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Identification and isolation of COVID-19 infected persons plays a significant role in the

control of COVID-19 pandemic. A country’s COVID-19 positive testing rate is useful in

understanding andmonitoring the disease transmission and spread for the planning of

intervention policy. Using publicly available data collected between March 5th, 2020

andMay 31st, 2021, we proposed to estimate both the positive testing rate and its daily

rate of change in South Africa with a flexible semi-parametric smoothing model for

discrete data. There was a gradual increase in the positive testing rate up to a first peak

rate in July, 2020, then a decrease before another peak aroundmid-December 2020 to

mid-January 2021. The proposed semi-parametric smoothing model provides a data

driven estimates for both the positive testing rate and its change. We provide an online

R dashboard that can be used to estimate the positive rate in any country of interest

based on publicly available data. We believe this is a useful tool for both researchers

and policymakers for planning intervention and understanding the COVID-19 spread.

KEYWORDS
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1. Introduction

Coronaviruses are a large family of viruses which may cause respiratory infections ranging

from the common cold to more severe diseases such as Middle East respiratory syndrome

(MERS) and Severe acute respiratory syndrome (SARS). The ongoing outbreak of the novel

coronavirus SARS-CoV-2 was first reported in December 2019, in Wuhan, China (1, 2). The

virus has rapidly spread with a total of 243,260,214 confirmed cases and 4,941,039 deaths as of

October 25th, 2021 (2). South Africa was one of the first African countries to initiate containment

measures against COVID-19. The country was experiencing higher numbers of COVID-19

cases compared to most countries in Sub-Saharan Africa. The first reported COVID-19 cases

in South Africa were related to nine adults who returned from Italy, where the infection rate was

uncontrolled (3). After showing symptoms of flu, the 9 subjects were confirmed as COVID-19

positive through the reverse transcription-polymerase chain reaction test on March 5th, 2020.

As COVID-19 cases increased in South Africa and no availability of approved vaccines, the

authorities and health system in the country imposed compulsory measures in addition to the
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recommendations from world health organisation (WHO) and the

strategies from Africa centers for disease control and prevention

[Africa CDC, (4)]. Foreigners from high-risk countries were banned

from traveling into the country and restrictions were placed on non-

essential domestic and international outgoing flights. South African

citizens returning from high-risk countries had to self-quarantined

on arrival, individuals who had contact with infected patients were

traced and asked to self-isolate. The majority of the entry ports in the

country were shut down as well. In addition, all schools were closed

and gatherings of more than 100 people became impermissible. The

after-effect of these cases propelled the South African government to

declare a national state of disaster on March 15th, 2020 followed by a

21-day lockdown period which commenced onMarch 27th, 2020 (5–

7). Awareness campaigns were intensified to fight anxiety, depression,

stigmatization, myths and misinformation about COVID-19. Media

platforms such as television, radio, social media, short messaging

services (SMS), leaflets, banners, and also road campaigns were

used to create awareness. Hand-washing techniques and preventive

measures such as mask-wearing, sanitizing, and social distancing

were also included in the awareness campaigns (4).

The lockdown was eased in June 2020, the entry ports were

opened and people began to return to work gradually. As expected,

the rate of infections and deaths began to increase again leading to

the anticipation of a second wave (8). To contain the spread of the

virus during the second wave, South Africa maintained interventions

such as travel restrictions, public gatherings with a limited number

of people in attendance, social distancing, hand sanitizing, and mask-

wearing (9). Temperature screening was carried out at entry ports.

In addition, laboratory testing facilities, clinical diagnosis, quarantine

facilities, and reconstruction of some selected hospitals as COVID-

19 isolation centers were established in each province of the country.

The peak of the second wave was observed on January 8th, 2021

with 21,980 COVID-19 cases diagnosed. Contact tracking and data

collection were carried out for people who tested positive to the

virus; the data collected included symptoms, travel details, exposure

to anyone infected, exposure to healthcare facilities, and contact

details of the person (4). Toward the end of 2020, a new variant of

the COVID-19 virus was identified. The spread of the new variant

was more rapid than the original variant and this increased the

pressure on the health system. In response to the new variant, South

Africa closed the borders for general entry and departure from

January 11th, 2021 until Febuary 15th, 2021 (9). On September, 2021,

South Africa has incurred about 20 million doses of vaccine from

different manufacturers, with the aim of vaccinating at least 67% of

its population by the end of the year 2021 (9, 10).

Modeling the number of COVID-19 cases, and in particular,

producing a reliable short and long term predictions of the number

of COVID-19 cases are critical tools for policy makers to design

interventions in order to control the spread of the disease. Recently,

Reddy et al. (6) applied a robust model-based approach, that does

not require making assumptions about the transmission process to

model the number of COVID-19 cases and they were able to provide

accurate short term prediction for 5–10 days using the COVID-19

data from South Africa. These non-linear epidemiological models

have previously been applied to model other disease outbreaks such

as Ebola (11), Dengue (12), Zika virus (13) and, more recently, the

COVID-19 pandemic (14–16). Specifically, Roosa et al. (14) fitted

the generalized logistic model, Richards’s model and a sub-epidemic

model to the cumulative COVID-19 cases in the Hubei province of

FIGURE 1

COVID-19 cases and tests over time. (A) Is the relationship between

the daily number of COVID-19 tests and the daily number of

COVID-19 positive cases. (B) Is the total number of COVID-19 cases

and total number of COVID-19 tests carried out between the period

March 7th, 2020 and September 2nd, 2020.

China and produced a short-term forecast of 5, 10, and 15 days ahead.

In a recent analysis by Shen (15), a similar approach was used to

estimate the key epidemic parameters for all 11 provinces in China as

well as 9 selected countries. All the models discussed in the literature

above made use of the daily or cumulative number of cases to fit the

models, estimate the parameters of interest and to provide a short-

term prediction of the number of COVID-19 cases. In the context of

COVID-19, using the number of cases alone might not be sufficient

because, as seen in Figure 1A, for the South Africa case study (and in

many other countries), there is a strong positive correlation between

the number of cases and the number of tests performed (Spearmans

correlation = 0.96, p < 0.0005). The cumulative number of tests

and cases shown in Figure 1B reveals a similar trend for cases and

tests over time. Therefore, the positive testing rate may provide

more reliable insights on the epidemic evolution and effects of

interventions (non-pharmaceutical interventions and vaccinations)

as the positive testing rate effectively adjusts the number of cases

diagnosed for the number of tests performed (6).

In addition to the short-term predictive models discussed above,

a large amount of recent research related to COVID-19 modeling

has been published using different forms of compartmental models.

In particular, studies of Iyiola et al. (17) and Owusu-Mensah et al.

(18) proposed a generalized compartmental model with various

disease-specific parameters. Themodels presented in Iyiola et al. (17),

Owusu-Mensah et al. (18), and Iyiola et al. (19) were developed to

provide a better insight into controlling the spread of the disease.

The possibility of a third and fourth wave in the spike of COVID-19

was predicted using these models. Social distancing, the use of

masks, and aggressive testing were highly recommended based on
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FIGURE 2

COVID-19 and positive testing rate. (A) Is the positive testing rate. (B)

Is the daily number of cases and daily number of COVID-19 tests

between March 7th, 2020 and September 2nd, 2020.

the results reported in Iyiola et al. (17) and Owusu-Mensah et al.

(18), and tracing was seen to be important in reducing the number of

infected individuals in public. Furthermore, deep learning algorithms

a data analysis approach have been extensively used in literature

as a non-surgical technique in reducing the burden of COVID-19.

In addition, it provides the best possible means for diagnosis

and prognosis (20–22). Muhammad et al. (23) proposed various

supervised learning algorithms to classify individuals with positive

and negative COVID-19 cases, Muhammad et al. (24) developed data

mining models for predicting COVID-19 infected patients recovery

using epidemiological dataset of COVID-19 patients in South Korea.

Their model predicted an interval with minimum and maximum

number of days for COVID-19 patients to recover from the virus

and age group of patients who are likely to recover. In both research,

models developed with decision tree mining algorithm out-performs

other algorithms with highest accuracy and prediction power. We

follow the same goal of understanding the spread of COVID-19 using

a different modeling approach, as we do not aim to predict future

cases but rather to provide an exploratory tool to model the positive

testing rate.

Positive testing rate, which refers to the number of positive

COVID-19 tests divided by the number of COVID-19 tests in

a prescribed period, has been seen as an important statistic in

understanding the transmission of COVID-19 (25). Due to the

correlation between the number of COVID-19 cases and the number

of COVID-19 tests conducted, no country would be able to know the

actual total number of people infected with COVID-19 but only the

infection status of those who have been tested. Therefore, in countries

with a high positivity rate, the number of confirmed COVID-19

cases is more likely to represent only a small proportion of the true

number of cases. However, if the probability of positive tests increases

then it suggests the virus is spreading faster than the growth seen

in confirmed cases. The positivity rate is of great importance, and

it is used to (1) guide policy makers on COVID-19 interventions

and decision-making, (2) for surveillance purposes and (3) decide

whether to relax or impose restrictions aimed at slowing down the

spread of COVID-19 transmission. This was evidenced on May

12th, 2020 when the WHO advised governments that before relaxing

intervention measures, the positive testing rate should remain at

5% or lower for at least 14 days (26). Recently, the center for

disease control and prevention issued guidelines on the calculation

of the positive testing rate as an important measure for public health

surveillance (27). The relationship between demographic factors and

the positive testing rate in specimens from a particular hospital in

Wuhan, China was reported by Liu et al. (28). Other authors, through

examination of the daily COVID-19 incidence and testing, showed

that changes in testing rates could mask the epidemic’s growth rate,

which has public health implications (29). In addition, authors are

now attempting to estimate the state-level COVID-19 prevalence

in the United States using COVID-19 positive testing rate (30). To

our knowledge, there have been limited efforts to model directly the

COVID-19 positive testing rate and the rate of change over time.

To provide a more accurate perspective on the disease burden,

we propose a modeling approach that focuses on COVID-19 positive

testing rate, i.e., the probability of positive cases per tests conducted

and the rate of change in this rate over time. In this paper we

proposed to model the daily number of COVID-19 cases among

the number of COVID-19 tests carried out using a semi-parametric

model in which the rate of change of the positive testing rate is

estimated using a smooth function of time. In particular, we apply

scatter plot smoothing techniques for binomial data using generalized

additive models [GAM, (31)] in order to obtain estimates for both

the positive testing rate and its rate of change over time. The

advantage of the proposed model is that it is applied directly to

the observed data and therefore can accommodate changes in the

positive rate caused by implementation of different interventions

activities such as lockdown, testing strategy, and vaccination policy.

Hence, the proposed model can be used for both the evaluation

of a specific intervention (or combination of interventions) and

understanding the trend over time in the country. For the latter,

we proposed the rate of change of the positive testing rate, i.e.,

the first derivative of the positive testing rate with respect to time.

We illustrate the proposed method using the COVID-19 dataset

from South Africa. The models and methods discussed in this paper

were also applied to four additional countries, Poland, UK, Ethiopia

and India, for which different testing strategies and vaccination

programmes were implemented (and different vaccination coverage

were achieved). The results for these countries are presented in

the Supplementary material for the paper. In addition, an online R

dashboard (32) was developed to estimate and visualize the positive

testing rate and the rate of change using a publicly available dataset

(33) using the methodology discussed in this paper.

The remainder of this paper is organized as follows. We begin

by describing the testing policy in South Africa from which the

data used for the analysis presented in this paper was obtained. The

modeling approach, the model formulation for the positive testing

rate and the methodology to construct simultaneous confidence
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bands were then explained followed by the results obtained for South

Africa.

2. Materials and methods

2.1. Data

2.1.1. Daily number of tests and confirmed cases
2.1.1.1. First-wave in South Africa: March, 7th

2020–September, 2nd 2020

The daily number of reported COVID-19 cases and tests for the

period of March 7th, 2020 to September 2nd, 2020 are presented

in Figure 2B. The growth of COVID-19 infections in South Africa

appears to be tri-phasic especially during the early phase when the

cumulative cases were low with rapid growth until March 27th, 2020.

A total of 243 new daily cases were observed on March 27, followed

by a sharp decline in the rate of new cases. From March 28th, 2020

to April 6th, 2020 the daily increase in cases was consistently below

100. From May 2020 onwards, a consistent increase of more than

1,000 cases per day was observed. The first peak period was between

July 9th and 22nd 2020 where more than 10,000 cases were reported

on a daily basis. As of July 2020, a total of 3,726,721 tests had

been conducted, corresponding to a testing rate of 22.816 per 1,000

population. Throughout this period, the proportion of infections

increased until mid July when it started to decrease (Figure 2A).

In addition to the analysis applied to the data above, which is

zoomed in on the first wave of the outbreak, we present also analysis

for the most updated data for the period between March 7th, 2020

and May 31st, 2021 incorporating the second wave in Figure 3. An

indication for a possible third wave is seen in Figure 3A as an increase

in the positive testing rate was observed fromMay 2021. A sharp spike

in the number of COVID-19 tests was observed in 2020 (Figure 3B).

2.1.2. Testing policy in South Africa within the first
wave period

A total of 3,245,087 tests for SARS-CoV-2 were conducted

betweenMarch 1st and August 29th 2020. These tests were performed

on individuals who satisfied the case definition for persons under

investigation (PUI). The data we used for the analysis presented

in this paper were obtained from the COVID19 R package by

Guidotti and Ardia (33) which is publicly and continuously updated.

For the analysis presented in this paper data until May, 31, 2020

were included. The PUI definition, which was amended consistently

included at least one of the following criteria: symptomatic

individuals seeking testing, hospitalized individuals for whom testing

was done, individuals in high-risk occupations (e.g., health care

workers), individuals in outbreak settings, and individuals identified

through community screening and testing programmes which were

implemented between April 2020 and the middle of May 2020. The

number of tests performed on a weekly basis increased from March

2020 until the third week of May 2020, and proceeded by a decrease

over the subsequent 2 weeks due to a limited supply of testing kits.

The average time elapsed from specimen collection to testing was

under 2 days in both the private and public sectors from August 22th

to August 29th, 2020.

2.2. Methods

2.2.1. Modeling COVID-19 infection rate in South
Africa using generalized linear mixed e�ects model
for binary data
2.2.1.1. Model Formulation for the Positive Testing Rate

The number of positive cases among the number of tests is

assumed to be binomially distributed. Let πt be the daily positive

testing rate per test, Yt be the daily number of COVID-19 cases and

nt be the daily number of COVID-19 tests. Our aim is to model the

probability πt and to produce a model-based estimate for its first

derivative, i.e., the change in the positive testing rate over time. Semi-

parametric regression model for binomial data was used to provide

an estimate of the positive testing rate as a function of time. The

relationship can be expressed as

Yt ∼ Bin(nt ,πt), t = 1, . . . ,T,

logit(πt) = f (t).
(1)

Here, f (t) is a smooth function of the time t. Smoothing splines are

commonly used for this purpose (34). A general spline model of

degree d with K knots can be written as follows:

logit(πt) = β0 + β1xi + · · · + βdx
d
i

+

K∑

k=1

uksk(xi), i = 1, . . . , n and k = 1, . . .K, (2)

Where sk(x) is a set of spline basis functions and uk are a set of

random effects that are discussed below.

To avoid overfitting, the spline model is typically estimated

by considering penalized maximum likelihood estimation, with a

penalty term of the form λ
∑

k u
2
k
. Ruppert et al. (34) showed that

the penalized regression model formulated in Equation (2) can be

expressed as a generalized linear mixed effects model (GLMM) given

by:

logit(π) = Xβ + Zu, (3)

With π = [π1,π2, . . . ,πT]
T , β = [β0,β1, . . . ,βd]

T , and

u = [u1, u2, . . . , uK]
T. Note that β and u are vectors of the fixed and

random effects, respectively, with uk ∼ N(0, σ 2
u ) where σ 2

u acts as the

smoothing parameter. This representation has the advantage that the

degree of smoothing can be estimated from the data using standard

mixed-model software (e.g., Ruppert et al. (34), chapter 4). The design

matrices X and Z are defined as follows:

X =




1 x1 . . . xd1
1 x2 . . . xd2
...

...
. . .

...

1 xT . . . xdT



,

and

Z =




s1(x1) s2(x1) . . . sK(x1)

s1(x2) s2(x2) . . . sK(x2)
...

...
. . .

...

s1(xT) s2(xT) . . . sK(xT)



.

The estimation of the model formulated in Equation (3) is performed

by means of penalized quasi-likelihood (PQL). Initial estimates for β

and u are used to calculate the pseudo-data y∗:
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FIGURE 3

COVID-19 and positive testing rate. (A) Is the positive testing rate. (B) Is the daily number of cases and daily number of COVID-19 tests between March

1st, 2020 and May 31st, 2021.

y∗ = Xβ + Zu+W
−1(y− π) ≡ Xβ + Zu+ ε∗, (4)

Where W is a diagonal matrix with variances of yt on the

diagonal. The pseudo-error ε∗ has a variance-covariance matrix

R = W
−1φ, where φ is the dispersion parameter, equal to one for

the standard binomial model family. Equation (4) resembles a LMM

formulation for y∗. Thus, a inear mixed model (LMM) is fitted to

the pseudo-data, yielding updated estimates of β , u, σ 2
u , and φ.

The procedure of calculating pseudo-data and re-fitting the LMM is

repeated until convergence.

2.2.2. Estimating the change in the positive testing
rate

To understand the change in the positive testing rate over time,

we propose to estimate the rate of change in the positive testing rate

over time using the derivative of πt given by

π ′
t =

π(t) − π(t−1)

1(t)
. (5)

Note that is assumed that if the number of tests is constant over time

and applied to a random sample of the population, π ′
t can give an

indication to the change in the virus transmission in the population

(since in this case, it is gives the change in transmission probability).

However, it is unlikely to assume that the number of tests will be

constant nor that the tests will be applied to random sample from

the population. However, even in this case, the derivative provides a

good indication about the general trend of the virus’ transmission for

the tested population and can be used as a tool to assess the success of

an implemented intervention strategy.

2.2.3. Construction of pointwise confidence band
According to Ruppert et al. (34), an approximate 100(1-α)%

pointwise confidence band for an estimated penalized spline in the

GLMM framework, f̂ (x), is given by:

f̂ (x)± z1−α/2 × ŝt.dev{̂f (x)− f (x)}, (6)

where

ŝt.dev
{
f̂ (x)− f (x)

}
=

√
CxQ̂CT

x , (7)

with Cx =
(
1 x . . . xd s1(x) . . . sK(x)

)
and

Q̂ = ĉov

[
β̂

û− u

]
=
(
CT R̂−1C + 1/σ̂ 2

uD
)−1

, (8)
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FIGURE 4

Proportion of infection. Positive testing in South Africa. Observed positive testing rate over time, estimated positive testing rate (red line) and a 7 day

moving average (blue line) between March 7th, 2020 and September 2nd, 2020.

where,

C =




1 x1 . . . xd1
1 x2 . . . xd2
...

...
. . .

...

1 xT . . . xdT







s1(x1) s2(x1) . . . sK(x1)

s1(x2) s2(x2) . . . sK(x2)
...

...
. . .

...

s1(xT) s2(xT) . . . sK(xT)




and D ≡ diag([0T
d+1, 1

T
K])

Pointwise confidence bands, however, need to be corrected for

multiplicity. In addition, they ignore serial correlation. Therefore, we

make use of simultaneous confidence bands implemented in Claesen

et al. (35), which allow to make joint statements on multiple locations

of the fitted curve. A 100(1-α)% simultaneous confidence band for f̂x
is defined as:

f̂x ± c1−α × ŝt.dev{̂f (x)− f (x)} (9)

Where the critical value, c1−α , is the (1- α) quantile of the random

variable

supx∈χ

∣∣∣∣∣
f̂ (x)− f (x)}

ŝt.dev{̂f (x)− f (x)}

∣∣∣∣∣ ≈ max
1≤l≤M

∣∣∣∣∣∣∣∣∣∣

(
Cx

[
β̂ − β

û− u

])

l

ŝt.dev{̂f (xl)− f (xl)}

∣∣∣∣∣∣∣∣∣∣

,

Which can be found by simulating from an approximate multivariate

normal distribution (34):

[
β̂ − β

û− u

]
∼ N

{
0, Q̂

}
.

Note that the GLMM formulated in Equation (3) is used to

explore the trend in the positive rate evolution over time but not

for prediction of the future positive rate outside the range the

observed data.

3. Results

A generalized additive model was fitted to the data with the time

component as the smooth term using the gam() function of the

mgcv library (36) in R (37). The model was first applied to the data of

the first wave of the outbreak (March, 7th 2020-September, 2nd 2020).

Figure 4, shows that the estimated positive testing rate reached its

peak on July, 21st 2020, at the same time that the number of tests was

at its highest level. From that time onward, both number of tests and

the positive testing rate declined. This could be a result of a reduction

of the virus’ transmission in the population or a result of a change in

the population to which the tests were applied.

From July 19th 2020 onward, the change in positive testing rate

(the derivative plot presented in lower panel of Figure 5) is negative

(indicating a decline in the positive testing rate) but from August,

21st, 2020, the derivative begins to increase (although it is still

negative). This suggests a change in the transmission trend and gives

an indication for a possible increase in the number of positive cases

in the near future. Indeed, such a increase was observed on October

18th, 2020 (see the analysis below).

Next, the model was applied to the most updated dataset that

was available when the paper was written (March 7th, 2020–May

31st, 2021) which contains information on the first two waves

of the outbreak observed in South Africa and the beginning of

a (possible) third wave. Figures 6, 7 show the estimation for the

positive testing for the updated data. As shown above, the positive

testing was first peaked on July, 21st 2020 [π̂ = 0.252, C.I. =

(0.251,0.263)], later decreased, and a second peak was observed on

January 1st, 2021 [π̂ = 0.288, C.I. = (0.287, 0.288)]. Figure 7 shows

the estimated positive rate (Figure 7A) and its corresponding first

derivative (Figure 7C). We notice that the first turning point in the

first derivative curve was observed on August 21st, 2020. On this day,

the derivative began to increase (although still negative) while the

Frontiers in PublicHealth 06 frontiersin.org

https://doi.org/10.3389/fpubh.2023.979230
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Owokotomo et al. 10.3389/fpubh.2023.979230

FIGURE 5

Result incorporating the first wave. (A) Is the estimated positive testing rate with 95% simultaneous confidence band. (B) Is the linear predictor of the

smoother with 95% simultaneous confidence band. (C) Is the first order derivative of the estimated probability with 95% simultaneous confidence band

between March 7th, 2020 and September 2nd, 2020. The blue vertical line represents the peak, the pink vertical line represents the date in which the rate

of change started to increase while the red horizontal line represents the rate of change at 0.

positive testing rate continued to decrease illustrating that the model

based first derivative was able to give a clear indication 2months prior

of the increase of the positive rate (that was observed on October

18th, 2020). Similar pattern was observed in the third wave. The

second turning point of the first derivative was observed on January

23rd, 2021, which gives an indication that South Africa might face

a third outbreak which indeed was observed from March 23th, 2021

onward.

4. Discussion

In view of the existing healthcare challenges in South Africa and

other parts of the world, reliable and accurate knowledge about the

positive testing rate of COVID-19 is important to ensure optimal

resource allocation and better understanding of the transmission

process. It is important to note that the method we propose in

this paper was developed as an exploratory tool that different users

can use to produce similar output for their countries using publicly

available datatset with limited information. This ensures that the

current situation of the COVID-19 outbreak in a country/province

can be reported almost in real-time without the need to wait

for official permission from the government. This is useful in

countries for which the government is reluctant to release the current

information about the COVID-19 outbreak. As an exploratory tool,

the model is estimated within the range of the data and we do not

aim to predict the positive rate outside the range of the available data.

Therefore, we do not split the data into training and testing datasets

as done when prediction is of primary interest. When we developed

ourmodeling approach, we focused on threemain concepts: (1) using

the positive testing to get an insight into the epidemic evolution (2)

usage of publicly available data with limited information, and (3)

implementation of the proposed model as a dashboard for which the

code (in R) is publicly available. These three concepts ensure that

different readers/users will be able to produce a similar output for

their countries.
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FIGURE 6

Proportion of infection Positive testing in South Africa. Observed positive testing rate over time, estimated positive testing rate (red line) and a 7 day

moving average (blue line) between March 7th, 2020 and May 31st, 2021.

In the current study we modeled the COVID-19 cases out of

the number of tests as a function of time using a semi-parametric

approach. This approach allows us to take into account the number

of tests performed, which when ignored, might lead to erroneous

conclusions. The model allows us to overcome the problem of

modeling the number of cases alone and to take into account

the strong positive relationship between the number of cases

and the number of tests. As this can lead to misleading results

and therefore affect government policy regarding measures and

precautions needed.

The positive testing rate decreased from early March 2020 when

the disease was first observed until early May 2020 after which it kept

on increasing. In July 2020, the infection reached its peak and then

consistently decreased, indicating that restrictions and lockdowns

meant to slow down. FrommidAugust, 2020, the rate of change of the

positive testing rate indicates that the decline in the positive testing

rate is slowing down suggesting that a less effective intervention is

currently implemented and a possible second wave.

Though, in this paper, we focus on South Africa, the method

can be used for other countries with any vaccination and testing

programme. Examples for four different countries, Ethiopia and

India with a low rate of vaccination coverage (1.58 and 12.12%

respectively, May 31st, 2021), Poland with a moderate vaccination

coverage (36.22%, May 31st, 2021) and United Kingdom with

high rate of vaccination coverage [58.15%, May 31st, 2021 (38)]

are presented in Supplementary material. The method proposed

in this paper was implemented in an R dashboard for all the

countries with publicly available data in the COVID-19 R package

data. The dashboard presents the outbreak data and uses the

proposed method to estimate and visualize the positive testing

probability for any selected country. The R code for the method

and data analysis can be accessed in the code section of the

dashboard which can be downloaded for free using the following link:

COVID19dashboardMC.

Our analysis of the updated dataset has revealed the possibility

of a third wave in South Africa. An indication of the possibility

for the third wave was already detected by the proposed model on

January 23rd, 2021, 60 days before the positive testing rate started

to increases on March 22nd, 2021 (see Figure 7). This could help the

government in the preparation and implementation of interventions

for COVID-19.

The model applied is based entirely on the observed data at

hand. The ability to use the model based derivative to predict an

outbreak few weeks before it occurs is a powerful approach for

understanding and learning the outbreak of various countries using

only publicly available datasets. The main advantage of this approach

is that it allows to model COVID-19 outbreak without the need

of getting consent from the government to use official information

such as the disease spread, sampling and tracing information. In

many low and income countries, this type of information is typically

release in a long time delay and introduced bias in modeling. While

other models, such as the compartmental models, may be appealing

in their ability to examine various scenarios and estimate impact

of possible interventions, these models are heavily dependent on

assumptions. The compartmental modeling approach was applied

to forecast COVID-19 cases and deaths in South Africa and was

used to guide the government on public health interventions. There

was however, substantial uncertainty in these predictions, and the

assumptions governing these models were criticised by Muller (39)

and Consortium (40). In conclusion, the results obtained from our

model need to be interpreted under the background information (if

available) of changing COVID-19 testing strategies in the country.

When the positive testing rate is tracked in real time, it can

provide useful guidance to policy makers as it can provide a
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FIGURE 7

Result incorporating the second wave. (A) Is the estimated positive testing rate with 95% simultaneous confidence band. (B) Is the linear predictor of the

smoother with 95% simultaneous confidence band. (C) Is the first order derivative of the estimated probability with 95% simultaneous confidence band

between March 7th, 2020 and May 31st, 2021. The blue and green vertical lines represents the peak periods while the pink and gold vertical lines are the

turning points. In (C), the gold line represents the date on which the rate of change started to increase (January 23rd, 2021) while the red horizontal line

represent the rate of change at 0.

useful insight on the current and future trend of the COVID-19

epidemic.

The method we propose was developed as an exploratory tool

that different users can use to produce similar output for their

countries using publicly available datatset with limited information.

This ensures that the current situation of the COVID-19 outbreak

in a country/province can be reported almost in real-time without

the need the wait for official permission from the government. This

is useful in countries for which the government is reluctant to

release the current information about the COVID-19 outbreak. As

an exploratory tool, the model is estimated within the range of the

data and we do not aim to predict the positive rate outside the range

of the available data. Therefore, we do not split the data into training

and testing datasets as done when prediction is of primary interest.

When we developed our modeling approach, we focused on three

main concepts: (1) using the positive testing to get an insight into the

epidemic evolution (2) usage of publicly available data with limited

information, and (3) implementation of the proposed model as a

dashboard for which the code (in R) is publicly available. These three

concepts ensure that different readers/users will be able to produce a

similar output for their countries. The proposedmodel was developed

as an exploratory tool that allows the users to get an insight into

the disease evolution in their countries. Specifically, one strength of

this modeling approach is the lack of dependence on assumptions

regarding the transmission process.
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