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In this work, we examine magnetic resonance imaging (MRI) and ultrasound (US)

appointments at the Diagnostic Imaging (DI) department of a pediatric hospital to

discover possible relationships between selected patient features and no-show or

long waiting room time endpoints. The chosen features include age, sex, income,

distance from the hospital, percentage of non-English speakers in a postal code,

percentage of single caregivers in a postal code, appointment time slot (morning,

afternoon, evening), and day of the week (Monday to Sunday). We trained univariate

Logistic Regression (LR) models using the training sets and identified predictive

(significant) features that remained significant in the test sets. We also implemented

multivariate Random Forest (RF) models to predict the endpoints. We achieved

Area Under the Receiver Operating Characteristic Curve (AUC) of 0.82 and 0.73

for predicting no-show and long waiting room time endpoints, respectively. The

univariate LR analysis on DI appointments uncovered the e�ect of the time of

appointment during the day/week, and patients’ demographics such as income and

the number of caregivers on the no-shows and longwaiting room time endpoints. For

predicting no-show, we found age, time slot, and percentage of single caregiver to be

the most critical contributors. Age, distance, and percentage of non-English speakers

were the most important features for our long waiting room time prediction models.

We found no sex discrimination among the scheduled pediatric DI appointments.

Nonetheless, inequities based on patient features such as low income and language

barrier did exist.
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1. Introduction

The noble goal of medicine is to provide compassionate healthcare to all persons, regardless

of ethnicity, race, sex, age, and socioeconomic status. Healthcare delivery is notably affected by

implicit bias (1), accessibility barriers (2–4), and systemic racism reflecting structurally unequal

patterns of housing, education, and policing. Despite all the advancements in healthcare in the

past decades, disparities based on race and ethnicity persist in access to healthcare, the quality of

care received, life expectancy, and mortality. Subtle biases and implicit attitudes often exist out

of conscious awareness, and therefore, it makes it difficult to acknowledge and control. As such,
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healthcare requires a more explicit commitment to the ethical

principle of equity, which entails proactive and targeted decisions

that advance the interests of those who are the least advantaged and

are under-represented in the healthcare system. To reduce the racial

and ethnic disparity and provide care in a manner that compensates

for the relative lack of privileges, we must first characterize the

discrepancy in access patterns to identify opportunities to take

equity-promoting actions in healthcare (3).

As The Hospital for Sick Children (SickKids) adopts a digital-

first strategy to enhance care delivery, a careful eye to equity can

enable us to better deliver care to those who need it the most. Biases

are complex and multi-faceted, and our project takes aim at the

issue of accessibility for Diagnostic Imaging (DI) procedures. The

first step toward enhancing equitable care is by empirically studying

the current patterns in access to detect systematic barriers that our

patients and families face.

In the department of DI at SickKids in Canada, approximately

3,000 appointments are scheduled every month. DI is an important

step in disease diagnosis where treatment path is often planned.

Depending on their health issue, patients might be referred

to different modalities of diagnostic imaging, such as magnetic

resonance imaging (MRI) or ultrasound (US). Based on the results

of DI reported by the radiologists, the next step in patient care is

decided. This may include additional tests (e.g., blood tests), tissue

biopsy, or start of treatment. Timely access to DI appointments is

crucial for optimal care delivery to patients. Thus, it is vital to identify

whether there is any bias when the appointments are assigned to the

patients and if so, to ensure equitable access to all patients to DI

appointments, with the available medical imaging resources at the DI.

To investigate the potential impact of equity-related patient

identifiers and access to DI appointments at the hospital, we

collected, curated, and analyzed appointment data of 42,795 unique

patients admitted to DI during 2018–2021. The dataset included

MRI and US appointments. The selected features from the datasets

were age, sex, income, distance from the hospital, percentage

of non-English speakers in a postal code, percentage of single

caregivers in a postal code, and appointment time slot (morning,

afternoon, evening), and day of the week (Monday to Sunday). The

main objective is to investigate the relationships between selected

patient features and no-show and waiting room time for more

than 1 h endpoints.

We applied univariate Logistic Regression (LR) and reported

the Odds Ratio (OR) and p-values of the features with the two

endpoints, no-show, and waiting room times for more than 1 h.

We also implemented multivariate Random Forest models (RF) to

predict the two endpoints. The organization of this paper is as follows:

a brief literature review of related work is presented in Section 1.

Section 2 presents the dataset and explains the methods followed by

results shown in Section 3. Sections 4 provides the discussion.

The main contributions of this paper include the followings:

- We curated a large dataset of appointments from the diagnostic

imaging department of the SickKids hospital with over

74,000 entries.

- We conducted modality-specific as well as overall studies.

- We augmented the dataset through adding important features

from the Canada Statistics Census such as percentage of single

caregivers in neighborhoods.

- We conducted feature transformation and statistical analysis to

find the best representation of each feature before feeding them

into the machine learning models.

1.1. Literature review

The study of no-shows and waiting room times and

corresponding predictive models are usually distinct topics in

the literature. Hence, in the following, the relevant papers are

reviewed separately.

1.1.1. No-show
During the last decades, a significant number of experiments

have been conducted to analyze no-show endpoints and search for

solutions to predict and mitigate the consequences of these endpoints

via analytical techniques (5). No-show appointments, when the

patients miss their scheduled appointments without notifying the

healthcare provider, cause significant impacts on revenue, cost, and

use of resources in healthcare systems (6). No-show specifically

for diagnostic imaging can negatively affect the patients’ health.

No-shows among patients are not arbitrary, and arise out of

situational factors (e.g., patient behaviors, extenuating circumstances,

accessibility barriers) (7, 8). The statistical analysis of this relationship

led to implementation of multiple statistical techniques to reduce the

negative effects of no-show appointments, namely, overbooking (9–

12), open-access scheduling (13), or using fines to penalize those who

miss their appointment (14).

Studies show that the no-show rates may vary from 3 to 80%

depending on the patient population, type of clinic, the continent

where the study was performed, the year the study was conducted,

and the medical specialty (6). Different statistical analyses, including

univariate and multivariate analyses, have been used for studying

no-show. Logistic Regression (LR) (binary and multinomial LR) are

the most common methods in the literature to predict the no-show

appointments (5, 9, 13, 15–18).

Huang et al. (19) used a dataset of about 7,000 unique patients and

developed several LR models based on the number of patients’ visits.

There were 26 predictive models developed based on the number

of available past appointments. Models with a higher number of

patients’ produced more accurate results. The maximum area under

the receiver operating characteristic curve (AUC) was 0.706, which

was for the model that used patients’ data who had at least 19 visits.

Kurasawa et al. (20) reported achieving AUC of 0.958 with an LR

model on University of Tokyo Hospital data, which included about

16,000 appointments scheduled for 879 unique patients, with the

inclusion of important predictors such as patient’s clinical condition,

department, disease, and prescribed medicine. They also included

other characteristics such as sex, age, distance from the hospital,

frequency of clinic visit, probability of visit on a given day of the week,

interval between the scheduling date and appointment date, day of

the week, previous no-show, weather, length of prescription, the total

amount of medicine per day, how many times a day a medication is

taken, and maximum size of prescribed tablets.

Lin et al. (21) proposed LR models with Bayesian Lasso for

feature selection and achieved AUC between 0.70 and 0.92 for

475 providers (doctors) grouped by 53 clinics, containing 1,000
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to 21,000 patients each, with an average of 4,404 patients. Several

works studied the advantages of using decision trees (DTs) compared

to LR. For instance, Devasahay et al. (22) achieved a reasonable

specificity (99.3%) but with inferior sensitivity (3.5%) compared to

LR with specificity and sensitivity of 99.9 and 0.1%, respectively.

Neural Network (NN) methods which are currently receiving a

high level of attention in the field of artificial intelligence, have

also been used for studying no-show. For instance, Aladeemy et al.

(23) developed an optimization algorithm called integration of

Self-Adhesive Cohort Intelligence with opposition-based learning

strategies, and its performance was compared against that of Genetic

Algorithms (Particle Swarm Optimization, Differential Evolution), as

well as RF, Ada Boost, implemented Support Vector Machine (SVM),

Naïve Bays (NB), K-nearest neighborhood (KNN), Deep Neural

Network (DNN), and Elastic-Net Regularized Generalized Linear

model, achieving 0.72 AUC, 0.81 sensitivity, and 0.61 specificity.

Dashtban and Li (24) developed a sparse stacked denoising

autoencoder for no-show prediction. The proposed auto-encoder was

trained with a database of 1.6 million appointments, achieving an

AUC and accuracy of 0.71, 0.69, respectively. Mohammadi et al. (25)

implemented the Naïve Bayes methods along with the LR and NN on

74,000 unique appointments, and achieved up to 0.90 AUC.

Different features and predictors have been used in no-show

analysis, including age, sex, race, socioeconomic status, and level

of education. Most studies showed that the no-show rate has an

inverse relationship to the age of the patients, meaning that young

adults are most likely to miss their appointment. Multiple studies

confirmed sex is not a statistically significant predictor of no-show,

but a few studies reported that men were more likely to miss their

appointments than women (26). Moreover, members of minority

groups across countries tend to have higher rates of no-show.

Lower economic level and marital status are other factors in no-

show rate. There is an inverse relationship between income and

likelihood of no-show across studies. While marital status seems

to be a less predictive feature, a few studies showed that being

a single caregiver increases the probability of no-show (6, 27).

For pediatric appointments, a lower parental educational level was

associated with increased no-show behavior. There are a few other

factors such as the lead time, the interval between the time when

the patient schedules the appointment and the actual appointment

time, prior no-show history, date and time of the appointment, source

of referral, type of visit, and the number of previously scheduled

visits. It was found that the lead time and prior no-show were

the most important predictors of no-show (28). Other features

and predictors such as day of the week, month of appointment,

and appointment time were also found to be insignificant features

of no-show.

1.1.2. Waiting room time
Patients who keep their appointments may experience negative

effects, including dissatisfaction with high waiting room time and

service quality (29). However, Anderson et al. (30) used a web-

based survey on 5,000 patients and showed that time spent with

the doctor is more influential than the waiting room time. Sun

et al. (31) predicted the emergency department (ED) waiting room

time by quantile regression models combined with queue length

for more accuracy. They also provided a range from median to

the 90th percentiles for the waiting room time to compensate

for the inaccurate median waiting room time. In their validation,

the median absolute prediction error was 9.2min for patients

with priority type 2 (the patient experiences severe, difficult to

manage symptoms which are likely getting worse) and 12.9min

for patients with priority type 3 (the patient experiences some

pain or other symptoms which do not dramatically impact the

quality of life). Bell et al. (32) used time series models such as

auto-regression integrated with moving average and autoregressive

integrated moving average (ARIMA) errors to capture the short-term

fluctuation better.

Huang et al. (33) proposed a hybrid model that combines the

ARIMA errors with adaptive filtering, achieving a higher accuracy

(up to 0.88 to 0.99 improvement) than the traditional ARIMA

models. Ang et al. (34) used the number of patients waiting in the

ED to start the treatment, the number of providers in ED, the rate the

provider treats the low-acuity patients, and the total processing rate

for low-acuity patients as independent variables to achieve 30% lower

mean square error (MSE) with Q-Lasso models compared to MSE of

moving average methods.

Guédon et al. (35) developed a real-time predication system to

classify surgeries into two categories; surgeries that are shorter or

longer than a specific time. They SVM on the data retrieved from the

medical devices. Arha (36) used quantile and regularized regression

such as Lasso, Ridge, Elastic Net, Smoothly Clipped Absolute

Deviation (SCAD), Minimax Concave Penalty (MCP) through mean

square error, and RF to predict patient’s waiting room time. Queue

of patients at different stages of ED and patient’s arrival time (days,

week, and month) were used as predictors. Among all methods, RF

had the highest accuracy.

Chen et al. (37) predicted the waiting room time for each

treatment in the hospital, and they developed a recommendation

system for patient’s treatment plan based on the predicted time.

Patients would see the plan and expected waiting room time for

each treatment in real-time. They used the cloud implementation

of RF to handle the scalability and efficiency of the model. They

utilized patient’s sex, age, department, doctor’s name, task’s name,

start time, end time, week, treatment time, and the time interval

between appointments as their predictors and achieved an accuracy

above 0.92.

Gonçalves et al. (38) used RF to predict the category of the

emergency waiting room time, the categories they used in their

analysis are from “really low” to “really high”, they achieved an

accuracy of 50%, which is not a reliable performance. Kuo et al.

(39) implemented machine learning methods for real-time and

personalized waiting room time prediction, including stepwise linear

regression, artificial neural network, SVM, and gradient boosting

machines. They achieved 17–22% reduction in mean square error

compared to simple linear regression as baseline method, suggesting

the machine learning methods can improve the performance of

waiting room time prediction.

2. Materials and methods

2.1. Dataset

To investigate the existence of inequality in access to DI

services, we collected and analyzed 86,335 appointments of 42,795

unique patients from June 2018 to March 2021 (34 months)
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FIGURE 1

Data pre-processing.

from the DI department at the SickKids Hospital. It should be

highlighted that SickKids, in the context of appointment scheduling,

considers caregivers, patients and the family as a unit, and thus

the term “family” could be used as an alternative to “patient” if

we were not conforming literature terminology. Figure 1 shows

the inclusion/exclusion criteria and the process of cleaning the

dataset. We excluded patients above 18 years old, those who lived

outside Ontario, and anyone with missing features or incorrect

check-in times. Additionally, we appended new features from the

Canada Statistics Census1 and dropped all but the target features.

Table 1 shows the features that we used in our experiment, along

with their full descriptions. The features include age, sex, distance

to the hospital based on the postal code, average family income

in a postal code, percentage of the single caregiver in a postal

code, percentage of the non-English speaking caregiver in a postal

1 https://www12.statcan.gc.ca/census-recensement/2016/dp-pd/prof/

details/download-telecharger/comp/page_dl-tc.cfm?Lang=E

code, time of appointment, and day of appointment within the

week (weekday).

We eliminated patients with age higher than 18 years old,

individuals who live outside of Province of Ontario, Canada, those

who reported no sex, anyone with incorrect or no check-in time,

patients who waited for more than 2 h or were late for more

than 2 h, and we excluded the duplicated rows and null columns.

This resulted in 74,388 appointments. We reported the result of

our experiment for three different datasets: (a) the whole dataset

(All), which contains all imaging modalities, such as MRI, US, and

Computed Tomography (CT), Magnetoencephelography (MEG),

and Image Guided Therapy (IGT) scan appointments, (b) a dataset

containing only US appointments, and (c) a dataset containing only

MRI appointments. Table 2 shows the distribution of the endpoints

for each dataset.

The endpoints include (a) no-show, whichmeans patients who do

not show up for their appointment without any notice and (b) long

waiting room time, which defines patients who are not late for their

appointment but have to wait for more than 1 h.
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TABLE 1 Description of features used in our experiment.

Feature Description

Income An estimation of the household income based on their postal

code, extracted from the Canada Statistics Census

Distance An estimation of the distance from patient’s postal code to

the SickKids Hospital’s postal code. We used the

“pgeocodea” package in Python to get the estimated

longitude and latitude of the patient’s and the hospital postal

code and then calculate the distance between the two points

using the Haversine formula.

% Non-english

speaker

An estimation of the non-English speaking residence

percentage in a postal code extracted from the Canada

Statistics Census

% Single

caregiver

An estimation of the single caregiver percentage in a postal

code extracted from the Canada Statistics Census.

Age Age of the patients at scan

Time slot Time of the patient’s appointment has been categorized into

3 categories: morning (up to 12 pm), afternoon (12–6 pm)

and evening (after 6 pm)

Sex Sex assigned on patient’s health card

Weekday Monday to sunday

ahttps://pypi.org/project/pgeocode/.

TABLE 2 Distribution of endpoints.

Endpoint

Dataset All (the
whole
dataset)

MRI US Other
modalities

Show (0) vs. no-show (1) 0: 71700, 0: 22632, 0: 45181, 0: 3887,

1: 2687 1: 843 1: 1694 1: 150

(Total: 74,387) (23,475) (46,875) (4,037)

Not late but wait for more

than 1 h

0: 57622, 0: 18124, 0: 36394, 0: 3104,

1: 13384 1: 4256 1: 8367 1: 761

(Total: 71,006) (22,380) (44,761) (3,865)

2.2. Statistical analysis

We implemented univariant LRmodels (R v. 1.3.1093) to find the

odds ratio of significant features with each endpoint: no-show and

long waiting room times. We split the dataset into training (75%) and

test (25%) sets. To define the features with the most significant effects

on the endpoints, we implemented the LR using Generalized Linear

Models2 (GLM) on the training sets.

Features with p-value> 0.05 in the training set were removed.

Next, using the remaining significant features from the test set,

another LR model was developed and features with p-value > 0.05 in

the test set were also filtered. The odd ratios for features that remained

significant in both training and test sets were calculated. Figure 2

illustrates the odds ratios for the endpoints subjected to all imaging

modalities, MRI and US.

2 https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/

glm

2.2.1. Binning
In order to apply machine learning algorithms, optimal binning

was used to categorize continuous features (e.g., age). Introduced

by Fayyad (40), optimal binning is a discretization method for

continuous variables, which is based on Minimum Description

Length (41), where patterns in data are utilized to compress the data.

Optimal binning fits best if there is a non-linear relationship between

the feature and outcome, the bins are more relevant, the original

continuous data is extremely noisy, and if the process of binning can

be applied to the future data.

We utilized the optbinning python library (42) and our optimal

binning was optimized on our training set and then applied to our

test set. Appendix A highlightes the settings ofMinimumDescription

Length Principle (MDLP) used for dering the optimal bins for

each continuous variable, where “min_sample_leaf” is the minimum

number of samples required to be at leaf node, “max_candidates” the

maximum number of split points to evaluate at each partition and

“min_sample_split” is the minimum number of samples required to

split an internal node.

2.3. Machine learning

2.3.1. Random forest model
In order to eliminate bias in the appointment scheduling systems,

predictive models are needed. Tree-based models are among the

common classifiers for tabular data, and RF is ensemble of decision

trees, which is utilized in similar contexts such as radiomics (43–45).

More gradient boosting-based models, such as XGBoost and NNs

are alternatives to RF, that demand more computational resources

(46). In this project, we choose RF because it is a reliable classifier

as a baseline with affordable computational cost. To conduct the

predictive module of the research, we further split the training data

into train and validation sets with a ratio of 75/25. The same test

cohort used for the statistical analysis was utilized for the final

validation.We utilized all features to train a RFmodel to predict these

endpoints. Appendix B contains the selected parameters achieved

by a grid search on the training set, which returns the highest F1

score on the validation set. The grid space was set based on the best

practices from the literature (43, 47). We considered using the F1

score as the main score for the grid search since it combines the

precision and recall and shows how relevant the perditions are to

the actual outcome. To tackle the data imbalance, we used the RF’s

built-in function from Scikit-Learn3 to manipulate the weight of each

class by adjusting each class’s weight, inversely proportional to the

class frequency.

2.3.2. Evaluation
We tested the model with the selected parameters on the

validation set and defined the optimum threshold for the final

prediction on the test set using Geometric Mean or G-mean. This

metric is used in imbalanced classification to find a prediction

threshold that maximizes both precision and recall. To find the

3 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html
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FIGURE 2

Odds ratios of the statistically significant features (p < 0.05) associated with the no-show and long waiting room time endpoints.

optimal threshold, we have to maximize the G-Mean with regards to

the threshold as in Equations (1–3):

Sensitivity = True Positive Rate =
TP

Tp + FN
(1)

Specificity = 1− False Positive Rate =
TN

TN + FP
(2)

G−Mean =

√

Sensitivity × Specificity (3)

3. Results

3.1. Statistical analysis results

Our LR analysis showed sex was not a predictor of the endpoints

(p-value > 0.05). Table 3 shows odds ratios of the significant features

(p-values < 0.05) and their corresponding endpoints for the three

different training and test sets. Our results show families are less

likely to miss an appointment (no-show) if they have an evening

appointment (OR = 0.29), have higher household income (OR =

0.80), or live farther from the hospital (OR = 0.88). Conversely,

families are more likely to miss an appointment if the patient is

older (OR = 1.38), they are coming from a postal code with a higher

percentage of single caregivers (OR= 1.36), or non-English speakers

(OR= 1.16). Surprisingly, no-show endpoints is more frequent when

the patients live closer to the hospital.

Patients are less likely to wait for more than 1 h for their

appointments if their postal code is associated with a higher

percentage of non-English speakers (OR= 0.88), a higher household

income (OR = 0.92), or higher percentage of single-care givers (OR

= 0.93). Older patients (OR= 1.21), and those who live farther from

the hospital (OR= 1.18) tend to wait longer for their appointments.

3.2. Random forest model results

Table 4 shows the results of the RF model as well as the

corresponding feature importances. The upper section of the

table includes the performance of the predictive classifiers, and

the lower section provides features’ importance of the models.

Separate classifiers were trained to predict no-show and long waiting

room time, and thus their performance evaluation and feature

importances are provided in separate sections. Additionally, we

had distinct classifiers trained on department schedules for MRI,
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TABLE 3 Odds ratios of the most significant features.

Dataset Event Feature Odds-ratio Feature Odds-ratio

All (whole dataset) No-show Age 1.38 Distance 0.88

All (whole dataset) No-show Single caregiver 1.36 Income 0.80

All (whole dataset) No-show Non-English 1.16 Encoded time slot 0.29

MRI No-show Single caregiver 1.95 Distance 0.77

MRI No-show Non-English 1.51 Income 0.68

MRI No-show Age 1.48 Encoded time slot 0.22

US No-show Age 1.34 Distance 0.92

US No-show Single caregiver 1.25 Income 0.85

US No-show Non-English 1.19 Encoded time slot 0.23

All (whole dataset) Waiting time Age 1.21 Single caregiver 0.93

All (whole dataset) Waiting time Distance 1.18 Income 0.92

All (whole dataset) Waiting time Day of the week 1.08 Non-English 0.88

MRI Waiting time Age 1.38 Encoded time slot 0.99

MRI Waiting time Distance 1.20 Income 0.90

MRI Waiting time Day of the week 1.12 Non-English 0.82

US Waiting time Age 1.28 Single caregiver 0.92

US Waiting time Distance 1.16 Income 0.89

US Waiting time Day of the week 1.09 Non-English 0.85

Bold values refer to features with highest and lowest odds-ratios for different endpoints and datasets (US, MRI, All).

US appointments, and the whole dataset (MRI and US), whose

performance and features’ importance are reported in separate rows.

We highlight the most important feature (e.g., Time slot for No-

show) with a bold font. We could achieve AUC and recall of 0.82

in no-show prediction with MRI patients and AUC of 0.73 in long

waiting room time prediction for all patients. In no-show prediction,

despite the reasonable AUC and recall, the precision and F1 score

were low (0.16 and 0.09, respectively).

Time slot and age contributed the most for no-show prediction,

and age was the most important feature, with sex being the most

insignificant feature in the prediction of the long waiting room time.

Figures 3, 4 depict the receiver operating characteristic (ROC) curves

of the multivariate RF for different datasets and endpoints.

4. Discussion

In this applied machine learning research, we investigate whether

equity of diagnostic imaging services at our hospital could be

improved. Thus, novelty of the research question, complexity of the

machine learning classifiers, as well as the classification accuracies of

the pipelines are of lesser concerns and will be covered in separate

projects where the goal will be to bridge the gap.

To explore the possible trends in access to DI appointments

as a function of equity-related patient identifiers, we collected and

analyzed appointment data of 42,795 unique patients of the DI

department at SickKids Hospital during 2018–2021. We cleansed

the dataset, filtered out about 12K rows, and developed 9 different

datasets: the training, validation, and test set for three different

categories including All, only MRI, and only US patients.

The selected features from the datasets were: age, sex, income,

distance, percentage of non-English speakers in a postal code,

parentage of single caregivers in a postal code, time slot (morning,

afternoon, evening), and day of the week (Monday to Sunday). The

endpoints include no-show and waiting room time for more than 1 h.

Our univariate LR analysis on DI appointments revealed that the

likelihood of both no-shows and long waiting room time are affected

by not only the time of appointment during the day/week, but also

patients’ demographics such as income and the number of caregivers.

Age, time slot, and percentage of single caregiver contributed the

most for no-show prediction. Similarly, age, distance, and percentage

of non-English speakers had the highest contribution to long waiting

room time prediction.

Using a RF model, we achieved AUC of 0.82 and 0.73 for no-

show, and long waiting room time endpoints, respectively. The most

significant features in RF contributing to the prediction of no-shows

were time slot and age. Additionally, for long waiting room time the

significant features were age and distance. Sex was an insignificant

feature in the prediction of endpoints. While the RF models yielded

reasonably AUCs, the precision scores (and consequently the F1

scores) were relatively low. The main reason is the highly imbalanced

data where the probability of having a positive class (e.g., no-show) is

extremely low (e.g.,∼3.6%).

While there were several options to be used in this context, we

chose RF, which are among the acceptable algorithms used in recent

publications in areas such as radiomics classification (43, 44, 46).

Nevertheless, we tested logistic regression and extremely randomized

trees (48), and RF was found to be the superior classifier.

The fact that classifier performances are near the ceilings relies

on two factors: (a) the acceptable range for the performance of

classifiers is subjective (47), and in this context, no classifier will
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TABLE 4 Results for the predictive RF model.

Dataset F1 score Precision Recall AUC Accuracy

No-show

M
o
d
el
p
er
fo
rm

an
ce

MRI 0.16 0.09 0.82 0.82 0.70

US 0.15 0.08 0.81 0.81 0.68

All 0.16 0.09 0.77 0.80 0.69

Long waiting room time

MRI 0.41 0.31 0.60 0.67 0.71

US 0.40 0.29 0.64 0.71 0.65

All 0.43 0.31 0.66 0.73 0.66

Dataset Income Distance % Non-English
speaker

% Single
caregiver

Age Time
slot

Sex Weekday

No-show

MRI 0.089 0.082 0.085 0.089 0.132 0.452 0.012 0.057

F
ea
tu
re

im
p
o
rt
an
ce

US 0.077 0.080 0.079 0.080 0.132 0.472 0.013 0.066

All 0.077 0.076 0.074 0.077 0.218 0.370 0.026 0.084

Long waiting room time

MRI 0.113 0.139 0.120 0.111 0.309 0.109 0.019 0.080

US 0.104 0.132 0.106 0.103 0.326 0.124 0.017 0.088

All 0.103 0.118 0.106 0.102 0.362 0.073 0.029 0.108

Bold values in feature importance refer to the most predictive features on different endpoints and datasets (US, MRI, All).

achieve high accuracies because the hospital aims to provide equitable

service to the patients and the features are not strongly predictive.

Otherwise, it would show systematic inequity and discrimination.

(b) there are 8 features, and the order of examples is 10,000. Hence

there are multiple cases where the features are identical, but the labels

are different. In this situation, even the most advanced models are

incapable of classifying all cases correctly. In other words, no model

could overfit this training data with ideal accuracy.

While artificial intelligence (AI) can help tominimize the number

of no-shows by overbooking for patients who are deemed by AI

to miss their appointments, if not done carefully, this can by

itself lead to another layer of inequality. Thus, it is imperative to

understand and tackle the root causes of inequality, rather than

treating it as a resource optimization problem. Our experiment

explicitly addresses disparities and inequity in healthcare access

experienced by lower socioeconomic status families. Lower-income

households tend to have less flexible work schedules, less access

to paid time off, and experience greater difficulty commuting

to SickKids. Consequently, these families may experience greater

hardships around the scheduling of their child’s DI appointments.

We note that considerable controversy surrounds the notion of

predicting no-shows. Anecdotally, there have been many reports of

patients being double-booked for their appointments by algorithmic

scheduling tools. These tools are typically guided by a primary value

of efficiency (in contrast with equity), wherein the cost savings to

the hospital are prioritized, as is the desire to have the highest

number of patients seen to minimize wait times. These are reasonable

goals; however, in practice, they can result in discrimination as

marginalized or disadvantaged patients experience the greatest

proportion of inconvenience by virtue of the algorithm. In future

FIGURE 3

ROC curve of multivariant RF model for no-show endpoint.

work, by centring equity, we will take the same prediction task as

prior work but use these patterns to hypothesize on whether no-

shows (and long waiting room times) could be minimized by using

the predictions to prioritize patients for appointments based on

their needs.

This research will lead to proactive and targeted decisions that

advance the interests of those who are the least advantaged and are

under-represented in healthcare system to provide care in a manner

that compensates for the relative lack of privileges that others enjoy.
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FIGURE 4

ROC curve of multivariant RF model for waiting-room-time endpoint.

We intend to develop and deploy a model that aims to reduce

no-show rates by offering prioritized scheduling for equity-seeking

groups in order to achieve a notion of institutional efficacy with

respect to DI scheduling and access, while making access easier for

our patients and families experiencing structural disadvantage.

This study has limitations. While the proposed models in

this study identify inequality in the scheduled appointments,

how to achieve equitable appointments remains unanswered.

Designing an equitable scheduling system imposes extra limitations

such as decision-making with limited available time slots. In

addition, this study does not consider the factor of time. Equity

should be continuously monitored, and separate test sets should

be created and evaluated for different time spans (e.g., years,

seasons, months).

In summary, we studied two endpoints at the Diagnostic

Imaging (DI) department of Hospital for Sick Children, Canada,

Ontario: no-show and long waiting room time. To show the

relationship between selected features such as sex, age and

socioeconomic status and the endpoints, univariate LR models

were applied to ∼74,000 appointments. Our analyses show

that while no sex discrimination existed among the scheduled

pediatric DI appointments, there were inequities based on

patient features such as low income and language barrier.

Using a RF model, Using a RF model, we achieved AUC

of 0.82 and 0.73 for no-show, and long waiting room time

endpoints, respectively.
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Appendix

Appendix A Settings of the optimal binning.

Min_samples_leaf Max_candidates Min_sample_split

2 2 32

Appendix B Hyperparameters and settingsa of the RF models.

Bin: Continuous variable

n_estimator: 500

Criterion: Entropy

Min_samples_split: 10

Max_features: Auto

Class-weight: Balanced-subsample

ahttps://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.

html.
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