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Background: The surges of Coronavirus Disease 2019 (COVID-19) appeared to 
follow a repeating pattern of COVID-19 outbreaks regardless of social distancing, 
mask mandates, and vaccination campaigns.

Objectives: This study aimed to investigate the seasonality of COVID-19 incidence 
in the United States of America (USA), and to delineate the dominant frequencies 
of the periodic patterns of the disease.

Methods: We characterized periodicity in COVID-19 incidences over the first 
three full seasonal years (March 2020 to March 2023) of the COVID-19 pandemic 
in the USA. We utilized a spectral analysis approach to find the naturally occurring 
dominant frequencies of oscillation in the incidence data using a Fast Fourier 
Transform (FFT) algorithm.

Results: Our study revealed four dominant peaks in the periodogram: the two 
most dominant peaks show a period of oscillation of 366  days and 146.4  days, 
while two smaller peaks indicate periods of 183  days and 122  days. The period 
of 366  days indicates that there is a single COVID-19 outbreak that occurs 
approximately once every year, which correlates with the dominant outbreak in 
the early/mid-winter months. The period of 146.4  days indicates approximately 
3 peaks per year and matches well with each of the 3 annual outbreaks per year.

Conclusion: Our study revealed the predictable seasonality of COVID-19 
outbreaks, which will guide public health preventative efforts to control future 
outbreaks. However, the methods used in this study cannot predict the amplitudes 
of the incidences in each outbreak: a multifactorial problem that involves complex 
environmental, social, and viral strain variables.

KEYWORDS

COVID-19, seasonality, public health, infectious diseases, periodicity

Introduction

Infection with SARS-CoV-2, the virus which caused the world-wide Coronavirus Disease 
2019 (COVID-19) pandemic, was first recorded in late 2019. The three continents with the 
highest burden of disease are North America, Europe, and Asia (1). The United States (US) has 
the highest case burden and has recorded approximately 1 million deaths (2).

It has been debated whether COVID-19 disease incidence follows a seasonal pattern like many 
other respiratory viral infections, such as influenza, rhinovirus, enterovirus, human parainfluenza 
(HPIV), respiratory syncytial virus (RSV) (Supplementary Table S1) (3–5). The identification of 
seasonality of these viruses has been crucial for infection control as it has guided public health 
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prevention measures, such as serving as the basis behind the annual Fall 
influenza vaccine prior to the yearly winter influenza epidemic. As such, 
we expect that seasonality studies will be valuable in combating the 
COVID-19 pandemic. Seasonality, in terms of a disease, can be defined 
in either a literal manner where disease incidence peaks correlate with a 
particular period of the calendar year or, alternatively, where incidence 
peaks and troughs recur at regular intervals, representing a periodic 
sinusoidal process (6). Though, at first, scientists associated the surges of 
COVID-19 with holidays, lack of social distancing, and mask mandates, 
there appears to be  a repeating pattern of COVID-19 outbreaks 
regardless of whether public health measures are in place (e.g., social 
distancing measures, mask mandates, and vaccinations). The probability 
of COVID-19 seasonality gained momentum as, in many Western 
countries, the COVID-19 incidence receded during the Summer 
months, climbed back up in the Fall and reached its peak in the Winter 
during the pandemic. Seasonal spikes in COVID-19 cases have been 
studied in multiple countries and the existence of patterns in disease 
surges has been identified (2, 7–9), however literature characterizing 
regular, predictable seasonal oscillations of cases over multiple years of 
data in the United States is lacking.

Identification of the seasonality of COVID-19 is an important step 
towards elucidating the causes of disease surges and will also offer 
possibilities for increased disease preparedness and preventive strategies. 
This is crucial for the development of more effective and targeted public 
health policies to reduce viral transmission, such as vaccine timing, 
COVID-19 screening initiations, and nonpharmacological interventions. 
The effectiveness of COVID-19 vaccines has been found to peak 
approximately 1–2 months after administration and thereafter gradually 
decline over time (10). Thus, predicting COVID-19 incidence surges is 
essential in guiding vaccination timing so that peak vaccine effectiveness 
can be aligned with predicted case spikes. SARS-COV-2 viral screening 
of symptomatic patients, especially for those who are in high risk settings, 
and their direct contacts has also been found to be effective in reducing 
viral transmission (11, 12), and by identifying case surge timings officials 
can screen high-risk populations during peak seasons. Lastly, increased 
public awareness on effective social strategies, such as face masks, hand 
washing, and social distancing, can be encouraged to reduce transmission 
during peak seasons (13).

In our study, we analyzed the trajectory of the daily confirmed 
cases of COVID-19 in the US using a spectral analysis approach to 
determine whether there exists seasonality in the occurrence of the 
disease. Spectral analysis is based on the idea that any waveform can 
be represented as a sum of sine waves at different frequencies with 
different phase relationships and amplitudes; it is a method which can 
be used to calculate dominant frequencies of oscillation in a set of 
sequential data (14, 15). Our analyses focused on the first two full 
seasonal years of the COVID-19 pandemic, spanning from Spring 
2020 to Spring 2022, when the COVID-19 pandemic was in full swing 
and when the daily incidence data reporting was most accurate. The 
results indicate that there exists a regular periodicity in COVID-19 
incidences with multiple predictable peaks and troughs each year.

Resources and methods

Dataset collection

Our study analyzed daily, county-wise data spanning two full 
seasonal years (March 19, 2020, to March 20, 2022) for the contiguous 

United  States. Case data was downloaded from the 1Point3Acres 
COVID-19 database.1 This database contains real-time updated, 
confirmed COVID-19 cases and deaths throughout the US and is used 
by Johns Hopkins University in their global COVID-19 tracking 
project, the US Center for Disease Control (CDC), and other 
renowned institutions. We also obtained data from the 2022–2023 
(spanning from March 21, 2022, to March 23, 2023) by combining 
data from the 1Point3Acres database (final day of case reporting was 
February 13, 2023) with the New York Times database (final day of 
case reporting was March 23, 2023), which is shown in 
Supplementary Figure S1. Though there exist multiple COVID-19 
datasets available to the public, we  chose the 1Point3Acres and 
New York Times datasets due to their reliable, transparent county-
level data collection procedures. The cross-validation steps used in 
making their datasets are clear, rigorous, and publicly available, unlike 
the CDC and Johns Hopkins University COVID trackers, whose data 
aggregation procedures are not entirely transparent (16, 17).

The 2022–2023 seasonal year was not included in the seasonality 
analyses, as testing and case reliability were suboptimal in the final year 
of case tracking, resulting in the significant noise in the data seen in 
Supplementary Figure S1. Although this noisiness is clear by 
observation of the raw data in Supplementary Figure S1, it becomes 
even more clear when comparing the mean COVID-19 incidence of 
62,547 daily cases for the 2022–2023 year with a standard deviation 
larger than the mean at 62,582. We  can further illustrate this by 
separating the data into portions defined by seasons: the Spring season 
had an average of 67,396 daily cases and standard deviation of 61,472 
cases, the Summer season had an average of 98,248 daily cases and 
standard deviation of 77,255 cases, the Fall season had an average of 
40,464 daily cases and standard deviation of 41,867 cases, and the 
Winter season had an average of 42,087 daily cases and standard 
deviation of 43,717 cases. The fact that the standard deviation is similar 
to, and at times greater than, the mean in each portion of the dataset 
provides a rough quantitative measure of the extensive noisiness of the 
data. For this reason, any quantitative conclusions of seasonality using 
this final seasonal year of data would be unreliable, and thus we use this 
data for observational and anecdotal purposes only.

Spectral analysis

The daily national case data obtained from 3/19/2020 to 3/20/2022 
(n = 732 days), was used to construct a time series with daily 
COVID-19 cases as the value at each individual timepoint, which in 
our study are days (18). In the following spectral analyses, we use 
centered, log-transformed data, which was obtained from the raw 
time series as shown in Eq. 1:
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Where xt is the centered time series, rt is the time series which 
represents the raw data, and t = 1, …, n represents each time point 

1 https://coronavirus.1Point3Acres.com
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where n = 732 days. Log-transformation of the raw time series data was 
preferred due to the significant variations in the amplitudes of the case 
spikes as the time series progresses. The log-scale allows for graphical 
visualization and comparison of all peaks despite these large variations 
in amplitude. Centering the data allows for easier identification of 
distinct peaks and troughs by allowing for pleasant visualization of 
each with respect to the mean of the time series. A cubic smoothing 
spline was fit to this data by fitting the cubic polynomials xt = mx,t + wx,t 
and rt = mr,t + wr,t where:

 m t t tt � � � �� � � �0 1 2
2

3
3
 (2)

and wt represents random noise. Each mt is calculated by 
regressing over n intervals, then a smoothing parameter is used to 
determine an appropriate degree of smoothness while avoiding over-
smoothing. These cubic smoothing spline procedures were conducted 
using a spline function in R. The resulting smoothed splines are shown 
as the blue line in Figure 1.

Spectral analysis is an approach to time series analysis in which 
periodic components of a time series are assumed to follow a 
sinusoidal oscillation (18). A periodogram was computed using a Fast 
Fourier Transform (FFT) algorithm in order to identify the 
predominant oscillatory frequencies, and thus periods, of the time 
series. Specifically, the periodogram, I(j/n), is calculated to identify the 
predominant oscillatory periods of a time series. Here, we define a 
period as the number of days (timepoints) for one cycle of oscillation. 
Thus, where frequency (⍵) of the oscillation is the number of cycles 

per day, the period of the oscillation is the inverse of frequency 
(period = 1/⍵). The periodogram is computed as follows:
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For all j = 1, …, n/2 − 1. Here, d(j/n) is the Discrete Fourier 
transform (DFT) with Fourier (fundamental) frequencies ⍵j = j/n. 
We then compute the DFT for each j using an FFT algorithm in R. The 
values I are thus computed for all frequencies between 0 and 0.5 and 
each of these values can be plotted to visualize the periodogram. The 
frequencies (⍵j) at which the value of I(⍵j) is largest represent the 
predominant frequencies of the time series, and the respective 1/⍵j 
represent the dominant periods of oscillation. The scaled periodogram 
P can be calculated from I as follows:
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Where the value of the scaled periodogram P(⍵j) at each j is the 
squared correlation that the sinusoid oscillating with frequency ⍵j has 
with the sample data xt. For this reason, we used the values of the 
scaled periodogram in our analyses and in Figure 2 as it provides a 
much more intuitive measure of the periodogram values.

In order to visualize each of these dominant oscillatory frequencies 
identified using the periodogram calculations above, we can fit the 
theoretical sinusoids which oscillate at these frequencies to the 

FIGURE 1

Daily COVID-19 incidences in the USA over the 2020–2022 seasonal years. The gray line represents the daily measures for the raw data time series. 
The blue line is the smoothed cubic spline fit to the time series. (A) Shows the raw national daily case data. (B) Shows centered, log-transformed daily 
cases with inflection points of the spline marked by dotted lines. Dates of local maxima are shown at the top of the graph, those of local minima are 
shown at the bottom.
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COVID-19 incidence data. We  will do this using multiple linear 
regression. Let:

 x A t wt t� �� � �cos 2�� �  (5)

Where xt  is the centered, log-transformed incidence data as above, 
A is the amplitude of oscillation, ɸ is the phase shift, and wt is random 
noise. We can use the trigonometric identity:

 cos cos cos sin sina b a b a b�� � � � � � � � � � �  (6)

to further expand Eq. 5, as follows:

 x t t wt t� � � � � � �� �� � ��1 22 2cos sin  (7)

Where β1 = A cos(ɸ) and β2 = −A sin(ɸ). By setting ⍵ = ⍵j for each of 
the predominant Fourier frequencies identified in the parallelogram 
calculations, we obtain a linear equation for each frequency ⍵j with 
outcome variable xt, regression coefficients β1 and β2, and explanatory 
variable t. By separating the phase shift term within the cosine expression 
(Eq. 5) using the above identities (Eq. 6), we can find the sinusoidal curve 
which best fits our time series data by using linear regression. When 
matched with the data, these best fit sinusoidal curves provide a clear 
illustration of the oscillations of the data and can be used to predict 
distinct peaks and troughs within the data (Figures 3, 4).

Correlation of the series

Correlation of the theoretical best fit sinusoids with the data was 
tested by calculating Pearson’s 𝝆 for each sinusoid with the cubic spline 

FIGURE 2

Periodogram of COVID-19 Incidence, where n  =  732  days and frequency are number of cycles per 732  days (2  years). (A) Is the periodogram computed 
using the centered, log-transformed incidence data. (B) Is the periodogram computed using the values of the cubic spline obtained in Figure 1B. 
(C) Shows and labels the periods of the dominant peaks from (A). (D) Is the smoothed periodogram computed using a Daniel kernel, as shown in Eq. 8.
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fitted to the centered, log-transformed data. Furthermore, we confirmed 
that each sinusoid was in fact the best fit to the data by plotting cross-
correlation functions (CCF, Supplementary Figures S3, S4), which show 
the [Pearson’s] correlation between the two-time series across various 
lags of the theoretical sinusoid.

Statistical analyses

All statistical analyses detailed above were conducted in R (18, 
19). All plots, tables, and figures were generated in both R and 
Microsoft Office Excel.

Sensitivity analyses

We repeated these analyses using percent test positivity data to 
account for possible differences in testing habits over the study period 
and found no significant difference in results.

Results

Visualization of the COVID-19 case data

We observed dominant COVID-19 outbreaks that recur each 
year (Figure 1A). There exist smaller peaks in incidence that are 

more difficult to visualize in the raw data due to large variations 
in the amplitudes of case spikes. However, each of these peaks as 
well as the inflection points of the data more easily detectable with 
the centered, log-transformed data (Figure  1B). The annual 
periodicity of COVID-19 incidences appears to follow a pattern 
with 3 peaks each year, with one dominant peak in the Winter and 
two smaller peaks in early/mid-Spring and mid/late-Summer, and 
a significant drop in cases between each peak (Figure 1B). Using 
the cubic spline fitted to the data, we estimated the dates and case 
counts of each peak (Table 1). It should be noted that the estimated 
case counts at some of the peaks may not be accurate due to the 
significant amount of noise in daily cases seen around the peaks. 
Specifically, daily cases at the Summer and Winter peaks in 2022 
reached much higher values in the raw data than estimated by the 
cubic spline. Thus, we  include in Table  1 the maximum case 
counts from the raw data nearby each of these peaks. Though not 
included in the analyses, we observe that the above noted pattern 
of seasonal COVID-19 outbreaks was repeated in the 2022–2023 
seasonal year, with incidence peaks in the Spring, Summer, and 
Winter (Supplementary Figure S1). However, there is no 
significant trough between the Spring and Summer peaks. Also, 
the Summer peak, rather than the Winter peak, represented the 
dominant outbreak of the 2022–2023 seasonal year. This is, 
however, deceitful and likely secondary to the significantly 
decreased reporting of daily cases by state and local governments 
in the Winter 2022–2023 season (20), as we  discuss in the 
discussion section below.

FIGURE 3

Best fit theoretical sinusoids shown with frequencies matching each of the four dominant peaks of the periodogram. Pearson’s correlation coefficient 
(𝝆) is shown for each plot (correlation of the sinusoid with the cubic spline). The gray line is the centered, log-transformed daily COVID-19 case data, 
the blue line is the cubic spline fitted to the data, the red line is the best fit theoretical sinusoid. (A) Shows the sinusoid with a period of 366  days, 
(B) shows the sinusoid with a period of 146.4  days, (C) shows the sinusoid with a period of 183  days, (D) shows the sinusoid with a period of 122  days.
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Characterization of the periodic 
components in incidence

We characterized the periodic components in COVID-19 
incidence using spectral analyses. Scaled periodogram values over all 
Fourier frequencies were computed as described in Eq. 3 and are 
plotted in Figure 2. The periodogram shows four dominant peaks, 
whose values and frequencies are shown in Table 2. The largest peak 
has a frequency of 0.00273 days−1 and period of 366 days, representing 

a sinusoid with a single peak per year. The next largest periodogram 
value is at frequency of 0.00683 days−1 and period of 146.4 days. The 
final two significant peaks have periods of 183 and 122 days and 
frequencies of 0.00546 days−1 and 0.00820 days−1, respectively. The 
peak representing the period of 91.5 days had a scaled periodogram 
value of 0.085, which was below the 0.1 cutoff value for our study.

In Figure 2D, we present a smoothed periodogram in which a 
Daniel kernel is applied to the periodogram values, which averages the 
values as shown:

FIGURE 4

Best fit theoretical sinusoids with period 146.4  days fit to annual data. Pearson’s correlation (𝝆) of the sinusoid with the cubic spline is shown. The gray 
line is the centered, log-transformed daily COVID-19 case data, the blue line is the cubic spline fitted to the data, the red line is the best fit theoretical 
sinusoid. (A) Is the sinusoid fit to the data from the 2020–2021 seasonal year. The cyan line is the positive lagged (by 11  days) sinusoid. The Pearson’s 
correlation coefficient in the brackets is that of the lagged sinusoid with the cubic spline. (B) Is the sinusoid fit to the data from the 2021–2022 
seasonal year.

TABLE 1 Date and daily confirmed case count at each of the local maxima (peaks) for the 2020–2021 and 2021–2022 seasonal years.

Season 2020–2021 2021–2022

Peak date Cases (spline)a Cases (raw)b Peak date Cases (spline)a Cases (raw)b

Spring 4/21/2020 29,236 37,162 4/12/2021 67,716 105,154

Summer 7/22/2020 61,325 77,048 8/29/2021 171,056 314,495

Fall – – – – – –

Winter 12/25/2020 220,836 333,900 1/14/2022 621,411 1,408,577

Dates are written in M/D/Y format. Peak date is obtained as the local maximum at each seasonal peak of the cubic spline fitted to the raw data of Figure 1A.
aEstimated case counts at each peak date obtained from the cubic spline fit to the raw data.
bMaximum raw case counts at ±10 days from the peak date (as peak dates from the smoothed cubic spline do not exactly correlate with the maximum daily case count from the raw data at each 
peak).

https://doi.org/10.3389/fpubh.2023.1298593
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Shamsa et al. 10.3389/fpubh.2023.1298593

Frontiers in Public Health 07 frontiersin.org

 
s u u uk k k k� � �� �

1

3

1

3

1

3
1 1

 
(8)

Where sk is the smoothed periodogram value and uk is the 
unsmoothed value, for all k = 2, …, 731. The smoothed periodogram 
shows the two largest peaks with periods 366 and 146.4 days remain 
significant whereas the other peaks are smoothed out. This is evidence 
that the other peaks surrounding the 146.4 days peak in the raw 
periodogram were likely a result of noise or imperfect sinusoidal 
activity within the data. The effect of this noise is also evidenced by 
the appearance of isolated clusters of small peaks at frequencies ~0.14, 
~0.28, and ~0.43 in Figure 2A. These peaks, called harmonics, are the 
result of non-sinusoidal behavior in the data. On further inspection, 
the harmonics occur at multiples of the frequency 105/732, and can 
be represented by � �h k hk, � , where ωh = 105/732 and k = 1, 2, …, 7. 
When calculating periodogram values using points from the cubic 
spline in Figure 1B, the harmonics disappear while the major peaks 
remain (Figure 2B) due to the fact that the smoothed cubic spline 
eliminates the noise in the data. For the sake of completeness, we also 
calculated periodogram values for the 2022–2023 seasonal year alone. 
In order to overcome the significant noisiness in the data, we used the 
7 days moving average around each datapoint (as seen in 
Supplementary Figure S1B) when calculating the periodogram values. 
Three significant periodogram peaks were found at the following three 
adjacent frequencies: 0.00282, 0.00563, and 0.00845 days−1 in order 
from the greatest to the least periodogram value 
(Supplementary Figure S2). The periods represented by these 
frequencies are: 355 days, 177.5 days, and 118.3 days, respectively.

Plotting the theoretical sinusoids

Using the frequencies of the dominant periods in the data 
(Table 2), we constructed the theoretical sinusoids to be fit to the data 
using Eqs. 5–7 above. Figure 3 shows the best fit sinusoid for each of 
the four significant periods in order of largest periodogram value, as 
well as the Pearson’s correlation coefficient (𝝆) of that sinusoid with 
the data. Cross-correlation functions plotted for each of these 
theoretical sinusoids confirm that each sinusoid shown is best fit to 
the data (Supplementary Figure S3). All best fit sinusoids had a strong 
positive correlation with the data.

In Figure  3A, the sinusoid with period 366 days predicts the 
general increase in cases, when overlooking the local minima, as the 

year progresses towards the annual dominant peak in the Winter 
season followed by a drop in cases toward an annual minimum in the 
late Spring/early Summer. This explains the very strong positive 
correlation of this sinusoid with the incidence data (𝝆 = 0.744). 
Figures 3B–D show the sinusoids that capture the multiple peaks each 
year. The sinusoid with period of 146.4 days (Figure 3B) had a strong 
positive correlation (𝝆 = 0.413) with the data. Although it does not fit 
well to the initial, smallest peak in the Spring of 2020, it fit very well 
to each of the peaks and troughs of the 2021–2022 seasonal year. The 
sinusoid with period 183 days did not align well visually with several 
of the peaks in the data, though it had a good correlation (𝝆 = 0.346). 
Lastly, the sinusoid with period of 122 days aligned well with most of 
the peaks; however, the width of its peaks was much smaller than most 
of the peaks in the data, resulting in a lower correlation (𝝆 = 0.295).

Upon separating the data into two separate years, the sinusoid 
with period of 146.4 days aligns very well with each of the 3 annual 
COVID-19 peaks and fits the width of each peak most accurately 
(Figure  4). In the 2020–2021 year (Figure  4A), there was a slight 
improvement in the correlation of the best fit sinusoid (𝝆 = 0.431), but 
it did not fit the initial 2020 Spring peak well. The CCF for the 
sinusoids in Figure  4A (Supplementary Figure S4) shows that a 
positive lag (rightward shift) of 11 days results in the greatest 
correlation (𝝆 = 0.500) of the theoretical sinusoid with the data. This 
significant increase in the correlation of the lagged sinusoid is due to 
the truncation of the initial 11 data points of the data where there was 
a misalignment with the first peak in the Spring of 2020, resulting in 
a sinusoid that matches each of the peaks and troughs much more 
accurately. In Figure 4B, the sinusoid with period 146.4 days has a very 
good fit to the 2021–2022 data with peaks and troughs matching 
within ±10 days (except the first peak where the difference was 
20 days), resulting in a very strong positive correlation (𝝆 = 0.730).

Discussion

Definition and quantitative characterization of COVID-19 
seasonality are not only critical to the understanding of the COVID-19 
pandemic, but also needed for planning economics and public health 
policies. The current work describes an in-depth statistical study of 
the waves in the epidemic spreading of COVID-19 in two full calendar 
years, from March 19, 2020, to March 20, 2022, in the contiguous 
United States. We did not include the data of COVID-19 incidences 
collected from 2022 to 2023 because the testing and case reliability 
were significantly decreased in the final year of case tracking.

Our analyses uncovered an obvious periodicity in COVID-19 
incidences and revealed four dominant periods of oscillation in the 
US over the 2 years of data analyzed (Figures 3, 4). Specifically, the two 
most dominant periods of oscillation were 366 days and 146.4 days. 
The period of 366 days indicates that there is a single dominant 
COVID-19 outbreak that occurs approximately once every year, 
which correlates with the outbreak seen in the early/mid-Winter 
months. However, it is obvious by just mere observation that there 
exists more than just a single annual peak in the data. Rather, this 
periodogram peak is likely the result of the large proportion of cases 
lying in the Winter months, thus skewing the correlation in favor of 
this dominant yearly peak. The period of 146.4 days indicates 
approximately 3 peaks in incidence per year that aligns the 3 annual 
outbreaks: the dominant Winter peak mentioned above and two 

TABLE 2 Period, frequency, periodogram value (Eq. 3), and scaled 
periodogram value (Eq. 4) of each of the dominant peaks found in the 
periodogram in Figure 3.

Dominant 
period 
(1/ω)

Frequency 
(ω)

Periodogram 
value

Scaled 
periodogram 

value

366 days/cycle 0.00273 days−1 154.8 0.846

146.4 days/

cycle

0.00683 days−1 51.1 0.279

183 days/cycle 0.00546 days−1 34.4 0.188

122 days/cycle 0.00820 days−1 28.6 0.157

91.5 days/cycle 0.0109 days−1 15.6 0.085

A scaled periodogram value of 0.1 was set as the threshold for significance.
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smaller peaks during mid-Spring and mid-Summer. This sinusoid 
appears to characterize the data most accurately as it fits very well to 
each of the 3 yearly peaks in the data (Figures 3, 4). The periodogram 
also indicated two smaller peaks with sinusoidal periods of 183 days 
and 122 days. These peaks likely result from imperfect sinusoidal 
activities within the data surrounding the periodogram peak 
attributed to the sinusoid with period of 146.4 days, and are not 
accurate representations of the data (Figures  3C,D). Though not 
included in the main analysis, we also showed that the dominant 
periods of oscillation in the 2022–2023 data were 355 days, 177.5 days, 
and 118.3 days. This emulates the oscillatory periods in the 2020–2022 
data, as the dominant period is that of 355 days due to the dominating 
yearly peak in incidence, and the periods of 177.5 and 118.3 days are 
similar to the 146.4 days period of the 2020–2022 data, again 
indicating that there exists a tri-annual outbreak pattern, as can 
be seen in Supplementary Figure S1B.

The results we achieved suggest that a single seasonal COVID-19 
pattern that repeats over a 1 year fixed period cannot be observed in 
the US (Figure 1). Instead, our analysis identified several outbreaks 
each year, which appear to occur with a fixed frequency. Unlike 
seasonal patterns seen in viruses such as the Influenza virus 
(Supplementary Table S1), where annual outbreaks are closely related 
to environmental factors such as temperature and humidity (21), 
climate does not appear to play a major role in determining COVID-19 
outbreaks. While there is a clear and regular seasonal pattern in the 
outbreaks, they occur across multiple seasons between which climate 
varies significantly. Thus, although climatological factors may 
be involved in the occurrence of COVID-19 outbreaks, it appears that 
there exist more dominant factors that determine the dynamics of the 
SARS-COV-2 virus which remain to be fully elucidated.

Seasonal patterns in COVID-19 incidences have also been found 
in other countries. A recent Fourier spectral analysis of the SARS-
CoV-2 cases across 30 countries revealed the recurrence of at least one 
COVID-19 wave, often two or more, repeating over a variable period, 
in the range of 3 to 9 months (7). Indeed, the studies on the COVID-19 
waves across the world showed modest variation in the seasonality of 
COVID-19 incidences, likely affected by environmental factors, travel 
restriction or lockdown policies, and vaccination campaign (8, 22–24). 
For example, in Japan and United Kingdom, infection waves of about 
170 days were observed during the vaccination campaign (23). The 
studies on COVID-19  in Nigeria and Uganda showed interesting 
seasonality results, but only 2 peaks per year in these countries (2). 
The data showed that more cases of COVID-19 are expected in the 
first (January–March) and third (July–September) quarters of a year 
in Nigeria and Senegal whereas in DRC and Uganda, more cases of 
COVID-19 may likely be reported in the second (April–June) and 
fourth (October–December) quarters (Supplementary Table S1).

By identifying the predictable seasonality of COVID-19 outbreaks, 
our findings provide important information for public health 
preventative efforts to control future outbreaks. Supplies can 
be  distributed, vaccination efforts can be  focused and timed, and 
in-hospital/community preparations can be made in anticipation of 
predictable outbreaks. For even the most efficacious vaccines, vaccine 
effectiveness (VE) has been found to peak 1–2 months following 
vaccine administration then decline monotonically thereafter (10). 
Specifically, the peak VE for mRNA-based vaccines appears to 
be approximately 2 months following administration. Thus, based on 
our results for the 2020–2022 seasons, it would be  beneficial to 

administer mRNA-based booster vaccinations to patients in the 
United States approximately 2 months before the expected Winter case 
spike, e.g., in mid-October/early November from the current data. At 
first glance it may seem as though the Winter season of the 2022–2023 
dataset was the smallest of the 3 incidence peaks in that year 
(Supplementary Figure S1B). However, this is likely untrue and likely 
secondary to decreased daily case reporting, as daily COVID-19 
hospitalizations during the 2022–2023 seasonal year were highest 
during the Winter season (20). One could also argue that a bi-annual 
booster vaccine schedule may be  beneficial for high-risk and 
immunocompromised patients to ensure year-round coverage due to 
the multiple yearly peaks and the significant loss in VE 7 months after 
administration (from 95.9% VE at 2 months to 80.3% VE at 7 months 
post-administration). In addition to instilling booster vaccine 
schedules, COVID-19 testing should be encouraged in symptomatic 
and high-risk patients and public awareness of the benefits of hand 
washing, face-masks, and social distancing should be stressed during 
predicted incidence peaks in mid-Spring, -Summer, and -Winter 
(11–13). Finally, as coronaviruses have repeatedly caused multiple 
deadly epidemics in the past, such as the severe acute respiratory 
syndrome (SARS-CoV-1) and middle eastern respiratory syndrome 
(MERS), seasonality studies are crucial to understanding the patterns 
of coronavirus infections. Thus, though the patterns we see in the 
initial years of the COVID-19 pandemic may change, these studies 
provide pertinent information on the initial dynamics of the viruses 
and will be critical in guiding anticipatory public health efforts to 
guard against case surges in future coronavirus epidemics/pandemics.

The strength of this study is that we  successfully identified and 
characterized a tri-annual peak pattern in COVID-19 incidences in the 
United  States. These proposed incidence waves showed excellent 
goodness of fit to the raw data. Thus, our results are rigorous to 
vaccination campaigns and other public health measures which greatly 
affected results in other studies on disease periodicity (23, 25). 
Furthermore, we are able to use these predictable incidence waves to 
make public health recommendations to guide the timing of vaccinations 
and non-pharmacological infection control measures, as discussed 
above. Additionally, our study is unique in that it utilizes virtually all 
available daily United States COVID-19 incidence data across three 
separate seasonal years. This is the most reliable data that will likely 
be available for this pandemic, as daily incidence reporting has halted 
due to the declining availability of data at both state and local levels (20). 
Currently, the most reliable estimations of disease incidence are weekly 
data reports of COVID-19 hospitalization and test-positivity rates posted 
by the CDC (26). This may affect the accuracy of conclusions in future 
studies as hospitalization and test-positivity data are plagued with biases 
due to their dependence on disease severity, which changes drastically 
with viral strains and vaccination (27), testing procedures and the 
decrease in result reporting secondary to increased home testing (28), 
and selection for symptomatic individuals. Furthermore, regardless of 
future data, our study describes the early dynamics of the COVID-19 
disease at the most important portion of the pandemic in both its early 
stages and its climax.

Our study is not without limitations, however. The data available 
to analyze was limited by the fact that the pandemic has only existed 
for three full seasonal years, the final year of which consisted of very 
noisy data that was difficult to draw accurate conclusions from. Thus, 
it is very possible that disease dynamics may change over coming 
years, and the conclusions from this study must be re-validated in the 
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future as more years of data become available. Furthermore, our 
conclusions may be limited by the fact that we did not adjust the data 
for emergence of new viral variants, vaccination rates, lockdown 
orders, social distancing, mask mandates, and public holidays. 
However, a main aim of our study was to use raw case data to identify 
disease dynamics as it co-existed with these factors. We showed that 
the patterns seen remained consistent regardless of whether these 
factors existed or not. Thus, these patterns can be considered inherent 
characteristics of the disease in its early stages, independent of initial 
public health efforts.

Lastly, it should be  noted that, although the outbreaks can 
be predicted by the measures we described here, our study cannot 
be used to predict the amplitudes of the incidences in each outbreak. 
The amplitude of a COVID-19 outbreak is complex and depends on a 
multitude of variables that are yet to be fully elucidated, including the 
emergence of new SARS-CoV-2 strains, social distancing efforts, 
vaccination, and environmental factors, etc. This is evidenced by the 
lack of a dominating peak in the Winter of the 2022–2023 seasonal 
year (Supplementary Figure S1) whereas this peak was dominant in 
the 2020–2021 and 2021–2022 seasonal years.

Future directions

This study lays the foundations of characterizing the seasonality 
of COVID-19 incidence in the United States; next, it will be essential 
to identify the cause of this regular periodicity. As mentioned above, 
these incidence waves were impervious to vaccination campaigns, did 
not directly correlate with public holidays, and did not seem to 
be correlated with any environmental factors. Rather, research on 
inherent properties of the virus, such as studies on the association of 
variant emergence, waning host immunity, and viral transmission and 
stability with these regular periods, should be conducted to uncover 
potential mechanisms behind its seasonality. Additionally, the 
amplitudes of peak incidences varied greatly with each outbreak. 
Though environmental factors have been found to be significantly 
associated with COVID-19 incidence (29), the variation in amplitudes 
of peaks appears to be multifactorial and likely involves a combination 
of environmental, public health, immunological, and viral factors. 
Further studies will be needed to elucidate the interplay between these 
factors which resulted in the peak amplitude variation which we saw 
in this study. Finally, as we implement the highlighted public health 
interventions to combat these predicted surges, it will be necessary to 
revisit these studies with future data to assess whether the seasonality 
of COVID-19 evolves over time.
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