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The aim of this study is to analyze the performance of classifying stress and non-
stress by measuring biosignal data using a wearable watch without interfering 
with work activities at work. An experiment is designed where participants wear a 
Galaxy Watch3 to measure HR and photoplethysmography data while performing 
stress-inducing and relaxation tasks. The classification model was constructed 
using k-NN, SVM, DT, LR, RF, and MLP classifiers. The performance of each 
classifier was evaluated using LOSO-CV as a verification method. When the top 9 
features, including the average and minimum value of HR, average of NNI, SDNN, 
vLF, HF, LF, LF/HF ratio, and total power, were used in the classification model, it 
showed the best performance with an accuracy of 0.817 and an F1 score of 0.801. 
This study also finds that it is necessary to measure physiological data for more 
than 2 or 3  min to accurately distinguish stress states.
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1. Introduction

Low-moderate levels of perceived stress have been shown to be associated with increased 
Working Memory (WM)-related neural activation, resulting in more optimal WM behavioral 
performance (1). However, higher stress scores are associated significantly with lower 
productivity scores (2). Stress can affect health directly through autonomic and neuroendocrine 
responses, but it can also affect health indirectly through changes in health behaviors (3). Mental 
stress in workers can reduce the quality of labor and increase a nation’s economic and industrial 
losses due to high medical costs and related insurance payments.

Recent studies have aimed to objectively quantify mental stress by analyzing physiological 
responses to stress using wearable sensors (4–6). Lee et al. (4) measured Electrocardiogram 
(ECG) and Electroencephalogram (EEG) data while the participants played money games, 
and they analyzed the effects of stress on human physiological response. The ECG sensors 
were attached based on the bipolar limb leads and 14 EEG channels were attached to the 
scalps of the participants. In a study by Acerbi et al. (5), ECG information was collected using 
a wearable Bluetooth chest belt, and Galvanic Skin Responses (GSR) were collected using a 
finger-type GSR sensor. Their analyzes of the ECG and GSR data highlighted significant 
differences between stressed and non-stressed individuals. In a study conducted by Chalmers 
et  al., Heart Rate (HR) was measured using a wearable Fitbit Versa 2 device on the 
nondominant wrist, and HR Variability (HRV) was measured using a three-lead ECG on the 
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chest. In the stress state, the HR and the Low-Frequency (LF) and 
High-Frequency (HF) increase significantly (6). However, it is 
disruptive for workers to wear these devices and measure their 
biosignal information at work.

In addition, researches are being conducted to collect data using 
wearable watches and then apply machine learning techniques to 
measure mental stress (7–9). Arsalan and Majid (7) used 
electroencephalography, GSR, and Photoplethysmography (PPG) 
signal data acquired during the resting state and public speaking 
activities to classify stressed and non-stressed groups. The 
classification was performed using five different classifiers. Dalmeida 
and Masala (8) collected HR from four Apple Watch users during a 
break while listening to relaxing music and after an 8-h workday. After 
extracting and normalizing HRV features from HR, they split the 
training and testing datasets 80:20 and used the Multilayer Perceptron 
(MLP) classifier. Can et  al. (9) collected heart activity, skin 
conductance and accelerometer signals using Empatica E4 and 
Samsung Gear from algorithm programming competition 
participants. They discriminated contest stress, relatively higher 
cognitive load (lecture) and relaxed time activities by using different 
machine learning methods.

However, to develop a system that can monitor and identify the 
current mental stress of knowledge workers at work, it is necessary to 
measure and analyze physiological data by simulating their work and 
rest behaviors. Additionally, noninvasive methods that can quickly 
measure biosignals to classify and predict mental stress without 
disrupting work are required. Thus, we  set the following research 
questions and designed an experiment to measure the mental stress 
state of knowledge workers by performing stressful tasks and 
relax tasks.

• Is it possible to classify stressed and non-stressed states using 
biosignals data measured by a wearable watch?

• For the prediction of stressed and non-stressed states, how long 
is it appropriate to measure biosignal data with a wearable watch?

2. Experimental environments for data 
collection

2.1. Experiment environment

The experiment in this study were approved by the Korean Public 
Institutional Bioethics Committee (http://public.irb.or.kr/; approval 
number: P01-202109-13-002). The 80 participants were involved in 
the experiment and data from 13 subjects were excluded from the 
analysis for reasons including device malfunction, missing some data, 
and abnormal data collection due to Bluetooth communication errors. 
The 67 participants used in the analysis were 39 men (58%) and 28 
women (42%), with an average age of 36.5 years (standard deviation 
8.6 years).

The top left of Figure 1 represents the data collection environment. 
We developed the WellMind Application (App) and installed on the 
Samsung Watch3 to collect the HR and peak to peak interval (PPI) 
data from the Watch3 and to transmit the data to the Galaxy Tablet. 
We  developed an application called WellMind Space (WSpace), 
installed it on a tablet, connected the Watch3 and tablet via Bluetooth, 
and collected data using the app. The WSpace possesses a labeling 
function that permits the annotation of stressful and relaxing task data 

as stress and non-stress labels, respectively. All data were stored on a 
computer installed with PostgreSQL (10).

2.2. Experimental procedure

The experimental procedure was as follows.
Preparation: The participants completed the consent form and 

profile questionnaire and then placed the Watch3 on their wrists. The 
operator established a Bluetooth connection between the Watch3 and 
the WSpace.

Stress task: The participants followed the operator’s instructions 
and performed a stress task for 5 min, that is, the operator sent the 
participants three emails which asked to search for information on the 
specific topics at 1 min intervals and each replied separately to three 
emails. This stress-inducing task was chosen following (11), where 
email writing was used as a stress-inducing task. In addition, to keep 
the participants’ stress level during the physiological data 
measurement, they were asked to memorize contents of the email for 
later presentation.

Measurement of PPG data after completing the stress task: The 
operator measured the participants’ HR and PPI data using 
the Watch3.

Announce email contents: Participants had to announce the 
contents of the email; this was done to keep participants stress state 
after the stress task before the PPG data measurements.

Survey about stress task: After announcing the email content, the 
participants completed a survey on their experiences with stress.

Relaxation task: Participants then performed one of three 
relaxation tasks: closing their eyes, stretching, or using a massager. The 
participants were divided into three groups to account for 
counterbalancing, and each group performed the relaxation tasks in a 
different order.

Measurement of PPG data after completing the relaxation task: The 
operator measured the participants’ HR and PPI data.

Survey about relaxation task: After performing the relaxation task, 
the participants completed a questionnaire about their relaxation task.

Participants repeated the above procedure three times. The 
bottom of Figure 1 represents the experiment procedure diagram.

3. Data manipulation

3.1. Photoplethysmography

PPG sensor uses a photodetector to measure the intensity of light 
reflected from the tissue, and changes in blood volume can 
be measured depending on the amount of light detected. Similar to 
ECG, PPG exhibits stable cardiac and respiratory activity. PPI defined 
as the time interval between successive peaks of the PPG waveform, 
can be utilized to derive the Pulse Rate Variability (PRV), which shares 
similarities with the ECG-derived HRV (12).

Because mental stress affects the Autonomic Nervous System 
(ANS), PRV is a means to observe ANS responses indirectly. 
Therefore, studies are being conducted to classify and predict the 
presence or absence of stress state using PPG signals (7, 13). HRV data 
can be used for stress detection by analyzing the time- and frequency-
domain features (7, 13, 14). In particular, the Standard Deviation of 
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Normal-to-Normal intervals (SDNN) and Root Mean Square of 
Successive Differences between normal heartbeats (RMSSD) which 
are related to the interval between consecutive heartbeats (the 
interbeat interval) and LF/HF in the frequency domain appear to 
be the primary factors that differentiate stress states. These features 
can also be used when analyzing PRV (12).

3.2. Feature variables

To analyze the mental stress of knowledge workers during 
working hours, it is necessary to acquire biosignals from these workers 
without disturbing them. Therefore, wrist-worn devices are more 
user-friendly in daily life than chest-worn devices. The Watch3, which 
integrates a PPG sensor to measure light intensity changes in the 
microvascular tissue and derive HR and PPI information, is worn on 
the wrist and offers a convenient and noninvasive approach for HR 
and PPI measurements (15). Hence, this study employed a Watch3 to 
collect these data.

The top right of Figure  1 illustrates the process of extracting 
features from HR and PPI data sequences. After completing each task, 
participants had 5 to 7 minutes of physiological data measurements. 
Moving a 3-min window forward with a shift size of 10 s in the HR 
and PPI data sequences collected from each participant, a total of 17 
independent features were extracted from the data within each 
window to form a data sample. The minimum, mean, median, and 
maximum values were calculated from a window in the HR data 
sequence. Time-domain and frequency-domain features were 
calculated from a window in the PPI data sequence. Time-domain 
features include the average NN Intervals (NNI), RMSSD, SDNN, 
Standard Deviation of Differences between adjacent NN intervals 

(SDSD), Percentage of successive NN intervals that differ by more 
than 50 ms (PNN50), and PNN20 values. Frequency domain features 
include LF, HF, LF/HF ratio, LF power in normalized units (LFnu), HF 
power in normalized units (HFnu), total power, and very Low 
Frequency (vLF).

The label “stress” was assigned to data samples which were 
constructed from physiological data measured when performing the 
stress task, and the label “non-stress” was assigned to data samples 
obtained from the relaxation task. Since one participant performs 6 
tasks and the measurements were made over 5 min for each task, an 
average of 432 data samples per a participant can be  obtained. 
Physiological data varies depending on each subject’s personal health 
status. Subsequently, min–max normalization was applied to each 
feature of each participant to generate the final data features for 
analysis. The collection of all data samples from all participants was 
used as an input to machine learning algorithms for binary 
classification of stress and non-stress.

4. Classification results

4.1. Classification analysis

In this study, k-Nearest Neighbor (k-NN), Support Vector 
Machine (SVM), MLP, Decision Tree (DT), Random Forest (RF), and 
Logistic Regression (LR) classifiers of the scikit-learn library was used 
(16). To achieve the highest performing classification model, 
hyperparameter tuning was performed using GridsearchCV function 
for each algorithm used. To evaluate the classifiers, Leave-One-
Subject-Out Cross-Validation (LOSO-CV) were performed. In 
LOSO-CV, from the 67 participants, the data for 66 people were used 

FIGURE 1

Experiment design and data feature extraction.
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as the training set, and the data from one participant was used as the 
test set. This process was repeated 67 times to measure the 
performance and to calculate the average to determine the 
overall performance.

The classification models were evaluated using the accuracy, 
precision, recall, and F1 scores as evaluation measures, as shown in 
Eqs. 1–4 (17), based on the confusion matrix. True Positive (TP) is the 
number of data samples predicted to be positive when belonging to 
the positive class. False Positive (FP) is the number of data samples 
predicted to be positive when belonging to the negative class. True 
Negative (TN) and False Negative (FN) are defined similarly. 
Matthews Correlation Coefficient (MCC) as expressed in Eq. 5 can 
also be  used to evaluate the performance of the classification 
model (18).

 
accuracy TP TN

TP FN FP TN
=

+
+ + +  

(1)

 
precision TP

TP FP
=

+  
(2)

 
recall TP

TP FN
=

+  
(3)

 
F score Precision Recall

Precision Recall
1 2− = ×

×
+  

(4)

 
MCC

TP TN FP FN
TP FN TN FP TP FP TN FN

=
∗( ) − ∗( )

+( ) +( ) +( ) +( )  
(5)

In this study, the positive corresponds to the stress state and the 
negative corresponds to the normal state. To accurately predict the 
stress state, it is important to optimize the performance measures of 
TP and TN and minimize the occurrence of FP and FN. In particular, 
a high TP rate (correct identification of stressed cases) and a low FN 
rate (correct identification of unstressed cases) are crucial. It is 
necessary to find a model with a high-recall value to effectively predict 
stressed knowledge workers and guide them to take breaks. High F1 
scores indicate that the corresponding classification model effectively 
predicts stressed workers.

This study constructs six machine-learning models and conducted 
a classification analysis to determine whether mental health state was 
categorized as either stress or non-stress.

Table 1 lists the results of the classification analysis using the 
LOSO-CV for the data generated using a 3-min window. The 
results showed that the LR classifiers achieved the best performance 
with accuracy of 0.814, precision of 0.843, recall of 0.805, F1 score 
of 0.796, and MCC of 0.643. The k-NN classifier achieved the 
lowest performance with an accuracy of 0.719 and an F1 score 
of 0.692.

4.2. Window size

Further analysis was conducted to determine the optimal window 
size required for measuring physiological data to predict the stress 
experienced by knowledge workers during working hours. In the 
analysis by LOSO-CV, the LR classifier was used as the prediction 
model owing to its best performance, as shown in Table 2, and various 
window sizes ranging from 30 s to 300 s (with 30-s intervals) were 
tested. This analysis aimed to identify the most appropriate time for 
measuring physiological data during working hours to accurately 
predict the stress status of workers.

The classification accuracy significantly improved when the 
window size was greater than 2 min. The highest performance was 
achieved when the window size was set to 150, with an accuracy of 
0.816, precision of 0.843, recall of 0.807, F1 score of 0.8, and an MCC 
value of 0.646. It can be suggested that measuring physiological data 
for at least 2–3 min is necessary to accurately distinguish between 
stressed and non-stressed states in knowledge workers.

4.3. Feature selection

Performance improvements in classification models typically 
depend on the selection of a suitable set of features. Gioia et al. (19) 
used a feature selection strategy based on Recursive Feature 
Elimination (RFE).

TABLE 1 Classification analysis using leave-one-subject out CV for data 
generated using a 3-min window.

Classifier Accuracy Precision Recall F1 MCC

k-NN 0.719 0.729 0.700 0.692 0.426

SVM 0.743 0.766 0.730 0.723 0.491

MLP 0.741 0.760 0.725 0.718 0.482

DT 0.756 0.787 0.739 0.730 0.519

RF 0.788 0.821 0.770 0.766 0.585

LRa 0.814 0.843 0.805 0.796a 0.643

aHighest F1 score.

TABLE 2 Results of logistic regression classification analysis after 
changing the window size.

Size Accuracy Precision Recall F1 MCC

30 s 0.762 0.792 0.758 0.747 0.545

60 s 0.775 0.806 0.770 0.761 0.572

90 s 0.795 0.825 0.791 0.782 0.612

120 s 0.801 0.832 0.796 0.787 0.624

150 sa 0.816 0.843 0.807 0.800a 0.646

180 s 0.814 0.843 0.805 0.796 0.643

210 s 0.805 0.842 0.792 0.784 0.628

240 s 0.808 0.846 0.792 0.784 0.630

270 s 0.815 0.848 0.791 0.787 0.632

300 s 0.826 0.862 0.793 0.792 0.646

aHighest F1 score.
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This study employs the LR-RFE model to determine how 
performance varies depending on the features utilized. Figure  2 
compares the performance of LOSO-CV using the selected features 
after the feature rank is determined by applying RFE with LR to the 
entire dataset. The features are displayed on the x-axis based on rank, 
and the accuracy and F1 score are measured by adding the features in 
the top rank individually. The best performance was obtained with an 
accuracy value of 0.817 and an F1 score of 0.801 when nine top-ranked 
features were used, including 2 HR-related features, HR_mean and 
HR_min; two time-domain features, Mean_NNI and SDNN; and five 
frequency-domain features, vLF, HF, LF, LF/HF ratio, and Total Power.

5. Discussion and conclusions

Since mental stress can reduce the quality of work and worsen 
health conditions, the technology needed for a mental health 
management system that monitors the mental stress of knowledge 
workers in the workplace must continue to be researched. In this study, 
HR and PPI data were measured using the Galaxy Watch3 rather than 
a chest-worn ECG device. The classification model was constructed 
using k-NN, SVM, DT, LR, RF, and MLP classifiers. The performance 
of each classifier was evaluated using LOSO-CV as a verification method.

To determine the optimal duration for measuring biosignals to 
classify and predict the mental stress, the HR and PRV data features 
were calculated using varying window sizes. The window size was 
varied from 30 to 300 s. The best performance was achieved with an 
accuracy of 0.816, precision of 0.843, recall of 0.807, F1 score of 0.8, 
and MCC of 0.646, using an LR classifier with 17 features extracted by 
setting the window size to 150. The results of this study show that it is 
possible to analyze mental stress using PPG data obtained over a 
sufficiently short period of time of 2 to 3 min that does not interfere 
with work activities at work.

Additionally, the LR-RFE model was utilized to investigate how 
performance changes depending on the type of features used. The best 
performance exhibited an accuracy value of 0.817 and an F1 score of 
0.801 when the nine top-ranked features were used. The feature 
selection results can be used to achieve a classification model suitable 
for highest performance.

To develop a system that can measure mental stress during 
working hours and guide rest in the event of stress, it is necessary to 
obtain biosignals without disturbing workers. In our study, HR and 
PPI data were collected using a Watch3 to noninvasively measure 
biosignals. However, it should be  noted that PPG signals have a 
limitation in that they are sensitive to motion artifacts caused by 
hand movements (20). Recently, studies on HR measurement 
methods based on remote PPG detection using deep learning-based 
facial videos have also been implemented (21, 22). In order to 
minimize worker inconvenience and simultaneously improve 
prediction performance, research should be  conducted on stress 
analysis through the combination of facial images and biosignal 
information through wearable watches. Additionally, we  plan to 
conduct research on the development of stress monitoring and 
intervention apps that incorporate these technologies.
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FIGURE 2

Comparison of accuracy and F1-scores when feature subsets are used based on feature ranking.
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