential bottlenecks, and 
accommodating the storage needs for our extensive dataset and 
model checkpoints.

Complementing our powerful hardware setup, the adoption of 
essential image processing, statistics and machine learning, and deep 
learning toolboxes provided in the MATLAB 2021a are used for 
developing, fine-tuning, and rigorously evaluating our deep neural 
networks. The Windows 10 operating system further contributed to a 
stable and reliable research environment. This fusion of computational 
resources and software tools facilitated our pursuit of precise 
COVID-19 diagnosis and laid the foundation for transparent, 
accessible, and collaborative research.

4.8. The infected regions

Thermal maps are acquired using thermal imaging camera 
sensors, which play a unique role in COVID-19 diagnosis. These 
images record the change in body temperature, which can be very 

TABLE 7 Comparison of the proposed model with existing state-of-the-
art methods.

Model Accuracy F-Measure

CovidxNet-CT (30) 85% 86.06%

Optimized Resnet 101 (31) 95% 93.32%

UNet+ ResNet (32) 94% 92.3%

EfficientNet+SCO (32) 85% 87.66

Proposed Model (33) 96% 96.9%
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useful in the study and diagnosis of patients suffering from fever 
or other respiratory distress related to COVID-19. These images 
are overlapped with chest X-ray images to provide the radiologists 
with a multidimensional view, which assists in the localization of 
the affected region in the lungs. The fusion of thermal images 
with radiographic data dramatically improves the detection of 
COVID-19; in the case of subtle radiographic findings, it still 
achieves higher diagnosis accuracy. Moreover, the thermal maps 
assist in the ongoing monitoring of patient progress, which offers 
an early insight into disease treatment plans or disease 
deterioration, thereby assisting healthcare providers in making 
timely and informed decisions. When we detected COVID-19, 
we  used an essential technique to see possibly contaminated 
regions—(34) work to imagine deep learning outcomes complex 
networks influenced this technique. We  begin at the image’s 
top-left corner, blocking a rectangular area of MxN or a square 
area of dimension M rows and N columns within the X-ray 
sample each time to predict the occlusal image. Suppose the 
model wrongly classifies a picture of COVID-19 as a picture of 
non-COVID due to this region’s occlusion. In that case, this 
location will be called a likely polluted region in thoracic X-ray 
pictures. But if an area’s occlusion has little effect on the model’s 
projection, we  should conclude that the region is free 
from contamination.

We can also have a sad map of infected areas detecting 
coronavirus by repeating this process for different slippery N x N 
windows and moving them each time with an S phase. Figure 8 
shows the regions detected in six examples of COVID-19 photos 
from our test sample. In the last section, possible COVID-19 
disease areas are identified and annotated in yellow color by our 
experts, who are certified by the Council of Radiology and 
Council of Medical Sciences. Regions annotated by the radiologist 

and experts in COVID-19 disease are in good agreement with the 
thermal mass produced.

5. Conclusion

For the sake of detecting COVID-19 and COVID-19 affected 
who are also diabetic, a standard dataset of 3k X-ray images is 
created and confirmed with the COVID-19 labels from the 
board-certified radiologist. The dataset is available for 
researchers and can be  used as a benchmark dataset for 
COVID-19 prediction using machine-learning models. 
We reported that four pre-trained deep neural network models 
(Inception-v3, ShuffleNet, Inception-ResNet-v2, and NASNet-
Large) are used to detect COVID-19 using X-ray images by fine-
tuning the model’s parameters. We  conducted a detailed 
experimental analysis on the COVID-Xray-3k dataset test set to 
assess these four models’ Sensitivity, specificity, ROC, and AUC 
performance. These models had an average specificity rate of 
about 90% for a sensitivity rate of 98 percent. This is encouraging 
because it shows promise for using X-ray images to diagnose 
COVID-19. This research used a set of publicly available images 
that included about 1,000 Normal images, 1,000 COVID-19 
images, and 1,000 X-ray images of patients suffering from 
COVID-19 and also diabetic. The work presented here represents 
one of the earliest attempts at Covid-19 chest X-ray analysis and 
dataset preparation, which resulted in a time-sensitive correlation 
when the two aspects were combined. However, because there are 
only a few publicly available COVID-19 images, more 
experiments on a more extensive set of clearly labeled COVID-19 
images are needed to estimate the accuracy of these models 
more reliably.

FIGURE 7

Shows the precision-recall curves of 4 CNN architectures for COVID-19 detection.
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