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Introduction: Decades of research have established the association between 
adverse childhood experiences (ACEs) and adult onset of chronic diseases, 
influenced by health behaviors and social determinants of health (SDoH). 
Machine Learning (ML) is a powerful tool for computing these complex 
associations and accurately predicting chronic health conditions.

Methods: Using the 2021 Behavioral Risk Factor Surveillance Survey, 
we developed several ML models—random forest, logistic regression, support 
vector machine, Naïve Bayes, and K-Nearest Neighbor—over data from a sample 
of 52,268 respondents. We  predicted 13 chronic health conditions based on 
ACE history, health behaviors, SDoH, and demographics. We further assessed 
each variable’s importance in outcome prediction for model interpretability. 
We evaluated model performance via the Area Under the Curve (AUC) score.

Results: With the inclusion of data on ACEs, our models outperformed or 
demonstrated similar accuracies to existing models in the literature that used 
SDoH to predict health outcomes. The most accurate models predicted 
diabetes, pulmonary diseases, and heart attacks. The random forest model was 
the most effective for diabetes (AUC  =  0.784) and heart attacks (AUC  =  0.732), 
and the logistic regression model most accurately predicted pulmonary 
diseases (AUC  =  0.753). The strongest predictors across models were age, ever 
monitored blood sugar or blood pressure, count of the monitoring behaviors for 
blood sugar or blood pressure, BMI, time of last cholesterol check, employment 
status, income, count of vaccines received, health insurance status, and total 
ACEs. A cumulative measure of ACEs was a stronger predictor than individual 
ACEs.

Discussion: Our models can provide an interpretable, trauma-informed 
framework to identify and intervene with at-risk individuals early to prevent 
chronic health conditions and address their inequalities in the U.S.
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1 Introduction

Adverse childhood experiences (ACEs) represent a critical public 
health issue. Defined as potentially traumatic events that occur in 
childhood (0–17 years old), ACEs include but are not limited to children 
experiencing emotional, physical, and sexual abuse, parental neglect, 
household instability such as parents’ divorce or separation, and suicide 
attempts (1). According to the Centers for Disease Control and 
Prevention (CDC), approximately 61% of adults surveyed across 25 
states reported having experienced at least one ACE before adulthood; 
one in six claimed that they had experienced four or more ACEs (1). 
Despite the widespread prevalence of ACEs, some groups are at a higher 
risk of ACE exposure than others. For example, Black, Hispanic, or 
low-income individuals show the highest prevalence of ACEs (2). 
Additionally, social, economic, and environmental inequities are greater 
in the environments of those who have endured four or more ACEs (3).

Current literature has documented that experiences of maltreatment 
and psychosocial stress during childhood play a significant role in 
shaping a wide range of chronic health conditions, which constitute 
physical and mental health problems that last for a prolonged period 
(i.e., 1 year or longer) (4). The seminal ACE Study with 17,000 adults 
found a clear and strong correlation between the number of negative 
experiences during childhood and a wide spectrum of poor health and 
behavioral outcomes in adult life (5). The study demonstrates a dose–
response relationship between the number of ACEs and chronic diseases 
(e.g., ischemic heart disease, cancer, and chronic lung disease) (5). Since 
then, mounting evidence indicates the positive associations between 
ACEs and chronic health conditions, including arthritis, pulmonary 
disease, cancers, cardiovascular disease, stroke, pre-diabetes, diabetes, 
high cholesterol, and renal disease (6–28). In addition, individuals with 
ACEs are found to be at greater risk of experiencing poor mental health 
(e.g., depression, anxiety, and hallucination) (29–36).

Multiple pathways connect ACEs to chronic health conditions, 
including social determinants of health (SDoH) and health behaviors. 
Individuals with a higher number of ACEs tend to live in areas of 
greater poverty, fewer economic and health resources, worse food 
access, less green space, and more community instability (3, 37, 38). 
ACE survivors are also more likely to engage in harmful behaviors, 
such as smoking, heavy alcohol consumption, substance use, high-risk 
sexual behavior, interpersonal violence, excess screen time, and 
inadequate sleep (5, 27, 30, 39–42).

Such clustering of social and disease conditions in a specific 
population is well-explained by syndemic theory. A syndemic is defined 
as the “aggregation of two or more diseases or other health conditions 
in a population in which there is some level of deleterious biological or 
behavior interface that exacerbates the negative health effects of any or 
all of the diseases involved” (43). In syndemics, social conditions 
contribute to disease formation, accumulation, spread, and progression 
by increasing susceptibility and reducing immune function, particularly 
among marginalized populations; hence, syndemics are most likely to 

emerge under conditions of health inequality (43). A syndemic can 
be exemplified by the interactions of ACEs, negative social conditions 
(i.e., SDoH), and risky health behaviors worsening the risk of various 
chronic health conditions (2, 3, 44). However, an accurate assessment 
of these complex associations can be methodologically challenging, as 
the involved risk factors may be  highly correlated, interactive, or 
synergistic. In such cases, it is essential to employ models that are more 
flexible than linear regression, and robust at handling and computing 
features linked in nonlinear fashions. This need can be met by using 
more advanced modeling techniques such as machine learning (ML).

Most applications of Artificial Intelligence (AI) in healthcare read 
in categorical, numerical, or image-based data as an input; utilize 
algorithmic and statistical models to process the data; identify 
patterns; and produce a probability or classification (45–49). ML refers 
to the range of algorithms conducting these predictions (50). As 
briefly stated above, ML offers considerable benefits compared to 
traditional statistical modeling, as it is capable of handling complex 
multi-dimensional data, adapting new data as it becomes available, 
capturing non-linear relationships and interactions among variables 
more effectively, and generally accounting for noise and outliers in the 
data in a robust manner (50, 51). Moreover, ML can promote the P4 
medicine paradigm—predictive, preventive, personalized, and 
participatory—an approach that proactively engages both providers 
and patients in early monitoring and intervention (52–54). For these 
reasons, there has been an exponential increase in using ML to predict 
the prognosis and outcome of chronic diseases.

Despite their advantages, however, health-related AI models are 
often impermeable black boxes: their inner workings are opaque, 
unintuitive, and uninterpretable to end-users. A lack of interpretability 
can compromise the end users’ trust and confidence in model 
predictions, especially when the model and its outcomes influence 
people’s decisions on their health and healthcare. In response to this 
growing need for transparency, explicability, and interpretability in AI 
models, the explainable AI (XAI) has emerged as a field. Today, XAI 
principles are applied for multiple purposes (e.g., reducing model bias 
toward certain racial or gender groups), and involve providing 
contextual information about the importance of variables in model 
decision-making (55).

Several existing studies have employed ML to predict an extensive 
range of chronic health conditions, such as autoimmune, cardiovascular, 
cerebrovascular, hepatic, metabolic, neurodegenerative, pulmonary, 
renal, and rheumatic diseases, as well as cancers (56–61). Most of these 
studies used K-nearest neighbors (KNN), support vector machines 
(SVM), Naïve Bayes (NB), deep neural networks, random forest (RF), 
and logistic regression (LR) (58, 60, 62–64). Existing classical ML models 
in the literature have predicted health outcomes based on SDoH with 
accuracies between 61 and 74% (65). It is common to combine different 
types and sources of data for these analyses, such as electronic medical 
records linked to omics data (63); clinical information linked to 
sociodemographic, behavioral, or anthropometric factors (58); and 
primary care data linked to insurance claims, cancer registries, or 
administrative sources (64). In terms of predictors, sociodemographic 
(e.g., age, sex, gender) and lifestyle factors (e.g., physical activity, lack of 
sleep, and use of alcohol, tobacco, and other drugs) are predominantly 
used for modeling chronic health conditions (58). However, only a small 
number of studies include ACE exposure in ML models to predict 
rheumatic and musculoskeletal disease (66), neurocognitive outcomes 
(67), and emergency department visits (68). Although a study by Ammar 
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and Shaban-Nejad (69) proposes a proof-of-concept semantic XAI 
model for using ACEs and SDoH data to improve mental health 
surveillance, the model’s accuracy and usability are yet to be evaluated. 
Beyond these studies, few examine the use of ACEs in tandem with 
SDoH and health behaviors to predict a suite of chronic health conditions. 
Further, none of the previous studies use large national survey data to 
better represent the U.S. adult population.

The current study attempts to fill these gaps by developing 
interpretable ML models aimed at (i) predicting 13 chronic health 
conditions based on demographic characteristics, ACEs, SDoH, and 
health behaviors among U.S. adults and (ii) explaining the relative 
importance of variables in predicting each of the chronic health 
conditions. We  use data from the CDC’s Behavioral Risk Factor 
Surveillance System (BRFSS), the world’s largest continuing national 
health survey (70). We employ classical ML models identified in the 
literature as robust tools for predicting chronic health conditions: LR, 
Gaussian NB, SVM, RF, and KNN (58, 60, 62–64) Although neural 
networks are also promising for this prediction task (58), they lack 
interpretability and demand greater computational power and time 
(71, 72). Computational resources are crucial during model 
deployment, given the higher prevalence of ACEs in disadvantaged 
communities that can benefit most from the models we developed (3, 
37, 38, 73–76). Accordingly, we focus on classical ML models that can 
be  scalable and adaptable, even in low-resource settings, while 
empowering end-users with explainable results to aid clinical 
decision-making.

2 Materials and methods

2.1 Data source

We utilized a subset of the latest publicly available data from the 
2021 BRFSS (70). The BRFSS is a federally sponsored telephone-based 
survey conducted annually among U.S. adults. In 2021, the survey was 
conducted with 546,569 adults in all 50 states, the District of 
Columbia, and three territories in the U.S. The national survey collects 
data on SDoH, risky health behaviors, and the use of preventive 
services, among many other health-related factors, to facilitate health 
promotion efforts (70). Survey questions related to ACE exposure 
belong to an optional module of the BRFSS, which was implemented 
in 16 states in 2021 (Alabama, Arkansas, Iowa, Kansas, Maine, 
Mississippi, Nevada, New Hampshire, New Jersey, New York, Ohio, 
Oregon, South Carolina, Virginia, and Wisconsin). As ACE exposure 
was the study’s key predictor, our final dataset was limited to the data 
collected by these 16 states.

2.2 Inclusion criteria

Our inclusion criteria were individuals who (a) resided in any of the 
16 U.S. states that administered the optional ACE module of the BRFSS, 
(b) answered all questions about ACEs, and (c) answered at least one of 
the questions regarding the pre-determined 13 chronic health conditions 
(n = 86,168). We excluded respondents with inconclusive responses (i.e., 
“Do not know/Not sure,” “Not Defined,” “Not asked,” “Yes, but female 
told only during pregnancy,” “Refused,” or missing answers) for any 
predictor and outcome variables (n = 32,900). As a result, our total 
sample size for analysis was 52,268 respondents.

2.3 Measures

The study’s outcome variables included 13 chronic health conditions 
(Supplementary Table S1). The predictor variables included self-reported 
ACE exposure, SDoH, health behaviors, and demographic and 
anthropometric characteristics (Supplementary Table S2). Please refer to 
Supplementary material for the answering options of each variable.

2.3.1 Chronic health conditions
The outcome variables included self-reported diagnoses of 13 

conditions with a well-established link to ACEs: (1) arthritis (including 
rheumatoid arthritis or other diseases with related symptoms, such as 
gout, lupus, or fibromyalgia), (2) asthma, (3) cancer (any type except 
skin cancer), (4) coronary heart disease (or angina), (5) depressive 
disorder (including depression, major depression, dysthymia, or minor 
depression), (6) pre-diabetes, (7) diabetes, (8) heart attack, (9) high 
blood pressure, (10) high cholesterol, (11) kidney disease, (12) 
pulmonary disease (chronic obstructive pulmonary disease, 
emphysema, or chronic bronchitis), and (13) stroke. These outcomes 
were categorized by the BRFSS as “Chronic Health Conditions” (77). 
Our final dataset included “Yes” and “No” responses.

2.3.2 ACE exposure
ACE exposure was assessed with 11 questions on ACEs and two 

questions on positive childhood experiences (PCEs): (1) living with 
someone who was depressed, mentally ill, or suicidal (Yes/No); (2–3) 
two questions about living with someone who was a problem drinker 
or alcoholic or used illicit street drugs/abused prescription 
medications (Yes/No); (4) living someone who served time or was 
sentenced to serve time in prison or other correctional facility (Yes/
No); (5) having parents who were separated or divorced (Yes/No/
Parents Never Married); (6–8) three questions about living with 
parents who were physically and verbally abusive toward each other 
or the respondent (1 = “Never,” 2 = “Once,” 3 = “More than once”); 
(9–11) three questions on being sexually abused by an adult 
(1 = “Never,” 2 = “Once,” 3 = “More than once”); (12) the presence of an 
adult who made the respondent feel safe and protected; (13) the 
presence of an adult who ensured that the respondent’s basic needs 
were met. Both PCEs were evaluated on a 5-point Likert scale 
(1 = “Never,” 2 = “A little of the time,” 3 = “Some of the time,” 4 = “Most 
of the time,” 5 = “All of the time”), which were reverse-coded. 
Additionally, we computed two composite indices for ACE exposure: 
a binary variable measuring whether a respondent has experienced at 
least one ACE (Yes/No) and a numeric variable calculating the total 
number of ACEs experienced (range: 0–13).

2.3.3 SDoH
The eight variables on SDoH included area of residence (urban vs. 

rural counties), education, employment status, income, renting/home 
ownership status, source of health insurance, availability of a personal 
healthcare provider, and inability to see a medical provider due to cost. 
These variables were categorical and had answering options unique to 
each question.

2.3.4 Health behavior
The 13 variables included both health-promoting and 

deteriorating behaviors, such as exercise, smoking cigarettes, chewing 
tobacco, using e-cigarettes or vaping, heavy drinking, time since last 
cholesterol check, ever tested for HIV, monitoring blood sugar or 
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blood pressure (two composite variables), cancer screening (two 
composite variables), and vaccination status (two composite 
variables). Like the SDoH, these variables were categorical and had 
differing rating scales.

We created six composite variables to handle missing data to 
preserve the information without dropping respondents: count of 
monitoring behaviors for blood sugar or blood pressure, ever 
monitored blood sugar or blood pressure, count of cancer screenings, 
ever screened for any cancer, count of vaccines received, and ever 
received any vaccines. The predictors for monitoring blood sugar or 
blood pressure were generated from two individual variables in the 
dataset (i.e., tested for blood sugar or diabetes in the past 3 years and 
regularly checked for blood pressure at home). These two variables 
were recoded, to where we  assigned 1 (“Yes”) if the respondent 
checked their blood sugar or blood pressure and 0 (“No”) otherwise. 
The variable for the count of monitoring blood sugar or blood pressure 
was the sum of these binary items (range: 0–2).

Similarly, the cancer screening predictors were generated from six 
variables in the dataset (i.e., CT/CAT scan for lung cancer, 
mammogram for breast cancer, any cervical cancer screening, PSA 
test for prostate cancer, colonoscopy or sigmoidoscopy for colorectal 
cancer, and any other screening for colorectal cancer). These six 
variables were also re-engineered into binary variables (1 = “Yes,” 
0 = “No”). The variable for the count of cancer screenings was the sum 
of their answers (range: 0–6). The variable measuring whether the 
respondent ever screened for any cancer was coded as 1 (“Yes”) if they 
underwent any of the six cancer screenings and 0 (“No”) if they 
underwent none.

Lastly, the vaccination status predictors were generated from five 
variables in the dataset (i.e., flu, pneumonia, tetanus, shingles, and 
zoster), which were re-engineered into binary variables (1 = “Yes,” 
0 = “No”). The variable for the count of vaccines received was the sum 
of their answers (range: 0–5). The variable measuring whether the 
respondent ever received any vaccines was coded as 1 (“Yes”) if they 
received any of the five vaccines and 0 (“No”) if they received none.

2.3.5 Demographic and anthropometric variables
Demographic variables included age (grouped in 13 five-year 

categories [1 = “18–24” to 13 = “80 ≤”]), race (White, Black, American 
Indian/Alaska Native, Asian, Native Hawaiian/Pacific Islander, 
Multiracial, Hispanic, Other), and sex (Male/Female). Body Mass 
Index (BMI) was the sole anthropometric variable available in the data 
and was assessed in four standard categories (1 = “Underweight,” 
2 = “Normal Weight,” 3 = “Overweight,” and 4 = “Obese”).

2.4 Preprocessing

We recoded all variables (reverse coding as needed) on a 0-N 
scale, such that all “Never” and “No” variables were coded as zero. 
As noted previously, we excluded any respondents with “Do not 
know/Not sure,” “Refused,” “Not asked,” “Not defined,” and missing 
values for the outcome and predictor variables. In addition, 
we excluded variables for sexual orientation, transgender status, 
nutrition (i.e., consumption of fruits and vegetables and salt intake), 
and marijuana consumption in the last 30 days due to large volumes 
of missing data (n > 26,000 or roughly 50% of our data).

Moreover, given the data imbalance in our outcome variables (i.e., 
the proportion of respondents without chronic health conditions 

substantially exceeding their counterparts with such conditions), 
we performed random under-sampling of the majority class for each 
outcome by retaining the data for respondents with the chronic health 
conditions, and randomly dropping the data from the larger group 
without the conditions. This approach ensured equally sized classes for 
the outcome data, which could reduce the risk of model bias and 
computational burden (see Supplementary Figure S1). Relative to other 
sampling methods, random under-sampling is considered an effective 
approach to reducing data imbalance in sufficiently large datasets while 
minimizing the risk of generalization error on test data (78–80).

3 Data analysis

3.1 Univariate and bivariate

We conducted descriptive analyses (i.e., counts, percentages, 
mean, and standard deviation [SD]) for the predictor variables. 
Adopting Chi-square tests, we compared respondents with vs. without 
missing information to investigate any significant differences in their 
racial and income distributions and health outcomes and ultimately 
prevent potential biases that might be introduced into the final dataset 
by deleting the missing cases.

3.2 ML modeling

After random under-sampling, we split the data into training and 
test datasets. 80% of the data was allocated for training, while the 
remaining 20% was reserved for testing. We built a suite of supervised 
ML methods, such as LR, Gaussian NB, SVM, RF, and KNN, specific 
to each of our target chronic health conditions.

We evaluated model performance with accuracy (i.e., the rate of 
correct predictions) and Area under the Curve or AUC score (i.e., the 
probability of a model ranking a random positive observation higher 
than a random negative observation).

We performed hyperparameter tuning for each model on the 
training set to determine the most accurate predictors for each chronic 
health condition. Briefly, we tested a variety of optimization algorithms, 
penalty terms, and regularization strengths for LR; variance smoothing 
values for Gaussian NB; loss functions, penalty terms, and regularization 
strengths for SVM; the number of trees, number of features, maximum 
tree depth, and bootstrapping method for RF; the number of neighbors, 
weights, and distance metrics for KNN (see Supplementary Table S3 for 
more details). We  utilized 3-fold cross-validation and evaluated 
performance using validation AUC score.

3.3 Model interpretation

We calculated the importance of each predictor variable in 
predicting the occurrence of each chronic health condition using 
different metrics for each ML model type (81). We then examined 
the variable importance of the best-performing model for each 
chronic health condition. We performed min-max normalization 
on each set of variable importances, converting them to 0–1 
scales. This approach allowed us to compare relative variable 
importance across the models. We computed variable importance 
for each ML model type: for LR, we referred to the coefficients of 
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TABLE 1 Sample characteristics.

Demographic characteristics

Age, n (%)

18–24 1,826 (3.43)

25–29 1,947 (3.66)

30–34 2,648 (4.97)

35–39 3,258 (6.12)

40–44 3,579 (6.72)

45–49 3,673 (6.9)

50–54 4,416 (8.29)

55–59 5,019 (9.42)

60–64 6,086 (11.43)

65–69 6,429 (12.07)

70–74 6,104 (11.46)

75–79 3,944 (7.4)

>80 4,339 (8.15)

Race/ethnicity, n (%)

White 44,155 (82.89)

Black 4,467 (8.39)

American Indian/Alaska Native 544 (1.02)

Asian 631 (1.18)

native Hawaiian/Pacific Islander 55 (0.10)

Other 346 (0.65)

Multiracial 823 (1.55)

Hispanic 2,247 (4.22)

Sex, n (%)

Male 25,226 (47.36)

Female 28,042 (52.64)

Marital status, n (%)

Married 30,000 (56.32)

Divorced 6,928 (13.01)

Widowed 6,107 (11.46)

Separated 963 (1.81)

Never married 7,533 (14.14)

Unmarried couple 1,737 (3.26)

Anthropometric characteristics

Body mass index, n (%)

Underweight 640 (1.2)

Normal 13,933 (26.16)

Overweight 19,089 (35.84)

Obese 19,606 (36.81)

Social determinants of health (SDoH)

Urban or rural county, n (%)

Urban counties 43,734 (82.10)

Rural counties 9,534 (17.90)

Education level, n (%)

Never attended school 21 (0.04)

Grades 1–8 572 (1.07)

Grades 9–11 1,681 (3.16)

Grades 12—GED 13,046 (24.49)

College 1–3 years 15,173 (28.48)

College >4 years 22,775 (42.76)

Employment status, n (%)

Employed for wages 23,396 (43.92)

Self-employed 4,475 (8.4)

(Continued)
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TABLE 1 (Continued)

Demographic characteristics

Out of work for >1 year 1,042 (1.96)

Out of work for <1 year 868 (1.63)

Homemaker 1,715 (3.22)

Student 741 (1.39)

Retired 18,071 (33.92)

Unable to work 2,960 (5.56)

Income, n (%)

< $10,000 1,127 (2.12)

$10,000–$15,000 1,585 (2.98)

$15,000–$20,000 2,077 (3.90)

$25,000–$30,000 3,107 (5.83)

$30,000–$35,000 6,626 (12.44)

$35,000–$50,000 7,742 (14.53)

$50,000–$75,000 9,594 (18.01)

$75,000–$100,000 7,820 (14.68)

$100,000–$150,000 7,759 (14.57)

$150,000–$200,000 3,120 (5.86)

>$200,000 2,711 (5.09)

Rent or own home, n (%)

Own 41,687 (78.26)

Rent 10,009 (18.79)

Other arrangement 1,572 (2.95)

Marital status, n (%)

Married 30,000 (56.32)

Divorced 6,928 (13.01)

Widowed 6,107 (11.46)

Separated 963 (1.81)

Never married 7,533 (14.14)

Unmarried couple 1,737 (3.26)

Source of health insurance, n (%)

Employer or union plan 21,555 (40.47)

Private plan 4,342 (8.15)

Medicare 18,206 (34.18)

Medigap 59 (0.11)

Medicaid 2,500 (4.69)

Children’s Health Insurance Program (CHIP) 12 (0.02)

Military-related healthcare 1,845 (3.46)

Indian Health Service 60 (0.11)

State-sponsored health plan 1,136 (2.13)

Other government program 1,442 (2.71)

No coverage 2,111 (3.96)

Has personal care provider, n (%)

Yes, only one 34,089 (64.0)

More than one 14,397 (27.03)

No 4,782 (8.98)

Unable to see doctor due to medical cost, n (%)

Yes 3,180 (5.97)

No 50,088 (94.03)

Health behavior

Regular exercise, n (%)

Yes 40,412 (75.87)

No 12,856 (24.13)

Smoked at least 100 cigarettes in life, n (%)

(Continued)
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the predictor variables in the regression formulation (80); for 
Gaussian NB, we employed permutation importance that measures 
the decline in model performance when individual random 
variables are shuffled (82); for SVM, we  calculated the weight 
vector that represents the hyperplane separating the classes in 
linear space (83); for RF, we examined GINI importance or mean 
decrease in impurity, indicating how often a specific feature is 
selected for splitting within the RF and, thereby, its discriminative 
value toward the classification (84). We performed all procedures 
using Python 3.8.3 run on Jupyter Notebook. We used several 

open-source Python packages: numpy, pandas, matplotlib, sci-kit 
learn, seaborn, and scipy.

4 Results

4.1 Sample characteristics

As illustrated in Table 1, 39% of the respondents were aged 65 
or older. About 83% of them self-identified as White and 8.4% as 

TABLE 1 (Continued)

Demographic characteristics

Yes 22,740 (42.69)

No 30,528 (57.31)

Currently use chewing tobacco, snuff or snuss, n (%)

Every day 1,066 (2.0)

Some days 707 (1.33)

Not at all 51,495 (96.67)

Use-cigarettes or electronic vaping products, n (%)

Every day 1,056 (1.98)

Some days 1,125 (2.11)

Not at all 43,338 (81.36)

Never used 7,749 (14.55)

Heavy drinker, n (%)

No 49,893 (93.66)

Yes 3,375 (6.34)

Time since last cholesterol check, n (%)

Never 3,739 (7.02)

<1 Year 39,096 (73.39)

1–2 Years 5,776 (10.84)

2–3 Years 1,803 (3.38)

3–4 Years 651 (1.22)

4–5 Years 580 (1.09)

>5 Years 1,623 (3.05)

Ever tested for HIV, n (%)

Yes 17,195 (32.28)

No 36,073 (67.72)

Count of monitoring behaviors for blood sugar and blood pressure, n (%)

0 33,238 (62.4)

1 18,837 (35.36)

2 1,193 (2.24)

Count of cancer screenings, n (%)

0 49,771 (93.44)

1 2,354 (4.42)

2 1,095 (2.06)

3 48 (0.09)

Count of vaccines received, n (%)

0 16,975 (31.87)

1 18,573 (34.87)

2 15,991 (30.02)

3 1,050 (1.97)

4 679 (1.27)

ACE exposure

Four or more ACEs, n (%) 9,808 (18.41)

Total ACEs, mean (sd) 1.83 (2.27)
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TABLE 2 Classification model performance for all target chronic health conditions.

Chronic disease ML model
Validation accuracy 

[95% CI]
Test accuracy [95% 

CI]
Test AUC score [95% 

CI]

Arthritis

n = 39,184

LR 0.696 [0.691, 0.7] 0.697 [0.693, 0.702] 0.697 [0.695, 0.7]

NB 0.682 [0.678, 0.687] 0.688 [0.683, 0.693] 0.688 [0.685, 0.691]

SVM 0.691 [0.686, 0.696] 0.697 [0.692, 0.701] 0.697 [0.694, 0.699]

KNN 0.667 [0.662, 0.671] 0.677 [0.673, 0.682] 0.677 [0.675, 0.68]

RF (Best Predictor) 0.697 [0.693, 0.702] 0.701 [0.697, 0.706] 0.701 [0.699, 0.704]

Asthma

n = 14,268

LR 0.615 [0.607, 0.623] 0.615 [0.607, 0.623] 0.615 [0.61, 0.619]

NB 0.572 [0.564, 0.58] 0.578 [0.57, 0.587] 0.578 [0.574, 0.583]

SVM 0.615 [0.607, 0.623] 0.616 [0.608, 0.624] 0.616 [0.612, 0.621]

KNN 0.569 [0.56, 0.577] 0.571 [0.563, 0.58] 0.571 [0.567, 0.576]

RF (Best Predictor) 0.61 [0.602, 0.618] 0.627 [0.619, 0.635] 0.627 [0.622, 0.631]

Cancer

n = 11,726

LR 0.675 [0.667, 0.684] 0.668 [0.66, 0.677] 0.668 [0.664, 0.673]

NB 0.652 [0.644, 0.661] 0.661 [0.653, 0.67] 0.661 [0.656, 0.666]

SVM 0.673 [0.665, 0.682] 0.671 [0.663, 0.68] 0.671 [0.667, 0.676]

KNN 0.647 [0.639, 0.656] 0.659 [0.65, 0.668] 0.659 [0.654, 0.664]

RF (Best Predictor) 0.675 [0.666, 0.683] 0.687 [0.678, 0.695] 0.687 [0.682, 0.691]

Coronary heart disease

n = 6,554

LR 0.732 [0.721, 0.743] 0.715 [0.705, 0.726] 0.716 [0.709, 0.722]

NB 0.704 [0.693, 0.715] 0.694 [0.683, 0.705] 0.694 [0.688, 0.701]

SVM (Best Predictor) 0.732 [0.721, 0.742] 0.725 [0.715, 0.736] 0.725 [0.719, 0.732]

KNN 0.7 [0.689, 0.711] 0.678 [0.667, 0.689] 0.678 [0.672, 0.685]

RF 0.734 [0.724, 0.745] 0.719 [0.708, 0.729] 0.719 [0.712, 0.725]

Depressive disorder

n = 21,288

LR (Best Predictor) 0.708 [0.702, 0.714] 0.705 [0.699, 0.711] 0.705 [0.702, 0.709]

NB 0.648 [0.642, 0.655] 0.642 [0.636, 0.649] 0.642 [0.639, 0.646]

SVM 0.705 [0.699, 0.711] 0.7 [0.694, 0.706] 0.7 [0.697, 0.704]

KNN 0.665 [0.659, 0.671] 0.665 [0.659, 0.672] 0.665 [0.662, 0.669]

RF 0.709 [0.703, 0.715] 0.702 [0.696, 0.709] 0.702 [0.699, 0.706]

Diabetes

n = 15,504

LR 0.784 [0.778, 0.791] 0.772 [0.765, 0.778] 0.772 [0.768, 0.775]

NB 0.764 [0.758, 0.771] 0.751 [0.744, 0.758] 0.751 [0.747, 0.755]

SVM 0.783 [0.777, 0.79] 0.774 [0.768, 0.781] 0.774 [0.771, 0.778]

KNN 0.737 [0.73, 0.744] 0.729 [0.722, 0.736] 0.729 [0.725, 0.733]

RF (Best Predictor) 0.79 [0.784, 0.797] 0.784 [0.778, 0.791] 0.784 [0.781, 0.788]

Heart attack

n = 6,236

LR 0.724 [0.713, 0.735] 0.725 [0.714, 0.736] 0.725 [0.719, 0.731]

NB 0.695 [0.684, 0.707] 0.698 [0.687, 0.709] 0.698 [0.691, 0.704]

SVM 0.722 [0.711, 0.733] 0.725 [0.714, 0.736] 0.725 [0.719, 0.731]

KNN 0.689 [0.678, 0.701] 0.691 [0.679, 0.702] 0.691 [0.684, 0.697]

RF (Best Predictor) 0.728 [0.717, 0.739] 0.732 [0.721, 0.743] 0.732 [0.726, 0.739]

High blood pressure

n = 45,976

LR 0.707 [0.703, 0.711] 0.712 [0.708, 0.717] 0.712 [0.71, 0.715]

NB 0.669 [0.665, 0.673] 0.669 [0.665, 0.673] 0.669 [0.667, 0.672]

SVM 0.707 [0.703, 0.711] 0.711 [0.707, 0.715] 0.711 [0.709, 0.714]

KNN 0.676 [0.672, 0.68] 0.679 [0.674, 0.683] 0.679 [0.676, 0.681]

RF (Best Predictor) 0.713 [0.709, 0.717] 0.716 [0.711, 0.72] 0.716 [0.713, 0.718]

High cholesterol

n = 49,526

LR 0.656 [0.652, 0.66] 0.657 [0.653, 0.662] 0.657 [0.655, 0.66]

NB 0.612 [0.607, 0.616] 0.613 [0.608, 0.617] 0.613 [0.61, 0.615]

SVM 0.66 [0.656, 0.664] 0.661 [0.657, 0.665] 0.661 [0.658, 0.663]

KNN 0.609 [0.605, 0.613] 0.612 [0.608, 0.617] 0.612 [0.61, 0.615]

RF (Best Predictor) 0.67 [0.666, 0.675] 0.671 [0.667, 0.675] 0.671 [0.668, 0.673]
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Black. Slightly over 50% were female and married, respectively. 
Over 40% of the respondents completed 4 years of college 
education or more and were employed, respectively, while 78% 
owned a home.

In terms of BMI, 35.8% of the respondents were overweight, and 
36.8% were obese. For healthcare access, 64% reported having a 
personal provider, while 40.5% reported having an employer or 
union-sponsored insurance. Nevertheless, 94% reported that they 
could not see a doctor in the past 12 months due to cost. Regarding 
health behaviors, a majority of the respondents reported exercising in 
the past month (75.9%) and never using chewing tobacco (96.7%) and 
electronic cigarettes/vaping products (81.4%). Also, 57.3% had 
smoked less than 100 cigarettes in their lifetime, and around 6% were 
involved in heavy drinking.

73.4% of the respondents checked their cholesterol last time less 
than a year ago. On the other hand, a majority reported never having 
been tested for HIV (67.7%), not monitoring blood sugar or blood 
pressure (62.4%), and not screening for cancer (93.4%). Nearly one in 
three respondents received at least one vaccine. Lastly, the mean 
number of ACEs was 1.83 (SD = 2.27), and 18.4% of the respondents 
encountered four or more ACEs.

4.2 Analysis of missing data

There was no significant difference in the racial distribution of the 
missing and non-missing cases (data not shown). However, we found 
a significant difference in the income distribution between the two 

groups, wherein respondents with missing data were more likely to 
be in a higher-income group earning $75,000 or more. Regarding 
chronic health conditions, we found significant differences only in 
high blood pressure and arthritis, whereby those with missing data 
were more likely to experience these conditions. However, we do not 
expect the removal of missing data on high blood pressure and 
arthritis to impact model performance, as we  performed under-
sampling to ensure balanced distributions of classes for each 
outcome variable.

4.3 Model performance

With the inclusion of data on ACEs, our ML models achieved 
higher or similar accuracy and AUC scores compared to existing 
models in the literature that predicted health outcomes based on 
SDoH (65) (Table 2). Nine of the 13 models obtained test accuracies 
above 70% and test AUC scores above 0.7. The top-performing models 
were those predicting diabetes (78.4% accuracy, 0.784 AUC), 
pulmonary disease (75.3% accuracy, 0.753 AUC), and heart attack 
(73.2% accuracy, 0.732 AUC).

Training a single iteration of each model took an average of 38 s. 
Validation and model selection involved training a single iteration of 
each algorithm for every combination of the hyperparameters that 
were tested. This process determined the optimal performance for 
each model.

Three of the top five models employed RF (diabetes, heart attack, 
and prediabetes), whereas LR (pulmonary disease) and SVM 

TABLE 2 (Continued)

Chronic disease ML model
Validation accuracy 

[95% CI]
Test accuracy [95% 

CI]
Test AUC score [95% 

CI]

Kidney disease

n = 4,432

LR 0.692 [0.678, 0.706] 0.677 [0.663, 0.69] 0.677 [0.669, 0.685]

NB 0.679 [0.665, 0.692] 0.653 [0.639, 0.667] 0.653 [0.645, 0.661]

SVM 0.691 [0.678, 0.705] 0.669 [0.655, 0.683] 0.669 [0.661, 0.677]

KNN 0.674 [0.66, 0.688] 0.633 [0.619, 0.647] 0.633 [0.625, 0.641]

RF (Best Predictor) 0.698 [0.684, 0.711] 0.681 [0.667, 0.695] 0.681 [0.673, 0.689]

Pre-diabetes

n = 51,060

LR 0.711 [0.707, 0.715] 0.717 [0.714, 0.721] 0.714 [0.712, 0.717]

NB 0.694 [0.69, 0.698] 0.701 [0.697, 0.705] 0.696 [0.694, 0.699]

SVM 0.708 [0.704, 0.712] 0.715 [0.711, 0.719] 0.711 [0.709, 0.713]

KNN 0.671 [0.667, 0.675] 0.679 [0.675, 0.684] 0.674 [0.671, 0.676]

RF (Best Predictor) 0.724 [0.72, 0.728] 0.728 [0.724, 0.732] 0.726 [0.724, 0.728]

Pulmonary disease

n = 8,890

LR (Best Predictor) 0.745 [0.736, 0.754] 0.753 [0.744, 0.762] 0.753 [0.748, 0.758]

NB 0.711 [0.701, 0.72] 0.715 [0.706, 0.725] 0.715 [0.71, 0.721]

SVM 0.745 [0.736, 0.754] 0.749 [0.74, 0.758] 0.749 [0.744, 0.754]

KNN 0.706 [0.697, 0.716] 0.711 [0.701, 0.72] 0.711 [0.706, 0.716]

RF 0.756 [0.747, 0.765] 0.744 [0.734, 0.753] 0.744 [0.738, 0.749]

Stroke

n = 4,488

LR 0.714 [0.701, 0.728] 0.714 [0.701, 0.727] 0.714 [0.706, 0.721]

NB 0.706 [0.693, 0.72] 0.688 [0.675, 0.702] 0.688 [0.68, 0.696]

SVM 0.712 [0.698, 0.725] 0.71 [0.697, 0.724] 0.71 [0.703, 0.718]

KNN 0.698 [0.685, 0.712] 0.682 [0.668, 0.695] 0.682 [0.674, 0.689]

RF (Best Predictor) 0.718 [0.705, 0.731] 0.715 [0.702, 0.728] 0.715 [0.707, 0.722]

Bold values indicate best-performing models for each chronic disease.
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TABLE 3 Most predictive variables for each best-performing classification model.

Disease Best performing model Top 5 predictor variables

Arthritis Random forest  1. Age

 2. Employment status

 3. Income

 4. Source of health insurance

 5. Count of vaccines received

Asthma Random forest  1. Age

 2. Income

 3. Total ACEs

 4. BMI category

 5. Employment status

Cancer Random forest  1. Age

 2. Employment status

 3. Source of health insurance

 4. Income

 5. Count of vaccines received

Coronary heart disease Support vector machine  1. Sex

 2. ACE—lived with mentally ill/suicidal person

 3. Has personal health care provider available

 4. Smoking cigarettes

 5. Age

Depressive disorder Logistic regression  1. ACE—lived with mentally ill/suicidal person

 2. Inability to see medical provider due to cost

 3. Sex

 4. Exercise

 5. Ever received any vaccines

Diabetes Random forest  1. Age

 2. Ever monitored blood sugar or blood pressure

 3. Count of blood monitoring behaviors for blood sugar or blood pressure

 4. BMI

 5. Time since last cholesterol check

Heart attack Random forest  1. Age

 2. Employment status

 3. Income

 4. Source of health insurance

 5. Sex

High blood pressure Random forest  1. Age

 2. BMI

 3. Employment status

 4. Time since last cholesterol check

 5. Income

High cholesterol Random forest  1. Time since last cholesterol check

 2. Age

 3. Income

 4. Employment status

 5. Source of health insurance

(Continued)
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TABLE 3 (Continued)

Disease Best performing model Top 5 predictor variables

Kidney disease Random forest  1. Employment status

 2. Age

 3. Source of health insurance

 4. Income

 5. Count of vaccines received

Pre-diabetes Random forest  1. Ever monitored blood sugar or blood pressure

 2. Count of blood monitoring behaviors for blood sugar or blood pressure

 3. Age

 4. Income

 5. Time since last cholesterol check

Pulmonary disease Logistic regression  1. Smoking cigarettes

 2. Exercise

 3. Inability to see medical provider due to cost

 4. Have you tested for HIV?

 5. ACE—lived with mentally ill/suicidal person

Stroke Random forest  1. Age

 2. Employment status

 3. Income

 4. Source of health insurance

 5. Time since last cholesterol check

FIGURE 1

Swarm plot of normalized variable importance across all 13 chronic health condition models.
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(coronary heart disease) were used in the other two. Overall, RF 
performed best for 10 of the 13 chronic health conditions: diabetes, 
heart attack, prediabetes, high blood pressure, stroke, arthritis, cancer, 
kidney disease, high cholesterol, and asthma. The linear model (i.e., 
LR) performed best only for two chronic health conditions.

4.4 Model interpretation

Age and SDoH, such as income, employment, and health insurance, 
were among the top five strongest variables to predict each chronic health 
condition (Table 3). ACEs, either cumulatively or individually, were also 
identified as an important variable for asthma, coronary heart disease, 
depressive disorder, and pulmonary disease. When individually 
examined, living with a mentally ill/suicidal person during childhood 
was the only ACE predictive of these health conditions (except asthma). 
Specifically, living with a mentally ill/suicidal person seemed to play the 
most critical role in the depressive disorder and coronary heart disease 
models and was listed as their first and second most important predictor, 
respectively. Supplementary Figure S2 outlines the variable importance 
of all models.

Normalized variable importance revealed the 10 most predictive 
variables across a total of 65 models (5 ML models × 13 chronic health 
conditions): age, ever monitored blood sugar or blood pressure, count 
of monitoring behaviors for blood sugar or blood pressure, BMI, time 
since last cholesterol check, employment status, income, count of 
vaccines received, primary insurance status, and the total number of 
ACEs (Figure 1).

5 Discussion

Our study developed explainable ML models using large 
national survey data to predict 13 chronic health conditions 
prevalent among U.S. adults. We  found that non-linear models, 
particularly RF, outperformed the linear model in predicting 
chronic health conditions. In addition, our ML models cast light on 
the most predictive features of each condition. Among these, ACEs 
and SDoH such as income, employment, and health insurance, were 
robust predictors of multiple chronic health conditions. 
Additionally, cumulative ACEs were a stronger predictor than 
individual ACEs across chronic health conditions. Our models 
achieved comparable or superior performance to classical ML-based 
health outcome prediction models that previously used SDoH as 
predictors (65). Our findings not only align with previous studies 
linking ACEs to chronic health conditions (6–28, 30, 31), but also 
expand upon them by employing ML to factor in complex 
interactions between ACEs and other socioeconomic and behavioral 
factors to predict chronic health conditions. Our primary focus on 
ACEs and relevant socioeconomic and behavioral factors can 
distinguish the current study from others. While previous studies 
have documented excellent performance of classical ML models 
(e.g., RF, gradient boost, SVM, LR, KNN, decision trees, and NB) 
to predict chronic health conditions, they commonly focused on 
biomedical predictors such as clinical, biomarker, and genetics data 
(58, 60, 63, 64).

Our study, which emphasizes the role of ACEs and their cumulative 
impact, highlights the significance of predictive values of total ACEs in 
shaping chronic diseases. ACEs were among the top five predictors for 
four chronic health conditions: asthma, coronary heart disease, 
depressive disorder, and pulmonary disease. Living with a mentally ill/
suicidal person during childhood was particularly predictive of 
coronary heart disease, depressive disorder, and pulmonary disease. 
These results are supported by Gallagher and colleagues, who found 
that living with a severely mentally ill person is associated with poorer 
subjective health, activity limitations, and higher utilization of 
physician visits than living with non-mentally ill household members 
(85). Beyond this single ACE, the total number of ACEs was a stronger 
predictor than individual ACEs across all the best-performing models 
of the 13 chronic health conditions. Notably, the total number of ACEs 
was among the top five predictors for the asthma model, which aligns 
with findings from the existing literature on the dose–response 
relationship between ACEs and asthma (12). The composite measure 
may more accurately represent how ACEs operate: not arbitrarily, but 
rather in clusters, especially among historically marginalized 
populations (2, 86–88). This finding underscores the significance of 
cumulative ACEs on an individual’s likelihood of developing chronic 
health conditions. Although we demonstrated a strong association 
between ACEs and chronic health conditions by comparing various 
base learners, including LR, Gaussian NB, SVM, RF, and KNN, future 
work is guaranteed to improve prediction accuracy. For example, 
we may employ stacked ensemble algorithms (e.g., XGBoost), which 
has been reported to improve classification with imbalanced data 
(89–91); this may enhance performance while requiring smaller 
degrees of undersampling, thereby allowing the use of a larger volume 
of data. Additionally, we may perform more extensive iterations of 
training and validation using a wider range of hyperparameters.

On a relative scale, the models for diabetes, pulmonary disease, and 
heart attacks performed particularly well, whereas models predicting 
kidney disease, high cholesterol, and asthma exhibited lower performance. 
Such discrepancies may be attributable to the varying importance of 
different variables in predicting distinct chronic health conditions. 
Similarly, Battineni and colleagues report that their ML models used 
different sets of variables to predict various chronic diseases in different 
populations, demonstrating no “gold standard” for ML methods to 
predict chronic diseases, including how to select and prioritize predictors 
(56). Despite improved interpretability, this unclarity could still 
compromise ML models’ transparency and trustworthiness. To partially 
address the issue, future research could compare different sets of 
predictors across domains, ML models, and strategies for interpretability 
to analyze the commonalities and variations in model output.

In addition to the ACEs discussed above, the following were the 
most predictive variables across all models of chronic health 
conditions: age, ever monitored blood sugar or blood pressure, count 
of monitoring behaviors for blood sugar or blood pressure, BMI, time 
since last cholesterol check, employment status, income, vaccine 
count, and primary health insurance status. Previous literature has 
revealed that chronic health conditions are indeed associated with age 
(92); self-management (93, 94); BMI (95); employment, income, and 
wealth (96–98); immunization (99–103); health insurance (104, 105).

Our study findings undergird the pivotal role of preventing ACEs 
and socioeconomic inequalities in chronic disease prevention at the 
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population level. Our ML models could enable data-driven screening 
for various chronic health conditions to identify high-risk individuals, 
explain the most influential underlying factors, and develop 
personalized prevention strategies.

Despite the strengths and contributions of our study, some 
limitations must be acknowledged. First, we analyzed self-reported 
data, which could have introduced biases (e.g., recall bias, social 
desirability bias, or misinterpretation of the questions), potentially 
affecting the accuracy and reliability of the developed models. 
However, such reporting biases are inherent in survey data and not 
unique to the BRFSS. In addition, the prevalence estimates in the 
BRFSS data are known to be consistent with comparable national 
surveys (i.e., National Health Interview Survey, National Health and 
Nutrition Examination Survey) (106, 107). More objective measures, 
such as biomarkers, should be analyzed to predict chronic health 
conditions more accurately in the future.

Second, our final dataset comprised mostly White and middle-
income respondents. Consequently, the developed models may not 
predict chronic health conditions among disadvantaged populations 
at higher risk of ACEs (e.g., Black, Hispanic, or low-income 
individuals) as accurately as among more privileged populations (e.g., 
White or affluent individuals). Future studies are needed to develop 
ML models optimized for subpopulations, compare their performance 
to models with a pooled population, and consider potential differences 
in important variables or magnitudes in prediction. Stratification by 
subpopulation could partially mitigate the system-wide bias in 
collecting and processing data among different populations.

Third, our random sampling method to create an artificially 
balanced dataset for model training may misrepresent model 
performance. Random under-sampling increases the possibility that 
the model underperforms with “real-world” data, as the inflated 
proportion of positive cases in the training data may introduce greater 
false positives in real-world data. However, relative to other sampling 
methods, random under-sampling minimizes the risk of generalization 
error on test data (78–80).

Fourth, we encountered some hurdles with data availability. For 
instance, there were no core questions in the BRFSS regarding 
transportation, food security, and green space, which are crucial 
SDoH. Relatedly, other variables that represent determinants of health 
were not factored into our models due to insufficient data: sexual 
orientation, transgender status, nutrition, and marijuana consumption. 
Furthermore, we were unable to predict specific types of cancer, joint 
conditions, and pulmonary disease due to unavailable data.

Lastly, our ML models were trained and tested on unweighted 
data due to a lack of computing resources to model the weighted data. 
Hence, our unweighted ML models are limited in generalizability, and 
their performance is likely inflated to some degree compared to 
weighted models (108). With these limitations in data collection and 
modeling, our findings should be  interpreted with caution. Our 
models should be viewed as supplementary tools for screening and 
decision-making, rather than a standalone, definitive prediction 
system for chronic health conditions.

6 Conclusion

To our knowledge, this is the first study to employ interpretable 
ML methods to model the syndemic interactions of ACEs, SDoH, 
health behaviors, and chronic health conditions using extensive data 

from a large national health survey in the U.S. Our findings highlighted 
the significance of preventing ACEs and mitigating their cumulative 
impact on chronic health conditions later in life. This study serves as 
an initial step toward developing a data-driven screening tool to 
identify U.S. adults at high risk of chronic health conditions, aiding in 
prevention and early intervention efforts. Our models also offer an 
interpretable and trauma-informed framework, aimed at reducing the 
persistent inequalities associated with early trauma and chronic health 
conditions among U.S. adults. Acknowledging the insights from 
Battineni et al., we underscore the importance of continuous validation 
and testing of our models to ensure their reliability and practical utility 
in multiple settings with different patient characteristics. ML models 
are bound to the data they train; therefore, the model parameters 
we  have developed can be  used as a baseline, upon which future 
research can develop contextualized models that will be re-fitted to 
other datasets of new patient populations to predict their chronic 
health conditions more accurately.
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