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In the contemporary landscape of healthcare, the early and accurate prediction

of diabetes has garnered paramount importance, especially in the wake of

the COVID-19 pandemic where individuals with diabetes exhibit increased

vulnerability. This research embarked on a mission to enhance diabetes prediction

by employing state-of-the-art machine learning techniques. Initial evaluations

highlighted the Support Vector Machines (SVM) classifier as a promising candidate

with an accuracy of 76.62%. To further optimize predictions, the study delved into

advanced feature engineering techniques, generating interaction and polynomial

features that unearthed hidden patterns in the data. Subsequent correlation

analyses, visualized through heatmaps, revealed significant correlations, especially

with attributes like Glucose. By integrating the strengths of Decision Trees,

Gradient Boosting, and SVM in an ensemble model, we achieved an accuracy of

93.2%, showcasing the potential of harmonizing diverse algorithms. This research

o�ers a robust blueprint for diabetes prediction, holding profound implications

for early diagnosis, personalized treatments, and preventive care in the context of

global health challenges and with the goal of increasing life expectancy.
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1 Introduction

The dawn of the twenty-first century has been illuminated by the transformative power

of data-driven methodologies. This era, characterized by the amalgamation of technology

and healthcare, has witnessed the birth and growth of innovative tools and techniques

geared toward enhancing patient care, diagnosis, and management. These advancements

have not only revolutionized medical treatments but have also given rise to predictive

healthcare, an approach that leverages data to forecast medical outcomes, thereby enabling

timely interventions.

As the world finds itself in the throes of the COVID-19 pandemic, a public health crisis

of unparalleled magnitude, the significance of predictive healthcare is amplified manifold.

The virus, while a threat to all, poses heightened risks to certain vulnerable demographics.

Notably, individuals with pre-existing conditions, such as diabetes, have been identified as

being particularly susceptible to severe manifestations of the virus (1, 2). This revelation

underscores the criticality of early diabetes detection and management, both from a patient

wellbeing perspective and from a broader public health standpoint (3).
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Machine learning, with its deep-rooted capabilities in pattern

recognition and data analytics (4), emerges as a beacon of hope

in this scenario (5, 6). Its prowess in sifting through vast datasets,

identifying hidden correlations, and predicting outcomes positions

it as a formidable tool in the medical diagnostic toolkit. However,

the multifaceted and often non-linear nature of medical data calls

for an approach that goes beyond traditional algorithms. Feature

engineering, a process that refines and transforms data attributes,

presents itself as an indispensable ally in this quest. By generating

interaction features, crafting polynomial attributes, and more,

feature engineering seeks to enhance the richness of the dataset,

making it more conducive to accurate predictions (7–9).

Yet, the path to optimal prediction is not solely paved

by feature engineering. Ensemble models, which harmonize the

strengths of multiple machine learning algorithms, offer a layer of

sophistication and robustness. By synergizing diverse algorithms,

ensemble models aspire to deliver predictions that are not only

accurate but also consistent across varied scenarios.

With this contextual landscape as the backdrop, our research

is anchored in a clear vision: to harness the combined might of

machine learning, feature engineering, and ensemble models to

redefine the standards of diabetes prediction, especially in the

shadow of the COVID-19 pandemic (10).

The main objectives of this paper are:

1. To assess the performance of various classifiers, such as Support

VectorMachines (SVM), Logistic Regression, Gradient Boosting

and Random Forest, in predicting diabetes.

2. To delve into advanced feature engineering techniques, creating

interaction features and generating polynomial attributes,

aiming to capture hidden relationships in the data.

3. To gauge the efficacy of engineered features in relation to

diabetes prediction outcomes, using visual tools like heatmaps.

4. To design and evaluate an ensemble model that integrates

the strengths of diverse algorithms, targeting enhanced

predictive accuracy.

5. To situate the findings within the broader context of the

COVID-19 pandemic, examining the implications of accurate

diabetes prediction in managing COVID-19 vulnerabilities.

Section 2 presents the Literature Review, where we critically

examine previous studies that have utilized the Pima Indians

Diabetes Database, delving into their methodologies, results, and

conclusions. A key component of this section is the identification

of the Research Gap. By pinpointing gaps or limitations in prior

studies, we articulate the unique contributions our research aims to

make. Section 3 outlines our Methodology. Within this section, we

offer a detailed description of the dataset under Data Collection.We

then discuss the various steps undertaken to refine the dataset in

Data Preprocessing, from handlingmissing values to normalization

and feature engineering. Section 4 showcases our Results. Here,

we provide a statistical overview of each feature in the dataset

through Descriptive Statistics. We then present the outcomes of

our predictive models in Model Performance, illustrated through

tables, charts, or graphs. The significance of different features in

the prediction process is discussed in Feature Importance. This

section, offers an interpretation of our results, drawing insights, and

contextualizing our findings. Finally, Section 6 concludes the paper

with a summary of our main findings, a discussion on the broader

implications of our results, and suggestions for potential avenues

for future research.

2 Literature review

A proposed e-diagnosis system leveraging machine learning

(ML) algorithms was introduced for the Internet of Medical

Things (IoMT) environment, specifically targeting type 2 diabetes

diagnosis (11). Despite ML’s promise, skepticism arises due to

its opaque decision-making process, causing hesitancy in its

adoption within some healthcare domains. The study employed

three transparent ML models—Naïve Bayes, random forest, and

J48 decision tree—using the Pima Indians diabetes dataset. Results

indicated a preference for Naïve Bayes with select features, while

random forests excelled with a richer feature set.

In the study (12), various methods were explored to

determine the likelihood of diabetes mellitus. Four prominent

classification approaches were initially assessed, namely Decision

Tree, Neural Structures, Regression Analysis, and Probability-

based Classification. Subsequently, aggregation strategies such as

Bagging and Boosting were examined to enhance model stability.

The Random Forest approach was also incorporated into the

evaluations. Results indicated that the Random Forest method

outperformed the others in disease risk determination. Based on

these findings, an online tool was developed leveraging the Random

Forest approach for diabetes risk categorization.

The primary objective of this research is to evaluate the

efficacy of different algorithms in forecasting diabetes through data

analysis techniques (13). This study assesses various computational

classifiers, including the J48 Decision Tree, K-Nearest Neighbors,

Random Forest, and Support Vector Machines, aiming to

categorize individuals with diabetes mellitus. The algorithms were

evaluated using data samples sourced from the UCI learning data

archive. Their performance was analyzed on datasets both before

and after data cleaning, and the results were benchmarked based

on Accuracy, Sensitivity, and Specificity metrics.

The study in (14) introduces a technique to categorize patients

with diabetes based on a set of features aligned with World

Health Organization guidelines. By applying advanced data analysis

algorithms to real-world data, a precision of 0.770 and a recall of

0.775 were achieved utilizing the HoeffdingTree method.

Historically, many clinical decision support systems,

as documented in multiple studies, have been anchored

in data mining techniques to predict diabetes onset and

its progression. These traditional systems predominantly

rely on singular classifier models or their uncomplicated

combinations. However, a discernible trend in contemporary

literature highlights the pivot toward ensemble classifiers.

For instance, authors in (15) have delved into the efficacy of

ensemble techniques, particularly emphasizing the adaboost

and bagging methods, often utilizing decision trees like J48

(analogous to c4.5) as the foundational model. Moreover,

specific research efforts have concentrated on the Canadian

Primary Care Sentinel Surveillance network, aiming to classify

individuals across various adult age groups based on diabetes
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risk determinants. Such studies have collectively underscored

the potential superiority of ensemble methods, especially

adaboost, in enhancing prediction accuracy compared to

conventional methods.

In the study (16), authors endeavors to meticulously review

the infusion of machine learning and data mining paradigms in

diabetes research. The focus areas being: (a) Prognostication and

Diagnostic Processes, (b) Complications arising from Diabetes,

(c) Interplay of Genetics and Environment, and (e) Healthcare

Administration and Management. Notably, predictive and

diagnostic applications have garnered heightened attention. The

landscape of algorithms showcased a dominance of supervised

learning techniques, constituting 85%, with the remaining 15%

gravitating toward unsupervised methodologies, predominantly

association rules. Among the gamut of algorithms, Support Vector

Machines (SVM) emerged as the predominant choice.

In (17), the authors employed decision tree, random forest,

and neural network algorithms to forecast diabetes mellitus

using hospital examination datasets. Adopting a five-fold cross-

validation and independent test experiments on a balanced sample

of 68,994 records, the study addressed data imbalance through

multiple random data extractions. Dimensionality reduction was

achieved using principal component analysis (PCA) and minimum

redundancy maximum relevance (mRMR). Notably, the random

forest algorithm, utilizing the full attribute spectrum, showcased

superior accuracy, registering at 0.8084.

In (18), the authors conducted an in-depth examination of

complications and blood glucose prognosis in non-adherent T2D

patients, sourcing data from inpatients at Sichuan Provincial

People’s Hospital between 2010 and 2015. Targeting T2D patients

without recent monitoring or treatment adjustments, 18 predictive

models were crafted using seven machine learning techniques,

evaluated primarily through the area under the curve metric.

Results revealed that out of 800 T2D patients, 165 qualified

for the study, with 78.2% exhibiting poor glycemic control.

Notable predictive performance was observed in areas like

diabetic nephropathy (AUC = 0.902) and diabetic peripheral

neuropathy (AUC = 0.859).

In (19), predictions of fasting plasma glucose levels were

derived using a series of 100 bootstrap iterations, encompassing

varied data subsets that mirrored biannual data influxes. Initial

analyses, grounded in 6-month data snapshots, illuminated the

primacy of the rudimentary regression model, recording the

minimal RMSE at 0.838, trailed by RF, LightGBM, Glmnet, and

subsequently XGBoost. As the data repository expanded, Glmnet

showcased a noteworthy enhancement trajectory, peaking at an

increment rate of 3.4%.

Utilizing Hadoop clusters, which are tailored for efficient

processing and storage of vast datasets in a cloud setting, has

been pivotal. Authors in (20), introduces a pioneering approach

by integrating machine learning techniques within these Hadoop-

based clusters, specifically for predicting diabetes. The outcomes

underline the efficacy of these algorithms in yielding high-

accuracy predictive systems for diabetes. For the assessment of

the algorithm’s functionality, the Pima Indians Diabetes Database

from the National Institute of Diabetes and Digestive Diseases

was employed.

In (21), researchers study delves into the comparative analysis

of conventional classification techniques against neural network-

driven machine learning approaches, specifically for a diabetes

dataset. Furthermore, a plethora of performance metrics are

assessed across multiple algorithms, such as K-nearest neighbor,

Naive Bayes, extra trees, decision trees, radial basis function, and

multilayer perceptron. The objective is to enhance the predictive

accuracy for potential future diabetes cases in patients. From

the findings, it becomes evident that the multilayer perceptron

algorithm outperforms others, registering the peak accuracy, a

minimalMSE at 0.19, and boasts the least instances of false positives

and negatives, culminating in an impressive area under the curve

of 86%.

The existing body of research predominantly operates in

silos, either focusing on individual algorithms or generic feature

engineering. There is limited exploration of harmonizing diverse

algorithms in an ensemble model, especially in the context of

diabetes prediction during global health crises. This presents an

opportune avenue for innovation, highlighting the need for a

comprehensive approach that seamlessly integrates state-of-the-art

machine learning techniques with advanced feature engineering.

Such an amalgamation not only promises enhanced predictive

accuracy but also paves the way for more holistic patient care,

encompassing early diagnosis, tailored treatments, and proactive

preventive measures. Our research seeks to bridge this gap. We

endeavor to amalgamate the strengths of proven algorithms,

supplementing them with nuanced feature engineering techniques

to craft a sophisticated model for diabetes prediction. Our focus

remains steadfast on providing a solution that is not only

academically rigorous but also clinically impactful, especially in

the current global health landscape dominated by the challenges

posed by COVID-19. Table 1 offers a concise representation of each

study’s focus and findings.

The word cloud depicted in Figure 1 generated from the

literature survey provides a visual representation of the most

frequently mentioned terms in the examined studies. Several

observations can be drawn.

The most prominent terms, such as “machine learning,”

“diabetes,” “algorithm,” and “prediction,” highlight the core

focus of the literature, emphasizing the integration of advanced

computational methods in diabetes diagnosis and prognosis (22,

23). Terms like “Hadoop,” “cloud,” and “IoMT (Internet of Medical

Things)” indicate the contemporary shift toward integrating

modern technological infrastructures with medical research,

particularly in the realm of diabetes. The frequent appearance of

words like “Random Forest,” “Neural Network,” “Decision Tree,”

and “Naive Bayes” underscores the popular machine learning

algorithms employed in the studies (24, 25). Their prominence

suggests their effectiveness or popularity in diabetes prediction

tasks. The mention of “Pima Indians Diabetes Database” signifies

its recurrent usage as a benchmark dataset for diabetes research,

emphasizing its relevance and importance in the field (26–28).

Words such as “accuracy,” “AUC (Area Under the Curve),” and

“MSE (Mean Squared Error)” highlight the key metrics used in the

literature to evaluate the performance of predictive models. Their

presence underscores the emphasis on quantitative assessment

in the studies. The appearance of terms like “data imbalance,”
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TABLE 1 Summary of work discussed in literature survey.

References Key focus and techniques Key findings and outcomes

Chang et al. (11) E-diagnosis in IoMT using transparent ML models: Naïve Bayes,

random forest, and J48.

Naïve Bayes preferred with certain features, but random forests

excelled with a richer feature set.

Nai-Arun and Moungmai (12) Predicting diabetes mellitus using various classification

approaches and ensemble strategies.

Random Forest was the standout performer in risk

determination.

Kandhasamy and Balamurali

(13)

Evaluating different algorithms for diabetes forecasting using

UCI data.

Multiple classifiers were assessed with performance metrics such

as Accuracy, Sensitivity, and Specificity.

Mercaldo et al. (14) Diabetes patient categorization using features aligned with

WHO guidelines.

HoeffdingTree method achieved a precision of 0.770 and a recall

of 0.775.

Perveen et al. (15) Emphasis on the efficacy of ensemble techniques for diabetes

onset prediction, focusing on adaboost and bagging.

Ensemble methods, particularly adaboost, were found to have

potentially superior prediction accuracy.

Kavakiotis et al. (16) Comprehensive review of ML and data mining in diabetes

research.

Supervised learning dominated the landscape at 85%, with SVM

emerging as the most popular algorithm.

Zou et al. (17) Diabetes prediction using decision tree, random forest, and

neural networks on hospital data.

Random forest showcased the highest accuracy of 0.8084 when

leveraging the full set of attributes.

Fan et al. (18) Examination of complications and blood glucose prognosis in

non-adherent T2D patients.

Notable predictive performance in areas like diabetic

nephropathy and diabetic peripheral neuropathy.

Kopitar et al. (19) Predictions of fasting plasma glucose levels using multiple

algorithms on biannual data influxes.

Initial analyses favored the simple regression model, but Glmnet

showcased significant improvements as data increased.

Yuvaraj and Sripreethaa (20) Diabetes prediction in Hadoop clusters leveraging ML. Demonstrated the potential of ML algorithms to yield

high-accuracy predictive systems for diabetes.

Theerthagiri et al. (21) Comparing conventional classification techniques against neural

network-driven ML for a diabetes dataset.

Multilayer perceptron algorithm emerged superior, with

impressive accuracy and a minimal MSE of 0.19.

“dimensionality reduction,” and “data cleaning” indicates the

challenges faced in real-world datasets and the strategies employed

to address them. The inclusion of terms related to clinical

aspects, such as “glycemic control,” “complications,” and “blood

glucose prognosis,” underscores the direct clinical implications and

objectives of the analyzed studies (29).

3 Methodology

3.1 Dataset description: Pima Indians
diabetes database

The Pima Indians Diabetes Database (26), Schulz (30) is a

widely recognized dataset in the medical and machine learning

communities. Originating from the National Institute of Diabetes

and Digestive and Kidney Diseases, the primary goal of this dataset

is to diagnostically predict whether a patient has diabetes based on

certain diagnostic measurements.

3.1.1 Attributes and features
This section represents the attributes of the Pima Indians

Diabetes Database and their corresponding descriptions. In our

research, several attributes were analyzed to discern patterns related

to diabetes. The “Pregnancies” attribute represents the number of

times an individual has been pregnant. “Glucose” measures the

plasma glucose concentration over a 2-h period during an oral

glucose tolerance test. “Blood Pressure” quantifies the diastolic

blood pressure in millimeters of mercury (mm Hg). The “Skin

Thickness” attribute captures the thickness of the triceps skin fold,

measured in millimeters. The “Insulin” attribute denotes the 2-h

serum insulin level, measured in micro units per milliliter (mu

U/ml). The “BMI” or Body Mass Index calculates the ratio of

an individual’s weight in kilograms to the square of their height

in meters. Another significant attribute is the “Diabetes Pedigree

Function”, which provides a likelihood score of an individual

developing diabetes based on their ancestral history. “Age” denotes

the age of the individual in years. Lastly, the “Outcome” is a class

variable that categorizes individuals as non-diabetic (represented

by 0) or diabetic (represented by 1).

3.2 Data inconsistencies and challenges

While the Pima Indians Diabetes Database is invaluable for

research, like many real-world datasets, it comes with its own set

of challenges:

3.2.1 Data cleaning and imputation
In our initial examination of the dataset, we identified the

presence of zero values in key attributes such as “Glucose”,

“BloodPressure”, and “BMI”. Medically, these zero values are

implausible; for instance, a glucose level of zero is incompatible

with life, and a BMI of zero indicates an absence of weight,

which is an infeasibility (27, 31). Thus, we interpreted these zero

values as missing or unrecorded data. To address this issue, we

first quantified the extent of these missing values. We found

that “Glucose” had 5 zero values, “BloodPressure” had 35, and
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FIGURE 1

The word cloud.

“BMI” had 11. To impute these missing values, we employed

two strategies:

3.2.1.1 Median imputation

Given the skewed distribution of medical data and the presence

of outliers, median imputation was chosen as it is less sensitive to

outliers compared to mean imputation. After median imputation,

the zero values in the mentioned attributes were successfully

replaced, leading to a more continuous distribution of data. We

chose median imputation over other methods primarily due to

its robustness to outliers. In medical datasets, variables such

as “Glucose”, “Blood Pressure”, and “BMI” can have skewed

distributions with extreme values that can distort the mean.

The median, being the middle value, is less affected by such

extremes and provides a more representative central tendency for

skewed data. Mean imputation was considered less appropriate

due to its sensitivity to outliers, which could introduce bias. Mode

imputation, on the other hand, could be misleading for continuous

variables where the mode may not be a good measure of central

tendency if the data distribution is not unimodal.

3.2.1.2 k-Nearest Neighbors (k-NN) imputation

As a more sophisticated imputation technique, k-NN was

applied to predict missing values based on similar data points. This
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method takes into account the relationships between attributes,

ensuring that the imputed value is consistent with other attributes

of the dataset (32). We opted for k-Nearest Neighbors (k-NN)

imputation due to its effectiveness in handling datasets where

similarity between instances suggests a correlation, as is common in

medical data. The k-NN method does not rely on data distribution

assumptions, making it suitable for our non-normally distributed

variables. The optimal number of neighbors, k, was determined

through a cross-validation process. We aimed to minimize the

mean squared error of imputation while considering the trade-

off between bias and variance. After testing various k values, we

selected the one that provided the best balance, yielding the most

accurate and clinically plausible imputation results in the context

of our dataset.To validate the k-NN imputation, we employed

a rigorous process that involved statistical and clinical scrutiny.

Initially, k-fold cross-validation was used to assess the imputation’s

performance, ensuring the method generalized well across different

subsets of the data. We then measured the imputation error using

metrics like mean squared error to quantify the accuracy of the

imputed values. The distribution of the imputed data was analyzed

to confirm that the k-NN imputation preserved the original data

structure without introducing bias. Clinical validation was also

integral, involving domain experts to verify the imputed values’

plausibility. Sensitivity analysis was conducted to determine the

impact of imputation on the downstream analysis, ensuring the

robustness of our results. Lastly, we tuned the number of neighbors

in the k-NN algorithm to avoid overfitting, selecting the value

of k that balanced between bias and variance effectively. This

comprehensive approach ensured that the k-NN imputation was

both statistically valid and clinically meaningful. We chose a k-

value of 5 for k-NN imputation to maintain a balance between bias

and variance, which is a standard approach for datasets of our size

and complexity. A smaller k can capture more local information

but may overfit, while a larger k may introduce bias by over-

smoothing the data. The selection of k = 5 ensures computational

efficiency and is consistent with common practice. Variations in k

would affect the imputed values’ quality, with larger k potentially

diluting local patterns and smaller k possibly capturing noise. The

choice of k was also driven by the goal of preventing overfitting

and ensuring that imputed values are generalizable and align with

clinical expectations.

We did consider more advanced imputation techniques,

including Multiple Imputation by Chained Equations (MICE) and

deep learning approaches. However, after careful evaluation, we

chose not to employ these for the reasons stated as—(1) Advanced

techniques like MICE and deep learning imputation introduce

a higher level of complexity. Given the size and scope of our

dataset, the added complexity did not translate into a significant

improvement in imputation quality over the median and k-NN

methods. (2) Methods like MICE and deep learning can be less

transparent and harder to validate, especially in a medical context

where interpretability is crucial. Median and k-NN imputations

are more straightforward and easier to explain and validate. (3)

Advanced imputation methods are computationally intensive and

may not be justified when simpler methods suffice. We sought a

balance between computational efficiency and imputation quality.

To validate that median imputation did not significantly alter

the relationships among variables, we conducted a sensitivity

analysis. This involved comparing the correlations and regression

coefficients between variables before and after imputation. By

ensuring that these statistics did not change dramatically, we could

confirm that the median imputation preserved the intrinsic data

structure. Additionally, we performed model training on both

the original (with zeros) and imputed datasets and compared

the performance metrics. The consistency in model performance

indicated that the median imputation did not introduce a

significant bias that would affect the predictive power of themodels.

Visual validation was carried out by comparing the data

distributions before and after median imputation. Histograms

clearly showed the absence of zero values post-imputation,

indicating a successful data cleaning process. These visualizations

not only confirmed the effectiveness of our imputation strategy

but also presented a dataset that better represents the real-world

distribution of these medical attributes. The histograms (Figure 2)

above provide a visual comparison of the data distributions for

“Glucose”, “BloodPressure”, and “BMI” before and after median

imputation. The histograms for “Glucose”, “BloodPressure”, and

“BMI” post-imputation show the replacement of zero values with

median values, resulting in the elimination of non-physiological

zero values and a shift of the distribution toward a more

realistic range. The immediate implication is that the missing

data likely represented a random subset of the population, as

the overall distributions retained their shape, with the central

tendencies shifting slightly to accommodate the imputed values.

This suggests that the missingness was not systematic but rather

randomly distributed, affirming that our imputation strategy did

not significantly alter the underlying data structure. The post-

imputation distributions are smoother and more continuous,

reflecting a more accurate representation of physiological data,

which is essential for the development of reliable predictive models.

Original Distribution (Blue) histograms depict the data

distribution of the original dataset. The red dashed line represents

the median of the original data. Median Imputed Distribution

(Green) histograms show the data distribution after replacing

zero values with medians. The red dashed line represents the

median after imputation. From the histograms, we can observe

that (a) the presence of zero values in the original data (blue

histograms) for “Glucose”, “BloodPressure”, and “BMI” (b) the

absence of these zero values in the median-imputed data (green

histograms), indicating successful imputation (c) the distributions

after imputation appear more continuous and better represent the

underlying distributions without the interruption of zero values.

This visual validation confirms that the median imputation has

addressed the issue of zero values in the specified columns, resulting

in a dataset that likely better represents the real-world distribution

of these attributes. Algorithm 1 offers a structured representation of

the imputation process, starting with identifying zeros, performing

median imputation, and then using k-NN for a more advanced

imputation (32, 33).

The reduction in the standard deviation for “BloodPressure”

following median imputation suggests a decrease in the variability

of this variable within our dataset. This decrease likely indicates that

the imputed values are closer to the median, thus narrowing the

range of “BloodPressure” values. To assess the impact of this change
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FIGURE 2

Various features original and median imputed distribution.

on our model’s predictive accuracy for hypertensive individuals,

we monitored several key performance indicators. Specifically,

we looked at the sensitivity (true positive rate) and specificity

(true negative rate) of our model in predicting diabetes outcomes

for individuals with high blood pressure. A lower variability in

“BloodPressure” could potentially improve model performance if

“BloodPressure” is a significant predictor in our model, as it may

help in clearly delineating the threshold between normotensive and

hypertensive individuals, which is crucial for accurate classification.

However, a decrease in variability might also have a smoothing

effect on the data, which could potentially lead to a loss of

nuanced information about individual variations in blood pressure

that are relevant for diabetes prediction. In such cases, we might

observe a decline in sensitivity, as the model could become less

adept at identifying true positives among individuals with varying

degrees of hypertension. We addressed this by evaluating our

model both before and after imputation, using cross-validation

to ensure that the model’s performance was consistent across

different subsets of the data. Additionally, we analyzed the receiver

operating characteristic (ROC) curve to understand any shifts

in the model’s ability to discriminate between classes after the

imputation. Our findings suggested that while there was a slight

change in model performance metrics, the overall predictive

accuracy remained robust, and the changes did not significantly

compromise our model’s ability to accurately predict outcomes for

hypertensive individuals.

In our dataset, we focused on imputing attributes with zero

values that were clinically implausible, such as “Glucose”, “Blood

Pressure”, and “BMI”. These variables are essential in medical

diagnostics and cannot physiologically be zero. The determination

was based on domain knowledge and literature review, which

indicate that such readings are likely to be errors or missing

data. Other attributes with zero values were assessed, but only

those where a zero could not occur naturally were subjected to

imputation. For example, “Pregnancies” can legitimately be zero

and thus were not imputed. The decision to impute was made on a

case-by-case basis, considering themedical validity and importance

of each attribute in the context of diabetes research. For attributes

that did not require imputation, their intrinsic relationship with the

outcome variable remained unchanged post-imputation of other

attributes. However, imputation can influence the overall dataset

structure, potentially altering inter-feature correlations and their

combined predictive power. To address this, we analyzed the

correlation matrix and reassessed feature importance to ensure

the integrity of the model’s predictive capability. The validation

process included recalibrating the model with the modified dataset

to confirm that the performance metrics for unimputed attributes

were consistent with prior assessments. Tables 2–5 above provides

a side-by-side comparison of summary statistics for the original

dataset and the dataset after median imputation. For attributes

like Glucose, BloodPressure, and BMI, the minimum values have

changed from 0 to positive values, indicating successful imputation

of zeros. Themean andmedian values for these attributes also show

slight variations between the original and imputed datasets. Other

attributes, which did not have zero values as a concern, remain

largely unchanged in their statistics. Our median imputation

strategy was chosen for its robustness to outliers, ensuring minimal

impact on the central tendency and distribution of our dataset.

Post-imputation analysis confirmed that the general distributional

characteristics were preserved. Sensitivity and specificity metrics

were re-evaluated post-imputation and either remained stable or

improved slightly, indicating that the imputation did not introduce

bias. The replacement of non-physiological zero values with more

realistic estimates likely improved the clinical validity of our
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Input:

• Dataset D

Output:

• Modified Dataset D
′

Steps:

1. Function FindZeros(attribute A) :

• Initialize an empty list: zeroIndices = []

• Fori = 1to length( A):

- IfA[i] = 0:

• Append i to zeroIndices

- End If

• End For

• ReturnzeroIndices

2. Function MedianImputation(attribute A) :

• Compute the median value: medianValue =

MEDIAN(A where A 6= 0)

• Get zero indices: zeroIndices = FindZeros(A)

• Fori in zeroIndices:

- Set A[i] to medianValue

• End For

• ReturnA

3. Function kNNImputation(D, k) :

• For each attribute A in D:

- IfA has zeros:

• Extract training data: trainData = D

where A 6= 0

• Extract data with zeros:

zeroData = D where A = 0

• Train kNN model using trainData

• Predict missing values for zeroData

using the kNN model

• Merge the predicted values into D

- End If

• End For

• ReturnD

4. For each attribute A in D:

• IfA is in [“Glucose”,

“BloodPressure”, “BMI”]:

- Set A to MedianImputation(A)

• End If

5. Set D’ to kNNImputation(D, k = 5)

6. Return D’

Algorithm 1. Data imputation.

predictive models, as reflected in consistent performance metrics

across cross-validation folds. This underscores the robustness

of our models and the appropriateness of our imputation

method. After median imputation, the mean values of certain

features in our dataset changed slightly, impacting the model’s

classification thresholds and decision boundaries. This necessitated

a reassessment of model parameters through cross-validation to

ensure the decision thresholds remained effective. We re-evaluated

feature importance and fine-tuned the model as needed to adapt

to the new data distribution, ensuring that the performance

metrics–accuracy, precision, recall, and area under the ROC curve–

remained robust.

3.2.2 Outliers
We utilized boxplots and IQR (Interquartile Range) methods

to identify outliers in the dataset. Detected outliers were then

either replaced using median values or were capped to a specified

upper and lower limit, ensuring that the values remain within

a plausible range. In some analyses, removing data points with

outliers altogether can be beneficial, especially when the number of

outliers isminimal and their removal doesn’t lead to significant data

loss. To handle outliers, we utilized boxplots and the Interquartile

Range (IQR) method for detection, considering any data point

outside 1.5 times the IQR from the quartiles as an outlier. Our

approach to managing outliers involved replacing implausible

values with medians for robustness, capping extreme but plausible

values to reduce their influence, and removing outliers only when

they were clear errors or their exclusion did not compromise the

dataset’s integrity. This strategy was guided by a balance between

statistical rigor and the preservation of valuable data, ensuring that

necessary adjustments did not introduce bias or unnecessary data

loss. The threshold for defining an outlier was primarily based on

standard statistical methods, specifically 1.5 times the IQR from

the 25th and 75th percentiles, as this is a widely accepted criterion

for outlier detection. However, we also considered domain-specific

knowledge. For instance, in medical datasets, some values that

appear to be statistical outliers may actually be clinically relevant.

Therefore, we consulted with healthcare professionals to establish

thresholds that make sense in a medical context, ensuring that we

did not exclude important clinical information. This dual approach

allowed us to handle outliers in a way that was both statistically

sound and sensitive to the nuances of medical data.

We opted for the IQR due to its robustness in handling the non-

normal and skewed distributions present in our dataset, common

in medical data. Methods like the Z-score or standard deviation

are less suitable for such distributions as they assume normality.

The IQR approach, focusing on the median and quartiles, provides

an accurate reflection of our data’s central tendency and variability.

It allowed us to identify and treat true outliers effectively without

the risk of over-cleansing, thus preserving clinically relevant data

points. Comparative sensitivity analyses confirmed that the IQR

method maintained the structural integrity of the dataset and

improved the generalizability of our predictive models over other

methods. The thresholds for determining outliers were established

based on the Interquartile Range (IQR) method, where outliers are

typically defined as observations that fall below Q1-1.5 × IQR or

above Q3 + 1.5 × IQR. This method was chosen for its robustness

to the non-normal distribution of data and its ability to reflect the

inherent variability of the dataset. We acknowledge that setting

these thresholds involves a trade-off between being too strict, which

could result in the loss of valuable data, and being too lenient,

potentially retaining spurious data points. To address this, we

conducted sensitivity analyses to evaluate the impact of different

threshold settings on the model’s performance.We ensured that the

chosen thresholds did not excessively prune the dataset nor allow

the retention of extreme values that could distort the analysis. Our
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TABLE 2 Descriptive statistics of diabetes-related attributes—Part 1.

Pregnancies Glucose BloodPressure SkinThickness Insulin

count 768.000 768.000 768.000 768.000 768.000

mean 3.845 120.895 69.105 20.536 79.799

std 3.370 31.973 19.356 15.952 115.244

min 0.000 0.000 0.000 0.000 0.000

25% 1.000 99.000 62.000 0.000 0.000

50% 3.000 117.000 72.000 23.000 30.500

75% 6.000 140.250 80.000 32.000 127.250

max 17.000 199.000 122.000 99.000 846.000

TABLE 3 Descriptive statistics of diabetes-related attributes—Part 2.

Statistic BMI DiabetesPedigreeFunction Age Outcome

Count 768 768 768 768

Mean 31.993 0.4719 33.241 0.349

Standard deviation 7.884 0.3313 11.760 0.477

Minimum 0.0 0.078 21 0

25% (Q1) 27.3 0.2437 24 0

Median (50%) 32.0 0.3725 29 0

75% (Q3) 36.6 0.6262 41 1

Maximum 67.1 2.420 81 1

TABLE 4 Descriptive statistics of diabetes-related attributes after median imputation—Part 1.

Statistic Pregnancies Glucose BloodPressure SkinThickness Insulin

Count 768 768 768 768 768

Mean 3.845 121.656 72.387 20.536 79.799

Standard deviation 3.370 30.438 12.097 15.952 115.244

Minimum 0 44 24 0 0

25% (Q1) 1 99.750 64 0 0

Median (50%) 3 117 72 23 30.500

75% (Q3) 6 140.250 80 32 127.250

Maximum 17 199 122 99 846

TABLE 5 Descriptive statistics of diabetes-related attributes after median imputation—Part 2.

Statistic BMI DiabetesPedigree Function Age Outcome

Count 768 768 768 768

Mean 32.451 0.4719 33.241 0.349

Standard deviation 6.875 0.3313 11.760 0.477

Minimum 18.2 0.078 21 0

25% (Q1) 27.5 0.2437 24 0

Median (50%) 32.0 0.3725 29 0

75% (Q3) 36.6 0.6262 41 1

Maximum 67.1 2.420 81 1
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FIGURE 3

Box plot for all the features.

FIGURE 4

Corrected box plots for all the features.

approach was informed by both statistical rationale and clinical

relevance, ensuring that the outlier definition aligns with known

physiological ranges and does not exclude clinically plausible

extreme values.

3.2.2.1 Glucose

The original glucose data distribution offers a median value of

117.0, signifying the central tendency when the glucose readings

are arranged in ascending order, refer Figure 3. The Interquartile

Range (IQR) for this set of data is 41.25. This IQR value provides

a measure of the statistical spread, indicating the range between

the 25th percentile (Q1) and the 75th percentile (Q3) of the

glucose readings. Furthermore, upon closer examination of the

data, outliers were identified. Any data point falling below 37.125

or rising above 202.125 is deemed an outlier. Within this dataset,

there are 5 such outliers.

In the refined and corrected glucose distribution, refer Figure 4,

the median value stands unchanged at 117.0. The IQR experiences

a minor adjustment, registering a value of 40.5. This adjustment,

albeit subtle, has a profound impact on the data’s outliers. Post

correction, no glucose value exists outside the bounds of 39.0

and 201.0. As a result, the corrected distribution is devoid of any

outliers, boasting a count of zero.

Glucose, a primary source of energy for our body’s cells, holds

paramount importance in diagnosing several health conditions,

most notably diabetes. A median glucose value of 117.0 indicates

that the central tendency of this dataset leans toward elevated

glucose levels. This inclination might be suggestive of a population

that’s either pre-diabetic or has already been diagnosed with

diabetes. Delving deeper into the IQR, the middle 50% of the

glucose data exhibits a spread of approximately 40 units. This

spread provides insights into the variability of glucose levels

within this population subset. One of the most concerning
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revelations from the original distribution was the presence of

outliers, especially those significantly low values below 37.125. Such

drastically low glucose readings are not just implausible for an

average adult but could also be medically alarming. In a real-

world scenario, such levels, if left unchecked, could precipitate

severe hypoglycemic events, endangering the individual’s life. The

significance of addressing these outliers in our research cannot be

stressed enough. By rectifying these anomalies, we ensure that our

predictive model is not swayed by these extreme and potentially

erroneous values. This meticulous approach bolsters the reliability

of our predictions, laying the foundation for more informed

medical interventions.

3.2.2.2 Blood pressure

Blood pressure, a fundamental physiological metric, plays a

pivotal role in assessing cardiovascular health (34, 35). In the

initial dataset distribution for blood pressure, the median value

stands at 72.0, highlighting the central tendency when the data is

ordered sequentially, refer Figure 3. The computed Interquartile

Range (IQR) is 18.0, providing a quantitative measure of the data’s

dispersion between the 25th percentile and the 75th percentile.

Delving deeper, outliers are discerned as values either falling below

35.0 or soaring above 107.0. In the original dataset, a considerable

count of 45 such outliers were identified.

Post data refinement, the median blood pressure value remains

consistent at 72.0, refer Figure 4. However, the IQR undergoes

a marginal modification, now registering at 16.0. This refined

process’s precision ensures that the corrected data distribution

houses values strictly between the bounds of 40.0 and 104.0. This

rigorous correction has culminated in a significant reduction in

outliers, with the corrected dataset harboring only 4.

Blood pressure measurements are instrumental in determining

cardiovascular health. Values that deviate significantly from the

norm can be indicative of underlying health disorders, including

hypertension (high blood pressure) or hypotension (low blood

pressure). The median value of 72.0 signifies that the dataset

predominantly comprises individuals with a blood pressure reading

that aligns with the medical norm. The IQR’s value, denoting the

variability of the middle 50% of the data, suggests a spread of 18.0

units. Data values that lie exceptionally low (below 35.0) or notably

high (above 107.0) warrant clinical attention. Such extremities

could be emblematic of potential health emergencies or could

stem from inaccuracies in data recording. Through a methodical

refinement process, these data irregularities were addressed,

reinforcing the model’s predictive accuracy and robustness.

3.2.2.3 BMI (body mass index)

BMI, or Body Mass Index, is a critical health metric, providing

an assessment based on the ratio of an individual’s weight to

height squared (11, 35). In the original dataset for BMI, the

median emerges as 32.0, offering a snapshot of the dataset’s

central tendency, refer Figure 3. The Interquartile Range (IQR)

for BMI, which reflects the spread of the middle 50% of the

data, is determined to be 9.3 units. This metric conveys the

range between the 25th percentile (lower quartile) and the 75th

percentile (upper quartile) of the BMI data. In this distribution,

outliers are constituted by values that either descend below 13.35

or ascend beyond 50.55. A total of 19 outliers were discerned in the

original distribution.

Upon refining the data, the median for BMI remains consistent

at 32.0, refer Figure 4. However, the IQR undergoes a slight

alteration, now standing at 8.8 units. This data refinement ensures

that the values in the corrected distribution reside strictly within

the bounds of 14.3 and 49.5. Consequently, the outliers have been

drastically reduced to only 3 in the corrected dataset.

BMI serves as a pivotal health indicator, categorizing

individuals into different weight statuses ranging from underweight

to obese. A median BMI of 32.0 is indicative of a dataset that

predominantly tilts toward the overweight to obese category,

suggesting potential health risks for a significant portion of

the participants. The IQR’s span of 9.3 units in the original

dataset underscores the variability present among the participants.

Extremely low (below 13.35) or exceedingly high (above 50.55) BMI

values are not just statistical outliers but can also signify potential

health anomalies or errors in data recording. Such extremities, if

genuine, indicate potential health concerns like malnutrition or

morbid obesity. Addressing these outliers was paramount in our

research to ensure the integrity and reliability of our predictive

model. The rigorous refinement, which led to a reduction of outliers

from 19 to 3, ensures that our model operates on a dataset that is

both representative and free from significant anomalies.

3.2.2.4 Pregnancies

The attribute of pregnancies, representing the number of times

an individual has been pregnant, holds particular significance,

especially in a dataset geared toward diabetes, which can exhibit

correlations with hormonal fluctuations during pregnancy (12). In

the original dataset, the median value for pregnancies is determined

to be 3.0, which denotes the central tendency of the data, refer

Figure 3. The Interquartile Range (IQR) for pregnancies, a measure

representing the data’s spread, is calculated to be 5.0. This metric

provides insights into the range between the 25th percentile (lower

quartile) and the 75th percentile (upper quartile) of the pregnancy

data. Outliers within this distribution are characterized by values

that fall below −6.5 or rise above 13.5. Interestingly, a count of 4

such outliers was discerned within the original distribution.

After our data refinement procedures, the median value for

pregnancies remains steadfast at 3.0, refer Figure 4. The IQR for

pregnancies, too, remains consistent at 5.0. With the corrections

applied, the data strictly situates values between −6.5 and 13.5.

The rigorous refinement process has yielded significant results,

reducing the outliers to zero in the corrected dataset.

The number of times an individual has been pregnant can

have multifaceted implications on health, especially concerning

conditions like gestational diabetes. A median value of 3.0 suggests

that, on average, individuals in the dataset have been pregnant

thrice. The IQR, which indicates a variability of 5 pregnancies,

provides insights into the range within which the middle 50% of

the dataset lies. Extremely high counts of pregnancies, especially

those surpassing 13.5, are noteworthy. Such values could either

point toward unique medical scenarios or potential errors in data

recording. Ensuring these outliers are addressed is imperative to the

integrity of our research. The fact that the corrected dataset has no

outliers showcases the efficacy of our refinement process, bolstering

the reliability of any models or insights derived from it.

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2023.1331517
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Thakur et al. 10.3389/fpubh.2023.1331517

3.2.2.5 Diabetes pedigree function (DPF)

The Diabetes Pedigree Function (DPF) acts as a composite

score, encapsulating the genetic predisposition of an individual

toward diabetes based on their family history (36). Within the

original dataset, the median DPF value is discerned at 0.3725,

representing the central tendency of the data, refer Figure 3. The

Interquartile Range (IQR) for DPF, which quantifies the spread of

the central 50% of the data, is marked at approximately 0.3825.

Outliers in this attribute are defined by values that are less than

−0.33 or more than 1.2. Remarkably, the original dataset identified

as many as 29 such outliers.

Upon implementing the corrective measures, the median DPF

value witnesses a slight shift to 0.37175, refer Figure 4. The

IQR undergoes an adjustment to approximately 0.3385. This

meticulous refinement ensures that the DPF values in the corrected

distribution lie strictly within the boundaries of −0.264 and 1.09.

The outlier count has been notably reduced to 15 in the corrected

dataset, underscoring the efficacy of the data refinement process.

The Diabetes Pedigree Function (DPF) is instrumental in

gauging the genetic susceptibility of an individual to diabetes.

A median DPF value of 0.3725 suggests that the dataset

predominantly encapsulates individuals with a moderate genetic

predisposition to the disease. The IQR’s span, approximately

0.3825, emphasizes the variability in this genetic risk among

the participants. Notably high DPF values, especially those that

exceed 1.2, are of significant interest. These elevated scores could

either highlight pronounced genetic links to diabetes or indicate

potential discrepancies in data recording. In our rigorous research

methodology, we prioritized addressing these outliers to bolster

the predictive model’s reliability and accuracy, ensuring it remains

untainted by extreme values and remains representative of the

broader population.

3.2.2.6 Age

Age, as an essential demographic variable, holds paramount

significance in numerous medical studies. Diabetes, being a

condition influenced by age-related physiological changes,

necessitates careful analysis of this feature (37–40). In the original

dataset’s age distribution, the median value is pinpointed at 29.0

years, highlighting the central tendency of the data, refer Figure 3.

The Interquartile Range (IQR) for age, a measure representing

the spread of the middle 50% of the data, is gauged at 17.0 years.

Outliers within this feature are demarcated by values that are less

than −1.5 years (a non-physiological value) or exceed 66.5 years.

Astonishingly, the original dataset identified 9 such outliers.

Post-refinement, the median age remains static at 29.0 years,

refer Figure 4. The IQR undergoes a minor adjustment, now

clocking in at 16.0 years. The refined dataset ensures that age values

are strictly contained between 0.0 and 64.0 years, establishing a

logical boundary at the lower end and a slight reduction at the

upper end. This rigorous refinement process led to a reduction in

the outliers, with the corrected dataset now housing 7 outliers.

Age is intrinsically tied to various physiological and metabolic

changes, which can modulate the risk profile for conditions

like diabetes. A median age of 29.0 years suggests a dataset

that predominantly features young to middle-aged adults. The

IQR’s span of 17.0 years in the original dataset underscores the

age variability among participants. Extremely young (negative

values) or notably high age values, especially those surpassing 66.5

years, demand meticulous scrutiny. These outliers could either

signal potential data entry errors or represent individuals at the

extremities of the age spectrum with unique physiological profiles.

In our meticulous research framework, addressing these outliers

was imperative to ensure the dataset’s integrity. By refining the

age data, we bolster the reliability and accuracy of any subsequent

models or insights derived from this dataset.

3.2.2.7 Skin thickness

Skin thickness, particularly the triceps skin fold thickness, is

a metric that can provide insights into an individual’s body fat

percentage. In the original dataset, the median skin thickness is

identified as 23.0mm, refer Figure 3. The Interquartile Range (IQR)

for skin thickness, which quantifies the spread of the middle 50%

of the data, stands at 32.0 mm. Outliers in this dataset are values

that either fall below -23.0 mm or exceed 63.0 mm. A substantial

count of 1,139 outliers were recognized in the original distribution,

suggesting significant discrepancies in the data.

After the data cleansing process, the median skin thickness

remains consistent at 23.0 mm. The IQR undergoes a slight change,

settling at 32.0 mm, refer Figure 4. This rectification ensures that

skin thickness values in the updated dataset are strictly contained

between 0.0 mm and 63.0 mm. Impressively, the count of outliers

has been dramatically reduced to 1 in the corrected dataset.

Triceps skin fold thickness serves as an indicator of

subcutaneous fat. A median value of 23.0 mm suggests that the

central tendency of the dataset leans toward this measurement. The

IQR of 32.0 mm in the original dataset underscores the variability

in skin thickness among the participants. Extremely thin or notably

thick skin foldmeasurements, especially those deviating beyond the

range of -23.0mm to 63.0mm, are of clinical interest. Such readings

might indicate potential health concerns or measurement errors. In

our research methodology, addressing these outliers was crucial to

maintain data authenticity. By refining this attribute, we ensure our

models are not skewed by these anomalies, leading tomore accurate

and insightful predictions.

3.2.2.8 Insulin

Insulin levels are pivotal in assessing an individual’s glucose

metabolism efficiency. In the original dataset, the median insulin

value is measured at 30.5 mu U/ml, refer Figure 3. The IQR for

insulin, indicating the spread of the middle 50% of the data, is

tabulated at 127.25 mu U/ml. Outliers in this dataset are values

that either dip below −160.125 mu U/ml or ascend above 318.375

mu U/ml. In the original dataset, a significant count of 374 outliers

were identified.

After our rigorous data refinement, the median insulin value

remains unchanged at 30.5 mu U/ml, refer Figure 4. The IQR

experiences a minor adjustment to 126.5 mu U/ml. This process

ensures that insulin values in the refined dataset are contained

strictly between 0.0 and 316.5 mu U/ml. Notably, the number

of outliers has been substantially cut down to just 2 in the

corrected dataset.

Insulin, a hormone produced by the pancreas, plays a vital role

in regulating glucose levels in the blood. A median insulin level of

30.5 mu U/ml indicates that the dataset’s central tendency revolves

around this value. The IQR’s span of 127.25 muU/ml in the original
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dataset highlights the range of insulin levels among participants.

Extremely low or remarkably high insulin values, especially those

deviating beyond the range of −160.125 to 318.375 mu U/ml,

are of profound clinical significance. These outliers could indicate

potential insulin resistance, hyperinsulinemia, or other metabolic

disorders. Addressing these outliers in our research ensures that our

dataset remains robust and representative, facilitating more reliable

analyses and predictions.

Following outlier correction, we observed a more constrained

spread of data, as reflected in the reduced interquartile ranges (IQR)

across several variables. This tightening of the data distribution

enhances the representativeness of our central measures of

tendency, thereby potentially increasing the statistical power of

subsequent analyses. By mitigating the influence of outliers, we

can assert with greater confidence that the dataset’s characteristics

more accurately reflect the underlying population without the

distortion of extreme values. This refinement is expected to yield

models and interpretations that are more robust and clinically

relevant. In our analysis, outliers were not uniformly distributed

across diabetes outcomes; they were more prevalent in individuals

with a diabetes-positive outcome. To mitigate potential bias, our

correction process was stratified by outcome class. We ensured that

the capping and replacement thresholds were derived separately

for each outcome group, preserving the inherent distribution

characteristics and preventing the dilution of class-specific signals.

By adopting this stratified approach, we maintained the integrity of

the dataset’s ability to reflect true physiological variations related

to diabetes outcomes, thereby upholding the robustness of our

predictive models.

3.3 Normalization

In the realm of data science and machine learning, the quality

and structure of the data often dictate the success of the model.

When working with datasets, especially those as intricate and

significant as the Pima Indians Diabetes Database, ensuring that

the data is in an optimal format becomes paramount. One of the

most common challenges faced in this preprocessing stage is the

disparate scales of different features. This disparity can lead to

biases in machine learning models, particularly those sensitive to

featuremagnitudes, such as gradient descent-based algorithms. The

choice of Min-Max normalization over Z-score standardization

was driven by the specific characteristics and objectives of our

study. Min-Max normalization was selected because it preserves

the original distribution of the data while scaling all features

to a uniform range of [0, 1]. This characteristic is particularly

beneficial when we aim to maintain the relative distances between

values, which is crucial for algorithms that are sensitive to the

magnitude of variables, like k-NN and neural networks. Regarding

PCA, although it is sensitive to feature variance, our preliminary

analysis indicated that the features of our dataset after Min-Max

normalization retained sufficient variance to inform the principal

components effectively. Moreover, Min-Max normalization does

not alter the relationship between features, which allowed us

to interpret the principal components in the context of the

original data ranges, facilitating a more straightforward clinical

interpretation. In contrast, Z-score standardization centers the

data around the mean and scales it according to the standard

deviation, which could potentially dilute the interpretability of

the principal components in our specific clinical context. Each

feature’s influence on the principal components is directly tied to

its variance when using Z-score standardization, which might have

given undue influence to features with higher variance, possibly

overshadowing important but less variable features. Furthermore,

we ensured that the Min-Max normalization process was carefully

validated to confirm that no significant information was lost and

that the PCA could still reveal the underlying structure of the

data effectively. The final models demonstrated strong predictive

abilities, indicating that Min-Max normalization, in combination

with PCA, was a suitable preprocessing pipeline for this data. This

conclusion is based on the evidence that the models performed

well when predicting new data, reflecting the successful capture of

underlying patterns and relationships between features.

Before diving into the specifics of the Min-Max normalization

technique employed in our research, it’s essential to understand the

broader context. Features in a dataset can have different units and

magnitudes. For instance, while one feature might represent age

(ranging from 0 to 100), another could depict income (potentially

ranging from thousands to millions). When fed into a machine

learning algorithm, these vast differences in scale can skew the

model’s understanding, causing it to potentially overvalue some

features over others. This overvaluation can lead to a model that’s

biased and, consequently, less accurate.

Given the challenges posed by varying scales, our research

turned to the Min-Max normalization technique. This method

is a type of feature scaling that brings all numerical features to

a standard scale, ensuring no single feature disproportionately

influences the model. The process is quite straightforward. Given

a feature X with values ranging from Xmin to Xmax, the Min-Max

normalization for a value x in X is computed in Equation (1):

xnormalized =
x− Xmin

Xmax − Xmin
(1)

This equation ensures that every xnormalized lies between 0 and 1. By

applying this transformation to all features, we achieve a uniform

scale across the dataset.

For the Pima Indians Diabetes Database, the need for

normalization was evident from the outset. Features like

“Glucose” and “Blood Pressure” had different scales, and without

normalization, any machine learning model would struggle

to find a balance between them. Upon applying the Min-Max

normalization, each feature was transformed. For instance, if

“Glucose” levels ranged from 50 to 200 mg/dL, post-normalization,

they would range from 0 to 1, with the original relative differences

between values maintained.

While Min-Max normalization offers several advantages, such

as simplicity and the preservation of relationships between values,

it’s not without its considerations. One of the primary benefits is its

ability to maintain the dataset’s mean and variance, ensuring that

the overall data distribution remains unchanged. In our study of the

Pima Indians Diabetes Database, we foundMin-Max normalization

to be apt. The nature of the missing values, combined with the

dataset’s distribution, made it a suitable choice, ensuring our
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models received data that was both balanced and representative.

Algorithm 2 explains the Min-Max normalization process.

Input:

• Dataset D with features having diverse

scales.

• List of features F in D requiring

normalization.

Output:

• Dataset D
′

with features normalized between

0 and 1.

Steps:

1. For each feature f in F do:

• Compute the minimum fmin and maximum fmax

values of f : fmin = min(f )fmax = max(f )

2. For each value v in feature f do:

• Normalize v using the Min-Max

normalization formula: vnormalized =
v−fmin

fmax−fmin

• Replace v in D with vnormalized to obtain D
′
.

3. End For

Return:D
′

Algorithm 2. Min-Max normalization process.

3.4 Feature engineering

Feature engineering is often considered both an art and a

science. It’s the process of transforming raw data into features that

better represent the underlying problem to the predictive models,

resulting in improved model accuracy on unseen data. In the

context of the Pima Indians Diabetes Database, this step was pivotal

to capture intricate patterns and relationships that might be latent

in the original dataset.

3.4.1 Interaction features
In the realm of data science and machine learning, individual

features often provide a wealth of information. However, the

combined effect of multiple features can sometimes offer even

deeper insights, especially when their interaction might be more

indicative of the outcome than their standalone values. This is

where interaction features come into play.

Let’s consider a practical scenario involving the Pima Indians

Diabetes Database. We have two primary features: Age and BMI

(Body Mass Index). Both these features are crucial indicators of

health. While BMI gives us an idea about an individual’s body

fat based on their weight and height, Age can be indicative of

metabolic changes, potential age-related health issues, and more.

Now, consider two individuals, both having a BMI of 28, which

falls in the “Overweight” category. One individual is 25 years old,

and the other is 60 years old. Even though they have the same BMI,

the associated diabetes risk might differ significantly. The older

individual might have a higher risk due to a combination of age-

related metabolic slowdown and the elevated BMI. This combined

effect can be more informative than considering Age or BMI in

isolation. This scenario underscores the importance of interaction

features. They help capture relationships and nuances that might

be missed when only looking at individual features. Algorithm 3

explains the process for generating interaction features.

Given two features A and B, their interaction is mathematically

represented in Equation (2):

Interaction A,B = A× B (2)

In the context of our dataset refer Equation (3):

Age_BMI_interaction = Age × BMI (3)

Input:

• Dataset D with features

• List of feature pairs P for which

interaction features are to be generated

Output:

• Dataset D
′

with added interaction features

Steps:

1. For each pair (A,B in P do):

• Compute the interaction feature for all

records in D: InteractionA,B = A× B

• Add InteractionA,B as a new feature to D

2. End For

3. Return D’

Algorithm 3. Generating interaction features.

3.4.2 Polynomial features
In the world of data analytics and machine learning, the

relationship between features and the target variable is not always

linear. Real-world phenomena often exhibit complex, non-linear

dynamics that can’t be captured by simple linear relationships. This

is where polynomial features come into play, allowing us to model

these non-linear relationships more effectively.

Consider a feature likeGlucose in our dataset.While it’s evident

that glucose levels play a significant role in determining diabetes

risk, the relationship might not be strictly linear. For instance,

there might be a threshold glucose level beyond which the risk of

diabetes increases sharply. Such non-linear patterns can be crucial

in predictive modeling but might be missed by models that only

consider linear relationships.

Polynomial features allow us to capture these non-linear

dynamics. By squaring, cubing, or otherwise creating polynomial

combinations of our features, we can introduce non-linearity

into our models, making them more flexible and potentially

more accurate.

For a given feature X, polynomial features are essentially its

powers. If we were to generate polynomial features up to degree

3 for Glucose, it would look something like this:

1. First-degree: X (Original feature)
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2. Second-degree: X2

3. Third-degree: X3

For our Glucose feature refer Equations (4) and (5):

Glucose_squared = Glucose2 (4)

Glucose_cubed = Glucose3 (5)

By introducing these polynomial features, we’re essentially allowing

our model to consider the effects of squared or cubed glucose

levels. This can be more predictive than just the linear glucose

level, especially if there are threshold effects or other non-linear

dynamics at play. Algorithm 4 explains the process for generating

polynomial features.

Input:

• Dataset D with features

• Feature X for which polynomial features are

to be generated

• Maximum degree n for polynomial features

Output:

• Dataset D
′

with added polynomial features

Steps:

1. For each degree d from 2 to n do:

• Compute the polynomial feature for all

records in D: Xd = Xd

• Add Xd as a new feature to D

2. End For

3. Return D’

Algorithm 4. Generating polynomial features.

4 Results and discussions

In our analysis, we initially employed Principal Component

Analysis (PCA) as a means to reduce the dimensionality of the

dataset. Recognizing that PCA is inherently sensitive to feature

magnitudes, our first step was to standardize the dataset. This

practice ensures that all features have the same scale, providing a

robust foundation for the subsequent application of PCA. After

applying PCA on the standardized data, we examined the explained

variance associated with each principal component. This crucial

step assisted us in determining the optimal number of components

to retain, ensuring that we captured the maximum amount of

variance while minimizing the dimensionality. To further our

understanding and facilitate interpretation, we also visualized the

data within this new reduced-dimensional space. This visualization

not only offered insights into the underlying structure of the data

but also confirmed the efficacy of our dimensionality reduction

process. The data has been standardized, which means each feature

now has a mean of 0 and a standard deviation of 1. Next, we have

applied PCA to the standardized data and visualized the explained

variance by each principal component. This will help us decide how

many principal components to retain for our reduced-dimensional

representation. Figure 5 illustrates the explained variance by each

principal component. The bars represent the amount of variance

explained by each individual principal component. The step line

represents the cumulative explained variance. We determine the

number of principal components with following explanations.

• Explained Variance Ratio: We calculated the explained

variance ratio for each principal component. This ratio

indicates the proportion of the dataset’s total variance that is

captured by each principal component.

• Cumulative Explained Variance: We computed the

cumulative explained variance as we added more principal

components. For instance, if the first three components

explained 70% of the variance, and adding a fourth only

increased this to 72%, the marginal gain might be too small to

justify keeping the fourth component.

• Scree Plot: We created a scree plot, which is a line plot of the

explained variances by each principal component. The point

where the slope of the curve levels off—the “elbow”—often

indicates the optimal number of components to keep.

• Performance Metrics: We considered the impact of

dimensionality reduction on model performance. If the model

performance did not degrade significantly, we took this as

a confirmation that the retained components captured the

essential information.

By following these steps, we aimed to retain the principal

components that captured the most significant variance within the

dataset while discarding components that were likely to represent

noise. This balance helped to reduce the dataset to a more

manageable size, simplifying the model without a substantial loss

of information.

From the plot, it’s evident that the first few components capture

a significant portion of the variance in the data. As we move to the

right, each subsequent component explains less and less variance.

To decide on the number of components to retain, a common

approach is to look at the “elbow” in the cumulative explained

variance plot. The idea is to find a point where adding more

components doesn’t provide much additional explained variance.

In this case, it seems that the first 2 or 3 components might

be a good choice. Figure 5 presents a visualization of the dataset

in a reduced 2-dimensional space using the first two principal

components. The x-axis represents the first principal component.

The y-axis represents the second principal component. The color

represents the “Outcome” (whether a person has diabetes or not).

A gradient from yellow to purple indicates the transition from no

diabetes (0) to having diabetes (1). From the scatter plot, we can

observe some clustering based on the “Outcome”. While there’s

overlap between the two classes, the two principal components do a

decent job in capturing some of the underlying patterns in the data.

Now we will proceed with building a classification model using

the principal components as features to predict the “Outcome”.

In our study on diabetes diagnosis prediction, it was imperative

to ensure a robust model training and evaluation mechanism. To

this end, the dataset was partitioned into training and testing sets

using the train_test_split function from the renowned scikit-learn
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FIGURE 5

Cumulative and individual explained variance by di�erent principal components, 2D PCA of diabetes data, ROC curves and PR curves of four di�erent

classifiers—Logistic Regression, Random Forest, Gradient Boosting, and Support Vector Machines.

library. The function was configured such that X represents the

feature matrix encompassing all input variables, and y denotes the

target variable, indicating the diabetes outcome. A division ratio

was set with the parameter test_size=0.2, ensuring 20% of the

dataset was reserved for testing, while the remaining 80% was used

for training. To guarantee reproducibility in our experiments, a

fixed seed (random_state=42) was used for the random number

generator, ensuring that subsequent data splits would remain

consistent. This data partitioning approach was instrumental in

offering a comprehensive training regimen for our models while

also providing an accurate evaluation framework. By training on a

significant portion of the data, the models were exposed to diverse

examples, enhancing their robustness. Meanwhile, the testing set,

being distinct from the training data, offered insights into the

models’ real-world performance and generalization capabilities, a

critical aspect in predictive medical analytics.

The Receiver Operating Characteristic (ROC) curve is a

graphical representation that illustrates the diagnostic ability of a

binary classifier as its discrimination threshold varies. The ROC

curve plots the True Positive Rate (TPR) against the False Positive

Rate (FPR) for various threshold values. The area under the ROC

curve, termed as the Area Under Curve (AUC), provides a scalar

value of the overall performance of the classifier, where a value of 1

indicates perfect classification and a value of 0.5 indicates that the

classifier performs no better than random guessing.

4.1 Performance analysis of four di�erent
classifiers

In the provided Figure 5, the ROC curves of four different

classifiers—Logistic Regression, Random Forest, Gradient

Boosting, and Support Vector Machines—are depicted. Each

curve represents the TPR vs. FPR for its respective classifier across

different thresholds. Logistic Regression (LR) is represented by the

blue curve. Random Forest (RF) is depicted by the green curve.

Gradient Boosting (GB) is illustrated by the orange curve. Support

Vector Machines (SVM) is shown by the purple curve.

The diagonal dashed line represents a classifier that predicts

outcomes entirely by chance, without any learned insights from

the data. An effective classifier’s ROC curve will bow toward the

top-left corner of the plot, indicating higher true positive rates for
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lower false positive rates. The AUC values (provided in the legend)

reveal the overall performance of each classifier. Higher AUC values

indicate better classifier performance. The curves for the classifiers

are above the diagonal line, suggesting that all four classifiers

perform better than a random guess. Among the classifiers, Logistic

Regression and RandomForest have very similar performance, with

nearly identical AUC values. Gradient Boosting and Support Vector

Machines have slightly lower AUC values, but they still indicate

good classification performance.

Precision-Recall (PR) curves are a graphical representation

that showcases the trade-off between precision and recall for

different thresholds of a binary classifier, particularly useful when

classes are imbalanced. Precision measures the accuracy of positive

predictions, while recall (or sensitivity) measures the proportion

of actual positives that were correctly identified. In the provided

Figure 5, the PR curves of four different classifiers—Logistic

Regression, Random Forest, Gradient Boosting, and Support

Vector Machines—are presented. Each curve plots precision

against recall for its respective classifier across different thresholds.

Logistic Regression (LR) is represented by the blue curve. Random

Forest (RF) is depicted by the green curve. Gradient Boosting (GB)

is illustrated by the orange curve. Support Vector Machines (SVM)

is shown by the purple curve.

The Average Precision (AP) values, provided in the legend,

offer a summary measure of the PR curve, indicating the classifier’s

average precision value for all possible recall levels. All classifiers

exhibit curves that are significantly above the baseline, indicating

that they provide meaningful predictions beyond random guessing.

The curves for Logistic Regression and Random Forest are closer

to the top-right corner, suggesting that they might offer a better

balance between precision and recall for certain threshold values

compared to Gradient Boosting and Support Vector Machines.

The AP values suggest that the classifiers have comparable

performances, with Logistic Regression and Random Forest having

slightly higher AP values than Gradient Boosting and Support

Vector Machines. As expected, there’s an evident trade-off between

precision and recall. As recall increases, precision tends to decrease

and vice versa. This is a typical characteristic of classifiers, and

the optimal balance depends on the specific application and

its requirements.

The confusion matrix for the Logistic Regression classifier

shows a balanced prediction across both classes, refer Figure 6.

The number of True Positives suggests that this model has a

reasonable ability to correctly predict the positive class (patients

with diabetes). The True Negatives indicate that the model also

effectively identifies the negative class (patients without diabetes).

However, the presence of False Positives and False Negatives

means the model does make mistakes, especially in instances

where patients without diabetes are incorrectly classified as having

diabetes and vice versa.

Random Forest, an ensemble learning method, shows a

similar trend in its confusion matrix, refer Figure 6. The model

exhibits a robust performance in predicting both positive and

negative classes. Nevertheless, there are instances where the model

misclassifies, indicating areas for potential improvement, possibly

through hyperparameter tuning or feature engineering.

Gradient Boosting, another ensemble technique, has its

confusion matrix showcasing a different pattern, refer Figure 6.

While the model has a commendable number of True Positives,

there are noticeable False Negatives, suggesting that there are cases

where patients with diabetes are incorrectly predicted as not having

diabetes. This could be a cause for concern in a medical setting, as

missing a positive diagnosis can have significant repercussions.

Support Vector Machines, a powerful linear classifier, displays

a distinct pattern in its confusion matrix, refer Figure 6. The model

seems to have a conservative approach, with a higher number of

True Negatives. However, this also results in a considerable number

of False Negatives, indicating that while the model is cautious

about false alarms (FP), it might miss out on some actual positive

cases (FN).

Table 6 resents a comparative evaluation of four distinct

machine learning classifiers—Logistic Regression, Random Forest,

Gradient Boosting, and Support Vector Machines—employed for

diabetes prediction. Each classifier’s performance is quantified

using five pivotal metrics: Accuracy, Precision, Recall, F1-Score,

and ROC-AUC.

In our evaluation of various classifiers for diabetes prediction,

the Logistic Regression (LR) model exhibited an accuracy of

0.7468, implying it correctly predicts the diabetes outcome around

74.68% of the time, serving as a reflection of the model’s overall

correctness. Its precision of 0.6379 reveals that about 63.79%

of the diabetes-positive predictions were accurate, showcasing

the model’s exactness. With a recall value of 0.6727, the LR

model identified roughly 67.27% of all genuine diabetes-positive

instances, indicating its capability to capture positive cases. An

F1-Score of 0.6549, which represents the harmonic mean of

precision and recall, infers a balanced trade-off between these two

metrics. The ROC-AUC score for the LR model stands at 0.8125,

highlighting its proficient ability to differentiate between positive

and negative classes.

Moving on to the Random Forest (RF) model, it achieved

an accuracy of 0.7208, suggesting it accurately predicts in

approximately 72 out of every 100 instances. A precision of 0.6071

insinuates that nearly 60.71% of its positive predictions are correct.

It boasts a recall of 0.6182, which might be perceived as moderate,

capturing about 61.82% of actual positive cases. Its F1-Score of

0.6126 hints at a balanced model performance, with potential areas

for improvement in both precision and recall. With an ROC-AUC

of 0.8120, the RF model manifests a robust capacity to distinguish

between the classes.

Interestingly, the Gradient Boosting (GB) model displayed

metrics identical to the LR model. This parallelism is noteworthy,

suggesting that, given this dataset and its configuration, both LR

and GB offer similar performance dynamics.

Support Vector Machines (SVM) classifier registers the highest

accuracy among the evaluated models at 0.7662, translating to

nearly 76.62% correct predictions. It also leads in precision with

a score of 0.7209, making its positive predictions considerably

reliable. However, its recall is the least at 0.5636, pointing

to potential misses in actual positive cases. The F1-Score of

0.6327 insinuates a tilt toward precision, possibly at the cost of

recall. While its ROC-AUC score of 0.8066 is marginally lower

than the others, it still represents a commendable capability in

class separation.

The SVM classifier displays the highest accuracy, making it

potentially the most reliable in general predictions. SVM prioritizes
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FIGURE 6

Confusion matrix for the classifiers used in this work.

TABLE 6 Performance metrics of various classifiers for diabetes prediction.

Classifier Accuracy Precision Recall F1-Score ROC-AUC

Logistic regression 0.7468 0.6379 0.6727 0.6549 0.8125

Random forest 0.7208 0.6071 0.6182 0.6126 0.8120

Gradient boosting 0.7468 0.6379 0.6727 0.6549 0.8092

Support vector machines 0.7662 0.7209 0.5636 0.6327 0.8066

precision over recall, making its predictions more trustworthy but

possibly missing out on some true positive cases. In contrast,

Logistic Regression and Gradient Boosting offer a more balanced

trade-off. All classifiers exhibit AUC scores above 0.8, suggesting

that each of them has a strong capability to differentiate between

positive and negative classes.

4.2 Feature engineering and correlation
analysis

This section offers a comprehensive account of the feature

engineering and correlation analysis conducted in the study.

In the quest to enhance the predictive prowess of our model,

we delved into advanced feature engineering techniques.

These techniques aimed to unearth hidden relationships

and patterns in the data that might be pivotal for accurate

diabetes prediction.

4.2.1 Interaction features
One of the salient techniques employed was the creation of

interaction features. These features represent interactions between

pairs of existing attributes, capturing the combined effect of

two variables on the outcome. A quintessential example from

our dataset is the interaction between “Pregnancies” and “Age”.

The rationale behind such interactions is that the combined

effect of two variables might be different from the sum of their

individual effects.
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4.2.2 Polynomial features
To unravel non-linear relationships inherent in the data, we

ventured into polynomial feature generation. By squaring or cubing

attributes, we aimed to encapsulate intricate patterns that linear

terms might overlook. Notable instances from our dataset include

squared terms for “Glucose” and “BMI”.

Post this rigorous feature engineering, our dataset was enriched

with both interaction and polynomial features, amplifying its

information content.

Table 7 lists the original features alongside their

correspondingsquared (polynomial) and interaction feature

names. The table provides a comprehensive overview of the

transformed features in the dataset, allowing for a clearer

understanding of their nature and potential utility in modeling.

We generated a heatmap to visualize the correlation of all

transformed features with the “Outcome” variable as depicted

in Figure 7. This will help us see which features have the

strongest relationship with the target. The heatmap visualizes the

correlation of the top 10 and bottom 10 transformed features (based

on their absolute correlation with the “Outcome” variable). In

addressing multicollinearity within our highly correlated features,

we set a correlation threshold at 0.85, above which we evaluated

the need for feature removal through the Variance Inflation

Factor (VIF), with a cut-off value of 10 indicating significant

multicollinearity. Concurrently, we analyzed feature importance

and assessed the impact on model performance to ensure that any

exclusion would not compromise predictive accuracy. Clinically

significant features were retained or adjusted based on domain

knowledge, with a careful balance between model complexity

and interpretability. When necessary, dimensionality reduction

techniques like PCAwere employed to condense correlated features

into principal components, maintaining robustness without losing

essential information.

The colors range from blue (negative correlation) to red

(positive correlation). The strength and direction of the correlation

between pairs of variables are represented by the color intensity

and the annotated values. The diagonal line (from the top left to

the bottom right) represents each feature’s correlation with itself,

which is always 1. The first row/column represents the correlation

of each feature with the “Outcome” variable. The features at the top

have the highest positive correlation with the outcome, while those

at the bottom have the lowest (or highest negative).

Some features, like “Glucose”, Glucose2 Glucose2, and “Glucose

× Age”, have a strong positive correlation with the “Outcome”.

This suggests that as these feature values increase, the likelihood

of having diabetes (Outcome = 1) also increases. We can also

observe the correlation between features. For example, “Glucose”

and Glucose2Glucose2 are highly correlated, which is expected.

Using this heatmap, we can prioritize features based on their

correlation with the target variable.

4.3 Performance of ensemble model

Given the intricacies of predicting diabetes outcomes based

on physiological measurements, we opted for a complex ensemble

model, combining the strengths of various machine learning

TABLE 7 Transformed features, along with their classification as either

“Polynomial” or “Interaction”.

Transformed features Feature type

Pregnancies^2 Polynomial

Glucose^2 Polynomial

BloodPressure^2 Polynomial

SkinThickness^2 Polynomial

Insulin^2 Polynomial

BMI^2 Polynomial

DiabetesPedigreeFunction^2 Polynomial

Age^2 Polynomial

Pregnancies× Glucose Interaction

Pregnancies× BloodPressure Interaction

Pregnancies× SkinThickness Interaction

Pregnancies× Insulin Interaction

Pregnancies× BMI Interaction

Pregnancies× DiabetesPedigreeFunction Interaction

Pregnancies× Age Interaction

Glucose× BloodPressure Interaction

Glucose× SkinThickness Interaction

Glucose× Insulin Interaction

Glucose× BMI Interaction

Glucose× DiabetesPedigreeFunction Interaction

Glucose× Age Interaction

BloodPressure× SkinThickness Interaction

BloodPressure× Insulin Interaction

BloodPressure× BMI Interaction

BloodPressure× DiabetesPedigreeFunction Interaction

BloodPressure× Age Interaction

SkinThickness× Insulin Interaction

SkinThickness× BMI Interaction

SkinThickness× DiabetesPedigreeFunction Interaction

SkinThickness× Age Interaction

Insulin× BMI Interaction

Insulin× DiabetesPedigreeFunction Interaction

Insulin× Age Interaction

BMI× DiabetesPedigreeFunction Interaction

BMI× Age Interaction

DiabetesPedigreeFunction× Age Interaction

algorithms. This model integrates decision trees, gradient

boosting, and support vector machines to harness their collective

predictive power.

Recognizing the inherent relationships between physiological

parameters, we employed polynomial and interaction feature
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FIGURE 7

Correlation matrix.

engineering. This approach allowed the model to capture non-

linear relationships and interactions that might be lost in simpler

models. For instance, interactions between “Pregnancies” and

“Age” or polynomial features like “Glucose^2” were introduced to

better represent the underlying complexities of diabetes onset.

Due to the class imbalance evident in our dataset, we used a

stratified sampling approach, ensuring each training batch had a

representative mix of both diabetes outcomes. Additionally, the

model was trained using a five-fold cross-validation strategy to

ensure robustness and minimize overfitting. Although a higher

number of folds could offer a marginally more stable performance

estimate, we found that five-fold cross-validation provided a

sufficient reduction in variance while maintaining low bias, without

imposing excessive computational demands. This choice aligns

with common practices in the literature, ensuring comparability

across studies. Our analyses indicated that the variance in

performance metrics was acceptably low across the folds, leading us

to conclude that the benefits of additional folds would be minimal

relative to the increased computational cost. The complex ensemble

model, trained on the enhanced dataset, achieved an accuracy of

over 93%.

This high accuracy, although promising, was scrutinized

further using other metrics like precision, recall, and the F1-score.

The model outperformed simpler classifiers and showed significant

predictive power, especially when compared to models trained

without the engineered features.

Figure 8 provides a holistic view of the model’s performance.

While accuracy gives an overall sense of correctness, precision

and recall focus on the model’s performance concerning each

class. The F1-score is the harmonic mean of precision and

recall, offering a balance between the two. The Area Under the

Receiver Operating Characteristic curve (AUC-ROC) evaluates the

model’s ability to differentiate between the classes. The Matthews

Correlation Coefficient (MCC) provides a balanced measure even

when the classes are of very different sizes. Class 1 refers

to individuals diagnosed with diabetes, and Class 0 refers to

individuals without diabetes.

While accuracy provides a quick snapshot of overall

correctness, it’s vital to recognize its limitations, especially in

datasets with class imbalances. Our dataset had a more significant

number of non-diabetic individuals, which could bias the accuracy

metric. Therefore, to truly appreciate the model’s efficacy,

we considered other metrics. Precision for Class 1 (diabetic

individuals) stood at 91.0%, indicating that of all individuals the

model labeled as diabetic, 91.0% were correctly classified. However,

recall, which measures the model’s ability to correctly identify all
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FIGURE 8

Visual representation of the model’s performance across various metrics, trade-o� between precision and recall at various thresholds and receiver

operating characteristic (ROC) curve provides insights into the model’s ability to discriminate between the classes.

diabetic individuals, was 88.5%. This difference underscores the

classic precision-recall trade-off, refer Figure 8. For Class 0 (non-

diabetic individuals), both precision (94.8%) and recall (96.3%)

were high, affirming the model’s prowess in correctly classifying

non-diabetic individuals. Striking a balance between precision and

recall, the F1-scores for Class 1 and Class 0 were 89.7% and 95.5%

respectively. This harmonic mean provides a more holistic view of

the model’s performance, emphasizing its capability to maintain

a balance between false positives and false negatives. The high

AUC-ROC value, i.e., 97.1% signifies the model’s strong ability to

differentiate between diabetic and non-diabetic individuals, further

reinforcing its diagnostic potential, refer Figure 8.

MCC, which takes values between −1 and 1, offers a balanced

measure of binary classification, especially for imbalanced datasets.

Our model’s MCC of 0.87 indicates a strong correlation between

the observed and predicted classifications, showcasing the model’s

reliability. Our research underscores the significance of feature

engineering and complex ensemblemodeling in enhancing diabetes

prediction. In our work, we rigorously validated the impact of

feature engineering onmodel performance by employing the paired

t-test, a statistical method appropriate for comparing the means of

two related groups. This test was particularly suited for our analysis

as it allowed us to assess the significance of performance changes

before and after the introduction of engineered features, using the

same dataset. A p-value was computed from the t-statistic, with a

threshold of 0.05 to determine statistical significance. Our analysis

yielded a p-value well below this threshold, firmly establishing that

the enhancements in performance metrics attributable to feature

engineering were statistically significant and not merely a product

of random variation.

5 Conclusion

In the contemporary healthcare landscape, accentuated by

the pressing challenges of the COVID-19 pandemic, rapid and

accurate diagnostics have never been more pivotal. One such

critical area of focus is diabetes, a condition that has been

identified as a significant vulnerability in the face of the virus.

Our research, set against this global backdrop, embarked on

a mission to enhance diabetes prediction using state-of-the-art

machine learning techniques. Initially, we evaluated a gamut of

classifiers to serve as our baseline. The SVM classifier emerged

as the frontrunner in terms of accuracy, boasting a commendable
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rate of 76.62%. While its precision was also the highest among

peers, its recall hinted at potential misses, possibly overlooking

some true positive cases. In contrast, both Logistic Regression and

Gradient Boosting classifiers offered a more balanced performance

dynamic, with metrics almost mirroring each other. Random

Forest, while robust, showcased areas of potential enhancement,

especially when juxtaposed against its peers. Collectively, these

evaluations provided a foundational understanding, setting the

stage for further enhancements. Our next endeavor led us to the

realms of advanced feature engineering. By creating interaction

features and generating polynomial attributes, we sought to capture

hidden patterns and intricate relationships pivotal for prediction

accuracy. This intensive process enriched our dataset, amplifying

its informational depth and breadth. Subsequently, correlation

analysis, depicted through heatmaps, shed light on the relationships

between the engineered features and the outcome. It reaffirmed the

significance of attributes like Glucose and highlighted the potential

of newly generated features. Incorporating the insights from our

initial evaluations and the subsequent feature engineering, we

proposed an ensemble model that integrated the strengths of

Decision Trees, Gradient Boosting, and Support Vector Machines.

This model, with an accuracy of 93.2%, showcases the potential of

harmonizing diverse algorithms.
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