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Background: Long COVID is a clinical entity characterized by persistent health 
problems or development of new diseases, without an alternative diagnosis, 
following SARS-CoV-2 infection that affects a significant proportion of individuals 
globally. It can manifest with a wide range of symptoms due to dysfunction of 
multiple organ systems including but not limited to cardiovascular, hematologic, 
neurological, gastrointestinal, and renal organs, revealed by observational studies. 
However, a causal association between the genetic predisposition to COVID-19 
and many post-infective abnormalities in long COVID remain unclear.

Methods: Here we  employed Mendelian randomization (MR), a robust genetic 
epidemiological approach, to investigate the potential causal associations 
between genetic predisposition to COVID-19 and long COVID symptoms, namely 
pulmonary (pneumonia and airway infections including bronchitis, emphysema, 
asthma, and rhinitis), neurological (headache, depression, and Parkinson’s 
disease), cardiac (heart failure and chest pain) diseases, and chronic fatigue. Using 
two-sample MR, we  leveraged genetic data from a large COVID-19 genome-
wide association study and various disorder-specific datasets.

Results: This analysis revealed that a genetic predisposition to COVID-19 was 
significantly causally linked to an increased risk of developing pneumonia, airway 
infections, headache, and heart failure. It also showed a strong positive correlation 
with chronic fatigue, a frequently observed symptom in long COVID patients. 
However, our findings on Parkinson’s disease, depression, and chest pain were 
inconclusive.

Conclusion: Overall, these findings provide valuable insights into the genetic 
underpinnings of long COVID and its diverse range of symptoms. Understanding 
these causal associations may aid in better management and treatment of long 
COVID patients, thereby alleviating the substantial burden it poses on global 
health and socioeconomic systems.
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1 Introduction

Long-term residual health problems or the onset of new diseases 
following Coronavirus disease 2019 (COVID-19) that is caused by 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are 
termed as post-acute sequalae of SARS-CoV-2 (PASC) or Long 
COVID that is a recognized and multi-systemic clinical entity with 
onset ≥3 months after a probable or confirmed diagnosis of 
COVID-19 and lasting for ≥2 months, with symptoms not explained 
by any other alternative diagnosis (1). It can manifest with a broad 
range of clinical phenotypes owing to respiratory, cardiovascular, 
neurological, gastrointestinal, renal, immunological, reproductive and 
other organ system dysfunction (2). Its global prevalence varies 
widely, ranging from 7.5–45% individuals including children and 
adolescents (3–7) and even conservatively it is estimated to affect ~65 
million individuals globally (2); though it is likely this number is much 
higher due to the large number of unreported cases. The etiology of 
long COVID is complex and influenced by several factors, such as 
severity of initial infection, age, sex, presence of comorbidities, e.g., 
obesity and host genetic variations, such as at the FOXP4 locus (8–13). 
The burden of long COVID was also found to be  significant in 
individuals with SARS-CoV-2 breakthrough infections (BTI) that 
occur post receiving vaccine booster dose (14). However, vaccination 
partially ameliorated the risk of mortality and extreme adverse 
outcomes associated with BTI in long COVID subjects (14, 15).

Frequently observed long COVID symptoms include chronic fatigue 
and respiratory abnormalities, e.g., dyspnea or shortness of breath (5, 11, 
16). Dyspnea and cough were found to persist in 40 and 20% long 
COVID subjects, respectively (17). Follow ups in individuals hospitalized 
with COVID-19 induced pneumonia, using radiological and pulmonary 
function investigations, uncovered attenuated lung function, fibrotic-like 
changes in the lungs and parenchymal lung disease in long COVID 
patients (18–20). Cognitive and neurological derangements are another 
major cluster of long COVID symptoms, including anosmia, ageusia, 
headache, cognitive impairments, e.g., memory and attention deficits, 
brain fog, neuropsychiatric symptoms, such as depression, anxiety, 
psychosis, and insomnia (16, 21–25). Few cases of parkinsonism have 
also been reported in the older long COVID patients (26, 27). In 
addition, observational studies note that the cardiovascular sequalae of 
long COVID include chest pain, heart failure, dysrhythmias, 
cerebrovascular disorders, inflammatory heart disease, ischemic heart 
disease and thromboembolic disease (28, 29). Further the adverse health 
outcomes in long COVID include the new onset of diseases, such as type 
2 diabetes (30) and multi-organ damage (31). Given that a plethora of 
long COVID manifestations is not only observed in acute cases of 
COVID-19 but also significantly impact individuals with asymptomatic, 
mild or moderate initial SARS-CoV-2 infections that did not warrant 
hospitalization (7, 32, 33), severely exacerbates the health and socio-
economic burden of long COVID worldwide.

The causal association between the genetic predisposition to 
COVID-19 and many post-infective abnormalities in long COVID 
remain unclear. Mendelian randomization (MR) is a genetic 
epidemiological strategy that utilizes genetic variants, such as single 
nucleotide polymorphisms (SNPs) associated with an exposure as 
instrumental variables to determine the causal relationship between 
the exposure and health outcome (34). It is less susceptible to 
confounding, reverse causality and regression dilution biases that limit 
observational studies. So far MR studies have been used to dissect a 

causal association of COVID-19 with the increased risk of 
development of Alzheimer’s disease (35), hypothyroidism (36), 
psychosis and schizophrenia (37), and specific cancers (38).

In the present study we used two sample MR to investigate the 
potential causal association of genetic predisposition to COVID-19 
(exposure) with the onset of long COVID symptoms (outcomes), 
namely pulmonary disease (airway infections and pneumonia), 
neurological deficits (headache, depression, and parkinsonism), 
cardiac anomalies (chest pain and heart failure) and chronic fatigue.

2 Methods

2.1 Study design

Mendelian randomization (MR) relies on genetic variations as tools 
to investigate the lifelong and causal impacts of an exposure on an 
outcome (39). It closely resembles randomized controlled trials, as 
alleles are randomly assigned at conception, reducing susceptibility to 
reverse causation and unaccounted-for variables compared to 
traditional cohort studies. Consequently, it offers more robust evidence 
for establishing causal relationships. In the current study, we employed 
a two-sample MR approach by extracting exposure and outcome 
summary data from separate publicly available datasets. Notably, the 
effectiveness and reliability of these findings hinge on three key 
assumptions: (a) genetic instruments are linked to the exposure; (b) 
genetic instruments are not associated with any confounding factors 
that influence the exposure-outcome connection; (c) genetic 
instruments solely impact the outcome through the exposure, without 
involving other pathways (39). To statistically evaluate these 
assumptions, we performed pleiotropy and heterogeneity tests. The 
study design and underlying assumptions for MR is shown in Figure 1.

2.2 Data source: COVID-19

Genome Wide Association Study (GWAS) summary statistics 
were retrieved from one of the largest GWAS data set for COVID-19 
(hospitalized vs. non-hospitalized) described by the COVID-19 Host 
Genetics Initiative Release 6: B1_ALL_leave_23andme, released on 
June 15, 2021. B1_ALL_leave_23andme consists of trans-ancestry 
GWAS summary statistics of individuals who were hospitalized 
(n = 14,480; cases) vs. those who were not hospitalized (n = 73,191; 
controls) due to COVID-19 (Table 1). 1,35,110 highly significant SNPs 
were identified (p ≤ 0.01). To ensure the independence of these SNPs, 
they were first extracted from the Genome Asia dataset (40) and 
subsequently pruned for linkage disequilibrium (LD) using PLINK 
v1.9 (41). The LD proxies were limited to a minimum r2 ≧ 0.6. 1,02,354 
SNPs were pruned out and the remaining 32,756 SNPs were used for 
downstream analyses.

2.3 Data source: disorders

Information about genetic association of pulmonary diseases 
(airway infections and pneumonia), neurological deficits (headache, 
depression and Parkinson’s Disease), cardiac anomalies (chest pain and 
heart failure) and chronic fatigue were obtained from the ieu open gwas 
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project1 (Table 1). The pneumonia dataset (ieu-b-4976) consisted of 
individuals with pneumonia (n = 22,567; cases) and individuals without 
pneumonia (n = 4,63,917; controls) of European ancestry. The dataset 
for a group of diseases that cause airflow blockage and breathing-related 
problems including bronchitis, emphysema, asthma, and rhinitis (ukb-
e-6152_p1_CSA) consisted of 5,986 cases and 2,576 controls of South 
Asian ancestry. The GWAS summary statistics of anxiety, tension, 
depression (ukb-e-2100_CSA) consisted of individuals with depression 
(n = 828; cases) and individuals without depression (n = 7,610; controls) 
of South Asian ancestry. The Parkinson’s disease dataset (ieu-b-7) 
consisted of individuals with Parkinson’s disease (n = 33,674; cases) and 
individuals without Parkinson’s disease (n = 4,49,056; controls) of 
European ancestry. The headache dataset (ukb-e-339_CSA) consisted 
of individuals with headache (n = 348; cases) and individuals without 

1 https://gwas.mrcieu.ac.uk/datasets

headache (n = 8,472; controls) of South Asian ancestry. The summary 
statistics of heart failure (ebi-a-GCST009541) consisted of individuals 
with heart failure (n = 47,309; cases) and individuals without heart 
failure (n = 930,014; controls) of European ancestry. The chest pain 
dataset (ukb-e-418_CSA) consisted of individuals with chest pain 
(n = 1,267; cases) and individuals without chest pain (n = 7,521; controls) 
of South Asian ancestry. Notably, this dataset consists of patients with 
“nonspecific” chest pain, which indicates that the cause of the pain was 
unclear and may be caused by heart or lung abnormalities. Finally, the 
fatigue (tiredness/lethargy) dataset (ukb-e-2080_CSA) consisted of 
individuals with tiredness (n = 7,878; cases) of South Asian ancestry 
(Table 1).

2.4 Pleiotropy test

The intercept from MR-Egger regression (variants uncorrelated, 
random-effect model) implemented in the R package 

FIGURE 1

Study design and assumptions of Mendelian randomization (MR) analysis along with the assumptions.

TABLE 1 Various disorders and COVID-19 genetic summary data sources.

Trait Sample size No. of cases No. of controls No. of SNPs assessed Population

COVID-19 87,671 14,480 73,191 – Trans-ancestry

Pneumonia 486,484 22,567 463,917 12,243,546 European

Bronchitis, emphysema, asthma, 

rhinitis

8,562 5,986 2,576 9,809,165 South Asian

Anxiety, tension, depression 8,438 828 7,610 9,809,832 South Asian

Parkinson’s disease 482,730 33,674 449,056 17,891,936 European

Headache 8,820 348 8,472 9,801,707 South Asian

Heart failure 977,323 47,309 930,014 7,773,021 European

Chest pain 8,788 1,267 7,521 9,810,370 South Asian

Fatigue (tiredness/lethargy) 7,878 7,878 Population control 9,811,636 South Asian
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MendelianRandomization v0.9 (42), was utilized to test the pleiotropy 
of the SNPs associated with COVID-19 in pulmonary diseases (airway 
infections and pneumonia), neurological deficits (headache, 
depression and Parkinsonism), cardiac anomalies (chest pain and 
heart failure) and chronic fatigue (Table 2). In particular, MR assumes 
no pleiotropy, so a p > 0.05 implies no significant pleiotropy of the 
COVID-19 associated SNPs in above mentioned outcomes. Sensitivity 
analysis utilizing the “leave-one-out” method was performed using the 
mr_loo function in MendelianRandomization to evaluate whether the 
analysis could be influenced by a solitary SNP with significant and 
broad horizontal pleiotropic impact. In addition, funnel plots were 
generated using the mr_funnel function, were used to evaluate 
diversity among different SNPs.

2.5 Mendelian randomization analysis

To evaluate the causal association between COVID-19 and 
various pulmonary, neurological, and cardiac disorders and chronic 
fatigue, we performed MR analysis using inverse variance weighted 
(IVW), Penalized IVW, Robust-IVW, Penalized robust IVW, Penalized 
MR-Egger, Robust MR-Egger, Mr-Egger, Penalized robust MR-Egger, 
weighted median, simple median and Penalized weighted median 
estimators implemented in the R package MendelianRandomization 
v0.9. p value < 0.05 represents a causal association of COVID-19 with 
various disorders.

2.6 Single SNP effect analysis

The mr_plot function in MendelianRandomization v0.9 was used to 
visualize the individual potential causal effects of COVID-19 associated 
SNPs on various pulmonary, neurological, and cardiac disorders and 
chronic fatigue. Furthermore, the mr_forest function was used to 
determine single SNP effect size for COVID-19 on various disorders.

3 Results

3.1 Pleiotropy test

In terms of pleiotropy and sensitivity, the MR-Egger regression 
analysis demonstrated no indications of biased pleiotropy for any of 

the disorders under study (Table 2). The leave-one-out analysis and 
funnel plots also indicated no breaches of the instrumental variable 
assumptions (Supplementary Figure S1, respectively). The leave-
one-out sensitivity analysis depicted that removing a specific SNP 
among COVID-19 SNPs did not change the results for any of the 
disease under study (Supplementary Figure S1).

The overall Mendelian Randomization analysis results are 
summarized in Figure 2. Only penalized methods (penalized weighted 
median, penalized IVW and penalized MR-Egger) are shown. The plot 
was generated using the R package “forestplot.”

3.2 Effect of COVID-19 on lung function

A strong positive association between history of COVID-19 
and development of pneumonia was discerned by simple median 
analysis (β: 0.427, 95% CI 0.391 to 0.463, p < 0.0001), weighted 
median (β: −0.400, 95% CI 0.362 to 0.438, p < 0.0001), penalized 
weighted median (β: 0.481, 95% CI 0.437 to 0.526, p < 0.0001), 
IVW (β: 0.111, 95% CI 0.059 to 0.63, p < 0.0001), penalized IVW 
(β: 0.494, 95% CI 0.471 to 0.518, p < 0.0001), robust IVW (β: 0.356, 
95% CI −0.018 to 0.730, p = 0.062), penalized robust IVW (β: 
0.505, 95% CI 0.404 to 0.607, p < 0.0001), MR-Egger (β: 0.102, 95% 
CI 0.014 to 0.190, p = 0.023), penalized MR-Egger (β: 0.394, 95% 
CI 0.353 to 0.434, p < 0.0001), robust MR-Egger (β: 0.406, 95% CI 
0.315 to 0.497, p < 0.0001) and penalized robust MR-Egger (β: 
0.398, 95% CI 0.374 to 0.422, p < 0.0001) methods (Table  3A, 
Figure 3A).

MR revealed a positive and causal association between COVID-19 
and onset of the group of diseases associated with airflow blockage 
and respiratory problems including bronchitis, emphysema, asthma, 
and rhinitis. This was evidenced by the simple median estimate (β: 
1.077, 95% CI 0.862 to 1.292, p < 0.0001), weighted median (β: 0.971, 
95% CI 0.751 to 1.191, p < 0.0001), penalized weighted median (β: 
1.563, 95% CI 1.350 to 1.776, p < 0.0001), penalized IVW (β: 1.638, 
95% CI 1.533 to 1.743, p < 0.0001), penalized robust IVW (β: 1.771, 
95% CI 1.488 to 2.055, p < 0.0001), penalized MR-Egger (β: 0.960, 95% 
CI 0.550 to 1.371, p < 0.0001), and the penalized robust MR-Egger (β: 
1.025, 95% CI 0.667 to 1.382, p < 0.0001) methods. While the estimates 
from IVW (β: 0.077, 95% CI −0.145 to 0.298, p = 0.497), robust IVW 
(β: 0.088, 95% CI −0.171 to 0.347, p = 0.505), MR-Egger (β: 0.115, 95% 
CI −0.371 to 0.600, p = 0.644) and robust MR-Egger (β: 0.136, 95% CI 
−0.420 to 0.692, p = 0.632) method also revealed positive correlation 

TABLE 2 Pleiotropy test of COVID-19 associated SNPs in the diseases’ Genome Wide Association Study (GWAS).

Outcomes No. of SNPs mr_egger intercept SE p-value I2*
Pneumonia 202 0.001 0.004 0.799 0.00%

Bronchitis, emphysema, asthma, rhinitis 274 −0.004 0.021 0.864 0.00%

Anxiety, tension, depression 235 0.032 0.031 0.295 0.00%

Parkinson’s disease 222 0.018 0.011 0.085 0.00%

Headache 219 −0.023 0.05 0.642 0.00%

Heart failure 212 0.006 0.005 0.179 0.00%

Chest pain 231 0.044 0.027 0.104 0.00%

Fatigue (tiredness/lethargy) 342 −0.01 0.01 0.311 0.00%

*I2 = 0.0% indicates no significant heterogeneity in the COVID-19 associated SNPs in the above-mentioned diseases GWAS.
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between COVID-19 occurrence and risk of bronchitis, they were 
statistically non-significant (Table 3B, Figure 3B).

3.3 Effect of COVID-19 on neurological 
abnormalities

We did not find any significant association between COVID-19 
and the risk of developing anxiety or depression through simple 
median method (β: 0.007, 95% CI −0.723 to 0.737, p = 0.986), weighted 
median (β: 0.121, 95% CI −0.572 to 0.813, p = 0.733), IVW (β: 0.006, 
95% CI −0.352 to 0.364, p = 0.974), penalized IVW (β: 0.048, 95% CI 
−0.282 to 0.378, p = 0.776), robust IVW method (β: 0.006, 95% CI 
−0.384 to 0.397, p = 0.976), penalized robust IVW (β: 0.055, 95% CI 
-0.418 to 0.527, p = 0.820), MR-Egger (β: −0.328, 95% CI −1.048 to 
0.392, p = 0.372), and robust MR-Egger (β: −0.370, 95% CI −1.184 to 

0.444, p = 0.373) (Table  4A). On the contrary, penalized weighted 
median (β: 1.468, 95% CI 0.892 to 2.044, p < 0.0001) indicated a 
positive association between the two, and penalized MR-Egger (β: 
−2.121, 95% CI −2.731to −1.510, p < 0.0001) and penalized robust 
MR-Egger (β: −2.220, 95% CI −2.871 to −1.570, p < 0.0001) depicted 
a negative association. Therefore, the association between a history of 
COVID-19 and risk of anxiety or depression is inconclusive (Table 4A, 
Figure 4A).

We tested the effect of COVID-19 on risk of development of 
Parkinson’s disease. While the simple median (β: 0.785, 95% CI 0.633 
to 0.938, p < 0.0001) and IVW based methods, i.e., weighted median 
(β: 0.801, 95% CI 0.697 to 0.905, p < 0.0001), penalized weighted 
median (β: 1.073, 95% CI 0.965 to 1.181, p < 0.0001) suggested that the 
occurrence of COVID-19 is positively associated with an increased 
risk of Parkinson’s disease. This was also supported by the penalized 
IVW (β: 1.122, 95% CI 1.066 to 1.177, p < 0.0001) and penalized robust 

FIGURE 2

Forrest plot of MR analysis evaluating causal effects of genetic liability to COVID-19 on various pulmonary, cardiovascular and nueropsychiatric 
disorders. The plot was generated using the R package forestplot. The x-axis shows MR effect size for COVID-19 on various disorders. The y-axis 
shows the analysis for all SNPs together in a single instrument with the penalized IVW, penalized MR-Egger and penalized weighted median methods.

TABLE 3A The MR estimates of the causal effect of COVID-19 on pneumonia.

Method Estimate SE 95% CI p-value

Simple median 0.427 0.018 0.391 0.463 <0.0001

Weighted median 0.400 0.019 0.362 0.438 <0.0001

Penalized weighted median 0.481 0.023 0.437 0.526 <0.0001

IVW 0.111 0.027 0.059 0.163 <0.0001

Penalized IVW 0.494 0.012 0.471 0.518 <0.0001

Robust IVW 0.356 0.191 −0.018 0.730 0.062

Penalized robust IVW 0.505 0.052 0.404 0.607 <0.0001

MR-Egger 0.102 0.045 0.014 0.190 0.023

Penalized MR-Egger 0.394 0.021 0.353 0.434 <0.0001

Robust MR-Egger 0.406 0.046 0.315 0.497 <0.0001

Penalized robust MR-Egger 0.398 0.012 0.374 0.422 <0.0001
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IVW (β: 1.124, 95% CI 0.940 to 1.309, p < 0.0001) methods. The 
positive association was also revealed by the IVW (β: 0.075, 95% CI 
−0.048 to 0.198, p = 0.232), robust IVW (β: 0.081, 95% CI −0.063 to 
0.225, p = 0.270), though non-significant. However, the Egger based 
methods, MR-Egger (β: −0.124, 95% CI −0.381 to 0.134, p = 0.347), 
penalized MR-Egger (β: −0.753, 95% CI −0.942 to −0.565, p < 0.0001), 
robust MR-Egger method (β: −0.141, 95% CI −0.431 to 0.148, 
p = 0.338) and penalized robust MR-Egger (β: −0.928, 95% CI −1.160 
to −0.696, p < 0.0001) suggested a negative association between the 
two. Therefore, the association between a history of COVID-19 and 
onset of Parkinson’s disease remains undetermined (Table  4B, 
Figure 4B).

In contrast to the above, we  note a strong positive causal 
association of a history of COVID-19 with the development of 
headache by simple median analysis (β: 3.253, 95% CI 2.872 to 3.633, 
p < 0.0001), weighted median (β: 2.572, 95% CI 2.133 to 3.010, 
p < 0.0001), penalized weighted median (β: 3.614, 95% CI 3.129 to 
4.098, p < 0.0001), IVW (β: 0.802, 95% CI 0.273 to 1.330, p = 0.003), 
penalized IVW (β: 3.637, 95% CI 3.400 to 3.874, p < 0.0001), robust 
IVW (β: 1.171, 95% CI 0.018 to 2.325, p = 0.047), penalized robust 
IVW (β: 4.030, 95% CI 3.283 to 4.778, p < 0.0001), penalized MR-Egger 
(β: 2.578, 95% CI 1.987 to 3.169, p < 0.0001) and penalized robust 
MR-Egger (β: 2.553 95% CI 2.032 to 3.074, p < 0.0001) methods. The 
positive association was also revealed by MR-Egger (β: 1.039, 95% CI 

TABLE 3B The MR estimates of the causal effect of COVID-19 on group of diseases associated with airflow blockage and breathing-related problems.

Method Estimate SE 95% CI p-value

Simple median 1.077 0.110 0.862 1.292 <0.0001

Weighted median 0.971 0.112 0.751 1.191 <0.0001

Penalized weighted median 1.563 0.109 1.350 1.776 <0.0001

IVW 0.077 0.113 −0.145 0.298 0.497

Penalized IVW 1.638 0.054 1.533 1.743 <0.0001

Robust IVW 0.088 0.132 −0.171 0.347 0.505

Penalized robust IVW 1.771 0.145 1.488 2.055 <0.0001

MR-Egger 0.115 0.248 −0.371 0.600 0.644

Penalized MR-Egger 0.960 0.209 0.550 1.371 <0.0001

Robust MR-Egger 0.136 0.284 −0.420 0.692 0.632

Penalized robust MR-Egger 1.025 0.183 0.667 1.382 <0.0001

FIGURE 3

Scatter plot of SNPs associated with COVID-19 and pulmonary diseases. (A) pneumonia and (B) a group of diseases associated with airflow blockage 
and breathing-related problems including bronchitis, emphysema, asthma and rhinitis. The slopes of each line represent the causal association for 
each method. The plot was generated using the R package MendelianRandomization v0.9.
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−0.093 to 2.170, p = 0.072) and robust MR-Egger (β: 1.589, 95% CI 
−0.196 to 3.375, p = 0.081) methods, however they were marginally 
significant (Table 4C, Figure 4C).

3.4 Effect of COVID-19 on cardiovascular 
diseases

The history of COVID-19 showed a strong positive causal 
association with the risk of heart failure. This was estimated by simple 
median analysis (β: 0.389, 95% CI 0.355 to 0.423, p < 0.0001), weighted 

median (β: 0.368, 95% CI 0.333 to 0.403, p < 0.0001), penalized 
weighted median (β: 0.427, 95% CI 0.385 to 0.469, p < 0.0001), IVW 
(β: 0.125, 95% CI 0.075 to 0.175, p < 0.0001), penalized IVW (β: 0.438, 
95% CI 0.416 to 0.460, p < 0.0001), robust IVW (β: 0.433, 95% CI 0.407 
to 0.460, p < 0.0001), penalized robust IVW (β: 0.430, 95% CI 0.358 to 
0.502, p < 0.0001), penalized MR-Egger (β: 0.329, 95% CI 0.274 to 
0.384, p < 0.0001), robust MR-Egger (β: 0.396, 95% CI 0.353 to 0.438, 
p < 0.0001) and penalized robust MR-Egger (β: 0.350 95% CI 0.310 to 
0.391, p < 0.0001) methods. The MR-Egger method also showed a 
positive association though statistically non-significant (β: 0.053, 95% 
CI −0.064 to 0.169, p = 0.378) (Table 5A, Figure 5A).

TABLE 4A The MR estimates of the causal effect of COVID-19 on anxiety/depression.

Method Estimate SE 95% CI p-value

Simple median 0.007 0.372 −0.723 0.737 0.986

Weighted median 0.121 0.353 −0.572 0.813 0.733

Penalized weighted median 1.468 0.294 0.892 2.044 <0.0001

IVW 0.006 0.182 −0.352 0.364 0.974

Penalized IVW 0.048 0.168 −0.282 0.378 0.776

Robust IVW 0.006 0.199 −0.384 0.397 0.976

Penalized robust IVW 0.055 0.241 −0.418 0.527 0.820

MR-Egger −0.328 0.367 −1.048 0.392 0.372

Penalized MR-Egger −2.121 0.312 −2.731 −1.510 <0.0001

Robust MR-Egger −0.370 0.415 −1.184 0.444 0.373

Penalized robust MR-Egger −2.220 0.332 −2.871 −1.570 <0.0001

FIGURE 4

Scatter plot of SNPs associated with COVID-19 and neurological abnormalities. (A) anxiety/depression, (B) Parkinson’s Disease, and (C) headache. The 
slopes of each line represent the causal association for each method. The plot was generated using the R package MendelianRandomization v0.9.
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According to the simple median analysis, COVID-19 is positively 
and causatively correlated with the risk of developing chest pain (β: 
1.782, 95% CI 1.549 to 2.016, p < 0.0001). Similar positive association 
emerged using weighted median (β: 1.149, 95% CI 0.850 to 1.447, 
p < 0.0001), penalized weighted median (β: 2.158, 95% CI 1.876 to 2.440, 
p < 0.0001), penalized IVW method (β: 2.202, 95% CI 2.062 to 2.343, 

p < 0.0001) and penalized robust IVW (β: 2.382, 95% CI 1.928 to 2.835, 
p < 0.0001) methods. The positive association was further replicated by 
the IVW (β: 0.256, 95% CI −0.047 to 0.560, p = 0.098) and robust IVW 
(β: 0.343, 95% CI −0.195 to 0.880, p = 0.212) methods, however they 
were statistically non-significant. In contrast all MR-Egger based 
methods, namely MR-Egger (β: −0.201, 95% CI −0.830 to 0.428, 

TABLE 5A The MR estimates of the causal effect of COVID-19 on heart failure.

Method Estimate SE 95% CI p-value

Simple median 0.389 0.017 0.355 0.423 <0.0001

Weighted median 0.368 0.018 0.333 0.403 <0.0001

Penalized weighted median 0.427 0.021 0.385 0.469 <0.0001

IVW 0.125 0.025 0.075 0.175 <0.0001

Penalized IVW 0.438 0.011 0.416 0.460 <0.0001

Robust IVW 0.433 0.013 0.407 0.460 <0.0001

Penalized robust IVW 0.430 0.037 0.358 0.502 <0.0001

MR-Egger 0.053 0.060 −0.064 0.169 0.378

Penalized MR-Egger 0.329 0.028 0.274 0.384 <0.0001

Robust MR-Egger 0.396 0.022 0.353 0.438 <0.0001

Penalized robust MR-Egger 0.350 0.021 0.310 0.391 <0.0001

TABLE 4B The MR estimates of the causal effect of COVID-19 on Parkinson’s disease.

Method Estimate SE 95% CI p-value

Simple median 0.785 0.078 0.633 0.938 <0.0001

Weighted median 0.801 0.053 0.697 0.905 <0.0001

Penalized weighted median 1.073 0.055 0.965 1.181 <0.0001

IVW 0.075 0.063 −0.048 0.198 0.232

Penalized IVW 1.122 0.028 1.066 1.177 <0.0001

Robust IVW 0.081 0.073 −0.063 0.225 0.270

Penalized robust IVW 1.124 0.094 0.940 1.309 <0.0001

MR-Egger −0.124 0.131 −0.381 0.134 0.347

Penalized MR-Egger −0.753 0.096 −0.942 −0.565 <0.0001

Robust MR-Egger −0.141 0.148 −0.431 0.148 0.338

Penalized robust MR-Egger −0.928 0.119 −1.160 −0.696 <0.0001

TABLE 4C The MR estimates of the causal effect of COVID-19 on headache.

Method Estimate SE 95% CI p-value

Simple median 3.253 0.194 2.872 3.633 <0.0001

Weighted median 2.572 0.224 2.133 3.010 <0.0001

Penalized weighted median 3.614 0.247 3.129 4.098 <0.0001

IVW 0.802 0.270 0.273 1.330 0.003

Penalized IVW 3.637 0.121 3.400 3.874 <0.0001

Robust IVW 1.171 0.589 0.018 2.325 0.047

Penalized robust IVW 4.030 0.381 3.283 4.778 <0.0001

MR-Egger 1.039 0.577 −0.093 2.170 0.072

Penalized MR-Egger 2.578 0.302 1.987 3.169 <0.0001

Robust MR-Egger 1.589 0.911 −0.196 3.375 0.081

Penalized robust MR-Egger 2.553 0.266 2.032 3.074 <0.0001
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p = 0.531), penalized MR-Egger (β: −0.364, 95% CI −0.807 to 0.080, 
p = 0.108) and robust MR-Egger (β: −0.246, 95% CI −1.105 to 0.613, 
p = 0.575) showed negative association between occurrence of 
COVID-19 and risk of chest pain. Accordingly, the association of 
COVID-19 with chest pain remains inconclusive (Table 5B, Figure 5B).

3.5 Effect of COVID-19 on chronic fatigue

Finally, the history of COVID-19 showed a strong and positive 
association with the risk of developing chronic fatigue (tiredness/
lethargy). This was supported by simple median (β: 0.465, 95% CI 
0.361 to 0.569, p < 0.0001), weighted median (β: 0.394, 95% CI 0.283 
to 0.506, p < 0.0001), penalized weighted median (β: 0.766, 95% CI 
0.652 to 0.879, p < 0.0001), penalized IVW (β: 0.771, 95% CI 0.720 to 

0.821, p < 0.0001), penalized robust IVW (β: 0.908, 95% CI 0.798 to 
1.017, p < 0.0001), penalized MR-Egger (β: 0.707, 95% CI 0.534 to 
0.881, p < 0.0001) and penalized robust MR-Egger (β: 0.722, 95% CI 
0.525 to 0.920, p < 0.0001) methods. IVW (β: 0.067, 95% CI −0.043 to 
0.176, p = 0.235), robust IVW (β: 0.072 95% CI −0.050 to 0.193, 
p = 0.247), MR-Egger (β: 0.175, 95% CI −0.062 to 0.411, p = 0.147) and 
robust MR-Egger (β: 0.192, 95% CI −0.042 to 0.426, p = 0.108) 
methods also indicted positive association between the two, though 
statistically non-significant (Table 6, Figure 6).

4 Discussion

The COVID-19 pandemic remains an ongoing challenge globally 
with ~77,04,37,327 confirmed cases worldwide that have not only led 

FIGURE 5

Scatter plot of SNPs associated with COVID-19 and cardiovascular diseases. (A) heart failure and (B) chest pain. The slopes of each line represent the 
causal association for each method. The plot was generated using the R package MendelianRandomization v0.9.

TABLE 5B The MR estimates of the causal effect of COVID-19 on chest pain.

Method Estimate SE 95% CI p-value

Simple median 1.782 0.119 1.549 2.016 <0.0001

Weighted median 1.149 0.152 0.850 1.447 <0.0001

Penalized weighted median 2.158 0.144 1.876 2.440 <0.0001

IVW 0.256 0.155 −0.047 0.560 0.098

Penalized IVW 2.202 0.072 2.062 2.343 <0.0001

Robust IVW 0.343 0.274 −0.195 0.880 0.212

Penalized robust IVW 2.382 0.231 1.928 2.835 <0.0001

MR-Egger −0.201 0.321 −0.830 0.428 0.531

Penalized MR-Egger −0.364 0.226 −0.807 0.080 0.108

Robust MR-Egger −0.246 0.438 −1.105 0.613 0.575

Penalized robust MR-Egger 0.138 0.802 −1.433 1.709 0.863
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to ~69,56,900 deaths (43) (last accessed 11th September, 2023), but 
has been followed by the emergence of long COVID, which is a 
complex, multi-systemic entity affecting at least 10% of SARS-CoV-2 
infections (2). The heterogeneity of symptoms (≥200) in long COVID 
patients makes it challenging to dissect which symptoms arise as a 
cause of SARS-CoV-2 infection vs. those resulting from exacerbation 
of pre-existing or coincidental conditions. These factors present 
significant challenges for understanding the pathomechanisms at play 
and for developing treatment strategies for long COVID. Here 
we  tested the causal association of a genetic predisposition to 
COVID-19 with several health problems observed among subjects 
with long COVID, including respiratory, neurological, and 
cardiovascular dysfunction. Two-sample MR studies in this study 
suggest that a genetic predisposition for COVID-19 is causally 
associated with increased risk of fatigue, development of airflow 
blockage and respiratory problems including bronchitis, emphysema, 

asthma and rhinitis, pneumonia, headache, and heart failure. 
However, the association of COVID-19 with Parkinson’s disease, 
depression and chest pain was inconclusive.

Persistent fatigue is one of the most reported long COVID 
symptoms worldwide (1, 16). Studies showed that a subset of 
subjects, ~20% who recover from SARS-COV-2 infections, 
particularly mild infections, manifest with dyspnea and persistent 
fatigue despite normal cardiac and pulmonary function (44, 45). 
Especially in cohorts of long COVID patients with a history of 
SARS-CoV-2 induced hospitalization chronic fatigue was observed 
in a higher proportion ~40–60% of affected individuals (46, 47). 
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) 
that is triggered by many pathogens, e.g., Epstein–Barr (EBV) and 
Giardia lamblia in a subset of infections (48, 49) was also noted in 
a subgroup, ~50% of long COVID subjects (44) including in young 
individuals with mild or moderate SARS-CoV-2 infections (50). 

FIGURE 6

Scatter plot of SNPs associated with COVID-19 and chronic fatigue (tiredness/lethargy). The slopes of each line represent the causal association for 
each method. The plot was generated using the R package MendelianRandomization v0.9.

TABLE 6 The MR estimates of the causal effect of COVID-19 on fatigue (tiredness/lethargy).

Method Estimate SE 95% CI p-value

Simple median 0.465 0.053 0.361 0.569 <0.0001

Weighted median 0.394 0.057 0.283 0.506 <0.0001

Penalized weighted median 0.766 0.058 0.652 0.879 <0.0001

IVW 0.067 0.056 −0.043 0.176 0.235

Penalized IVW 0.771 0.026 0.720 0.821 <0.0001

Robust IVW 0.072 0.062 −0.050 0.193 0.247

Penalized robust IVW 0.908 0.056 0.798 1.017 <0.0001

MR-Egger 0.175 0.121 −0.062 0.411 0.147

Penalized MR-Egger 0.707 0.088 0.534 0.881 <0.0001

Robust MR-Egger 0.192 0.119 −0.042 0.426 0.108

Penalized robust MR-Egger 0.722 0.101 0.525 0.920 <0.0001
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Congruently, MR studies here showed a strong positive association 
of a genetic predisposition for COVID-19 and persistent fatigue 
(tiredness/lethargy). While fatigue is likely multisystemic, the 
pathomechanisms underlying chronic fatigue in long COVID 
involve neural dysregulation, such as underactivity in particular 
cortical circuits, abnormal autonomic function, and myopathic 
changes in skeletal muscle (51). This has also been correlated with 
structural changes in the thalamus and basal ganglia in long COVID 
patients with sustained fatigue (52).

A spectrum of neurological symptoms has been reported at 
varying frequencies in the post-infection phase among long COVID 
patients. This is consistent with the neurotropic, neuroinvasive and 
neurovirulent nature of SARS-CoV-2 (53). In some subjects long 
COVID neuropathogenesis is marked by structural brain anomalies, 
such as pronounced decrease in its overall size, reduction in gray 
matter thickness and tissue damage in primary olfactory cortex (54), 
encephalopathy (55), hemorrhagic posterior reversible encephalopathy 
(56), and demyelinating lesions in the central nervous system (CNS) 
(57) in addition to cognitive decline (25). Other factors influencing 
the neuropathology of long COVID may include neuroinflammation, 
anti-neural auto-immune dysfunction, hypometabolism of the brain 
and brain stem, and abnormal cerebrospinal fluid (58–61). 
Congruently neuroinflammation injury and apoptosis, brain hypoxia 
and microhaemorrhages have been observed in non-human models 
of SARS-CoV-2 infection (62). Further neurological and cognitive 
impairment marked by structural brain abnormalities have also been 
noted among long COVID subjects following mild or moderate initial 
SARS-CoV-2 infections (54, 61).

Frequency of chronic headache range widely from ~8–40% among 
long COVID cases (46, 63–65). Individuals mildly affected by SARS-
CoV-2 infections seemed more prone to post-COVID headaches (64, 
66), which were exacerbated with a prior history of migraines (63, 64). 
Our MR analysis showed a strong positive causal association between 
COVID-19 and chronic headache in long COVID patients. Recent 
evidence suggests that long COVID headaches appear to be triggered 
by hyperinflammation and are sustained by chronic inflammatory 
activation, and dysregulation of neurotransmitters and metabolic 
inflammation (66).

Based on observational studies, among individuals affected with 
long COVID, ~20% may develop mood disorders, e.g., anxiety and 
depression (47). In one study the risk of mood disorders returned to 
baseline within 2 months following initial COVID-19, but some 
conditions such as cognitive impairment, seizures, psychosis, and 
dementia lingered up to 2 years (25). Another study noted that limbic 
atrophy and significantly abnormal cerebral functional connectivity 
underlie anxiety and depression among long COVID patients with 
mild SARS-CoV-2 infections (67). In contrast several studies inferred 
that anxiety and depression were not strongly linked to COVID-19 
(68) with neuropsychiatric symptoms elevated disproportionately in 
long COVID subjects with acute initial SARS-CoV-2 infection (68, 69) 
or other post-infection health complications and psychiatric history 
(70). The onset and progression of mood disorders may also 
be  modulated by dysfunctional regulatory cells of the innate and 
adaptive immune system that may contribute to chronic systemic and 
neuroinflammation (71). Therefore, the observations of increased 
psychiatric manifestations in long COVID subjects could be a result 
of compromised immunoregulatory mechanisms. Using MR in the 
present study the causal association of genetic predisposition to 

COVID-19 with anxiety and depression remained obscure, warranting 
further research to clarify this.

Parkinson’s disease is a progressive motor disorder that is highly 
prevalent in older adults (72). It may be triggered following infections 
by viruses, e.g., Influenza A, EBV and Herpes simplex virus 1 (73). 
Some cases of post-COVID parkinsonism have also been recorded 
(26, 27). Nevertheless, we detected no causal association of COVID-19 
with Parkinson’s disease using MR studies.

A range of cardiovascular manifestations have been noted in long 
COVID patients, including those without any evidence of pre-existing 
cardiovascular disease or risk factors or COVID-19 related 
hospitalization (29). While the pathophysiology of long COVID 
linked cardiovascular disease is far from certain, it may involve viral 
invasion of cardiomyocytes and cell death, downregulation of 
Angiotensin-converting enzyme 2 (ACE2), endothelial cell infection, 
complement activation, deregulation of renin-angiotensin-aldosterone 
system, autonomic abnormalities, myocarditis and cardiac tissue 
fibrosis (74–79). The proportion of long COVID subjects with chest 
pain varied from ~3–20% up to 6 months post initial SARS-CoV-2 
infection in different cohorts (80, 81). While the overall association of 
genetic predisposition to COVID-19 with chest pain in this study was 
inconclusive, five out of twelve MR strategies showed a strong positive 
causal link that was statistically significant, two techniques showed a 
positive association that was non-significant, and the rest showed 
negative association. This strongly warrants further studies to explore 
a putative causal link of COVID-19 with chest pain.

Heart failures as part of cardiovascular sequalae in long COVID have 
been observed in patients with pre-existing cardiac complications (82, 
83), as well as those without (84–86). This is also supported by anecdotal 
accounts of increased cardiovascular abnormalities particularly among 
mildly symptomatic or asymptomatic subjects in the post SARS-CoV-2 
infection period. Studies note that autonomic imbalance and increased 
sympathetic activity in the post-acute phase in ~30 days after mild SARS-
CoV-2 infection may explain the cardiovascular complications during 
this time (87, 88). Although, the involvement of autonomic dysfunction 
in heart complications in long COVID is uncertain (87). All 11 methods 
employed for MR analysis in this study suggested a positive causal 
association between genetic predisposition to COVID-19 and heart 
failures. Ten out of eleven methods concur on this with high significance 
(p < 0.0001). Moreover, the effect size (β) range is highly consistent across 
all methods with narrow confidence intervals. Taken together MR 
analysis suggested a strong and positive causal association between 
genetic predisposition to COVID-19 and heart failure.

Finally, respiratory complications, e.g., cough are one of the 
commonest features of long COVID subjects (4) and are exacerbated 
in patients with preexisting respiratory comorbidities (89). Subjects 
with moderate-to-severe SARS-CoV-2 related pneumonia sustain 
lung abnormalities, such as parenchymal lung disease, fibrosis, and 
bronchiectasis even a year following initial infection (90). New onset 
of airway abnormalities, e.g., asthma is not common but has been 
strongly associated with COVID-19 (91). Increased lung emphysema 
was noted at 30 days following initial SARS-CoV-2 infection (92). In 
this study MR results support a strong positive causal association of a 
history of COVID-19 with increased risk of disorders with chronic 
lung and airway inflammation, as well as pneumonia.

This study has some limitations. First since it utilizes publicly available 
genetic datasets, the vaccination and BTI status of the included individuals 
is unknown. Accordingly, it cannot account for how these factors 
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influence long COVID outcomes. It is noteworthy that BTI of SARS-
CoV-2 following vaccination may be influenced by several factors, e.g., 
age and previous infection (93). Moreover, the serological response to 
vaccines was also reported to be insufficient in individuals with two or 
more pre-existing chronic conditions (94). These factors may influence 
long COVID phenotypes and cannot be evaluated in the present study. 
Second, the dataset for chest pain used here is non-specific, and may 
include subjects where it is caused due to cardiac, lung or abdominal 
organ abnormalities. This may also explain why the association of a 
history of COVID-19 with chest pain in this study was inconclusive 
despite it being a commonly noted long COVID complexity (2).

In conclusion, this study has employed MR to shed light on the 
genetic underpinnings of long COVID, uncovering significant causal 
associations between genetic predisposition to COVID-19 and several 
prevailing health complications. MR findings in this study corroborate 
the multiple adverse outcomes of long COVID, linking it to an 
increased risk of developing pneumonia, airway infections, headache, 
chronic fatigue, and heart failure. Our findings on Parkinson’s disease, 
depression, and chest pain were inconclusive. These insights are 
critical in enhancing our understanding of the lasting health 
implications of COVID-19. As we continue to grapple with the long-
term challenges posed by the COVID-19 pandemic, a deeper 
comprehension of the genetic factors contributing to long COVID will 
be  a precursor to developing targeted strategies to support those 
symptomatic with these long COVID symptoms. Further research is 
warranted to explore the intricate web of genetic determinants 
underlying the diverse manifestations of long COVID, which will 
spearhead global efforts in combating this healthcare crisis effectively.
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