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Robust optimization for casualty
scheduling considering injury
deterioration and point-edge
mixed failures in early stage of
post-earthquake relief

Yufeng Zhou*, Ying Gong and Xiaoqin Hu

Research Center for Economy of Upper Reaches of the Yangtze River, Chongqing Technology and

Business University, Chongqing, China

Objective: Scientifically organizing emergency rescue activities to reduce

mortality in the early stage of earthquakes.

Methods: A robust casualty scheduling problem to reduce the total expected

death probability of the casualties is studied by considering scenarios of disrupted

medical points and routes. The problem is described as a 0-1 mixed integer

nonlinear programming model. An improved particle swarm optimization (PSO)

algorithm is introduced to solve the model. A case study of the Lushan earthquake

in China is conducted to verify the feasibility and e�ectiveness of the model and

algorithm.

Results: The results show that the proposed PSO algorithm is superior to the

compared genetic algorithm, immune optimization algorithm, and di�erential

evolution algorithm. The optimization results are still robust and reliable even

if some medical points fail and routes are disrupted in a�ected areas when

considering point-edge mixed failure scenarios.

Conclusion: Decision makers can balance casualty treatment and system

reliability based on the degree of risk preference considering the uncertainty of

casualties, to achieve the optimal casualty scheduling e�ect.

KEYWORDS

emergency logistics, the injury worsened, facility disruption, robust optimization, particle

swarm optimization

1. Introduction

Earthquakes often occur randomly without warning and bring devasting damages to

affected areas. Earthquakes not only cause serious economic losses but also lead to many

people’s injuries or even death (1, 2). Statistically, the 1976 Tangshan earthquake caused

242,769 deaths and 435,556 injuries. The 2008 Wenchuan earthquake killed 69,227 people,

injured 374,643 people, and left 17,923 people missing. After a large-scale destructive

earthquake, the number of casualties increases rapidly, the injury states are complicated,

and the affected areas are wide. The scientific and effective treatment of the casualties is the

primary task of the post-disaster relief work, and its efficiency is related to the success or

failure of the post-disaster rescue. Especially the early stage of post-earthquake relief is the

critical period for emergency rescue and disaster relief (3). How to organize rescue activities

plays a crucial role during this golden rescue period, such as transporting and treating the

casualties (4). Consequently, utilizing existing medical resources to build an efficient and

reliable emergency logistics network to transport the casualties to medical points efficiently

for treatment is an urgent problem to be resolved in the early post-earthquake period.
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The problem of casualty transportation scheduling was usually

described as an emergency facility location-allocation problem

or a delivery vehicle routing problem (5–8). On this basis,

some studies considered the type of casualties (9, 10) or the

deterioration of the wounded (11) to further optimize the casualty

scheduling. However, the above literature generally contained

an implicit assumption that the facility was completely reliable

without disruption. This assumption did not correspond to reality.

Especially in the post-earthquake emergency logistics system, the

facilities and routings are easy to fail due to the impact of

earthquake disasters and their secondary disasters. The disruption

factors were considered in some literature (12–14).

To sum up, researchers have carried out in-depth research

on the optimization of emergency scheduling for casualty

transportation after earthquake disasters, but there are still some

problems that are required further study. Firstly, most of the

existing research studied the problem of injury deterioration and

casualty scheduling alone without considering the two problems

simultaneously. Secondly, most of the current studies assumed

that the road and facilities in the earthquake disaster logistics

network were completely reliable without failures. Although some

literature considered road disruption or facility failures, there are

fewworks considering themixed failure state of points (facility) and

edges (route) in the emergency logistics network simultaneously.

Thirdly, existing studies usually assumed that information such

as the number of casualties was determined or described as fuzzy

parameters. In reality, such a number cannot be estimated exactly.

To fill up this gap, this paper considers the point-edge mixed failure

scenario, combines the evolution of injury situation, adopts the

robust optimization method to deal with the uncertain amounts of

casualties, and further studies the optimization problem of casualty

transport scheduling in the early stage of post-earthquake relief.

The main differences between this paper and previous studies

are summarized in Table 1. More specifically, the contributions

of this paper are as follows. (1) We propose a new casualty

scheduling robust optimization problem for post-earthquake relief.

As mentioned in the previous subsection, the proposed problem

considers some new characteristics in the early stage of post-

earthquake relief, such as point-edge mixed failure scenarios, injury

deterioration, and multiple transportation modes. (2) A mixed

integer non-linear programming (MINP) model is established

to formulate the proposed problem. (3) According to the

characteristics of the model, an improved integer-encoded particle

swarm optimization (PSO) algorithm is designed in this paper.

The improved PSO is compared with the genetic algorithm (GA),

immune algorithm (IA), and differential evolution algorithm (DE).

2. Literature review

This section will review relevant literature in the following

three categories.

2.1. Traditional casualty scheduling
problems

The problem of casualty transportation scheduling is usually

described as an emergency facility location-allocation problem

or a delivery vehicle routing problem (5–8). Mansoori et al.

(15) proposed a multi-objective humanitarian supply chain design

problem that minimizes the total number of injured not transferred

to hospitals. Fiedrich et al. (26) proposed a dynamic optimization

model where the total number of fatalities during the initial

search-and-rescue period after strong earthquakes is minimized.

Andersson et al. (27) established a support tool for dynamic

ambulance relocation and automatic ambulance dispatching.

Xie et al. (28) formulated a lane-based evacuation network

optimization problem that integrates lane reversal and crossing

elimination strategies. A Lagrangian relaxation algorithm based

on the principles of Tabu search is designed to solve the model.

Mclay et al. (29) proposed an improved Markov decision model

to optimize ambulance dispatch dynamically to maximize the

number of critically injured patients. Knyazkov et al. (30) studied

the present situation of emergency transport for patients with

acute coronary heart disease in St. Petersburg. The optimization

of ambulance routes was proposed according to the road network

in the city, to improve the number of ambulances per capita

and the speed of ambulance response in this work. Sung et al.

(31) transformed the problem of treating the injured after a

disaster into the dispatching problem of emergency ambulances

with the goal of maximizing the expected survival rate and

designed a column generation algorithm. Repoussis et al. (32)

proposed a mixed integer programming formulation for the

combined ambulance dispatching, patient-to-hospital assignment,

and treatment ordering problem. The objectives are to minimize

the overall response time and the total flow time required to treat

all patients. Shavarani et al. (33) described how to properly allocate

existing emergency vehicles to hospitals and effectively plan vehicle

routes after a disaster in a densely populated area, to maximize

patient survival. Sun et al. (16) proposed an emergency model

of the location-transportation-allocation problem. The objective is

to minimize the total cost and the sum of injury severity scores.

The integrated research on the problem of casualty scheduling

and emergency facility location is studied in some literature

(34, 35). Sheu et al. (36) proposed a method for designing a

seamless centralized emergency supply network. A three-stage

multi-objective (travel distance minimization, operational cost

minimization, and psychological cost minimization) mixed-integer

linear programming model is built to describe the problem. Hu

et al. (37) proposed a mixed integer programming model that

considers the uncertainty of the number of injured people and

integrates the decision of locating shelters and transferring injured

people. Chou et al. (17) proposed a patient transportation and

assignment model considering the routing of ambulances and

operational conditions of hospitals.

2.2. Casualty scheduling problems
considering wounded types

A large number of wounded personnel emerged in the early

stage after an earthquake, thus it is important to dispatch the

wounded personnel considering the wounded type (9, 10). Caunhye

et al. (18) constructed a three-stage stochastic programming

model to locate alternative care facilities and allocate casualties.
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TABLE 1 Summary of relevant research.

Reference Road
disruption

Facility
disruption

Parameter
uncertainty

Casualty triage Injury
deterioration

Multi-transportation
modes

Solution
method

Modeling
approach

Bronfman et al. (2) No No No Yes Yes No CPLEX MILP

Mansoori et al. (15) No No Robust No No No CPLEX MINP

Sun et al. (16) No No Robust Yes Yes Yes CPLEX MILP

Chou et al. (17) No No No No No No Heuristic MINP

Caunhye et al. (18) No No Stochastic Yes No No Heuristic MINP

Ghasemi et al. (19) No No Stochastic Yes No No Heuristic MINP

Caglayan et al. (20) No No No Yes No No CPLEX MINP

Vahdani et al. (21) No No Robust Yes No Yes GAMS MILP

Zeng et al. (22) No No No Yes No No Heuristic MILP

Cheng et al. (23) Yes Yes Stochastic No No No Heuristic MINP

Sun et al. (24) No Yes Robust Yes No No CPLEX MILP

Desi-Nezhad et al. (25) Yes No Stochastic No No Yes GAMS and CPLEX MILP

Our study Yes Yes Robust Yes Yes Yes Heuristic MINP

MILP, Mixed integer linear programming.
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The model integrates casualty triage and the movement of self-

evacuees. Ghasemi et al. (19) proposed a stochastic multi-objective

mixed-integer mathematical programming for logistic distribution

and evacuation planning during an earthquake. Na et al. (38)

classified the wounded according to the results of the field diagnosis

of the wounded, combined with the medical resources required by

different wounded, assigned rescue vehicles to the wounded, and

established a mixed integer linear programming model with cost

minimization as the objective function. Talarico et al. (39) classified

the injured into two categories: those that can be treated at local

sites and those that must be treated in hospitals. They established

an optimization model of ambulance routing decisions, aiming at

minimizing the weighted waiting time of the injured, and solved the

model with a large-scale neighborhood search algorithm. Rezapour

et al. (40) divided the injured in each disaster area into yellow and

red grades and studied how to reasonably allocate search and rescue

personnel and medical personnel to the disaster area. More studies

are available in literature (41, 42). The condition of the wounded

deteriorates over time in reality. Wilson et al. (43) proposed a

Markov chain model for the injury state transfer of casualties. Jin

et al. (11) proposed an optimization model for patient delivery and

medical resource allocation with capacity restrictions considering

the severity of injuries. Liu et al. (44) set up a double objective

optimization model for temporary medical service point location

and the optimal medical service allocation decisions considering

the deterioration of injury. The goals are to maximize the expected

number of survival and minimize the total operation cost.

2.3. Casualty scheduling problems
considering disruptions

The facilities (points) and the roads (edges) of an emergency

logistics network might be disrupted after a large-scale earthquake.

The logistics network design problem considering facility failures

is studied in some literature. Bayram et al. (45) studied the shelter

location and evacuation route assignment problem considering the

disruption/degradation of the evacuation road network structure.

Cheng et al. (23) adopted a two-stage robust optimization

framework to study the robust fixed cost location problem in the

case of uncertain demand and facility disruption, and developed

a column constraint generation algorithm to accurately solve the

model. Zhou et al. (46) constructed a location-allocation model for

emergency facilities suitable for the initial stage of post-earthquake

rescue, considering facility disruption and multiple types of fuzzy

demand. Mohammadi et al. (47) studied a multi-objective reliable

optimization model to organize a humanitarian relief chain. They

made a broad range of decisions, including reliable facility location-

allocation, fair distribution of relief items, assignment of victims,

and routing of trucks. Sun et al. (24) proposed a scenario-based

robust dual-objective optimization model to study the location of

medical facilities, casualty transport, and relief material distribution

under the temporary medical point failure scenarios. There are

also some studies on the design of emergency logistics networks

considering edge (road network) failures. Sabouhi et al. (48)

proposed a comprehensive stochastic programming model for the

distribution of relief materials in disaster areas, taking the demand

FIGURE 1

Random evolution process of the injury state.

and disrupted roads as uncertain parameters. Gong et al. (49)

studied the decision optimization of patient scheduling in the early

stage of post-earthquake rescue, considering the factors such as

the deterioration of the injured and road disruption. Desi-Nezhad

et al. (25) developed a two-stage stochastic programming model to

transport injured people with consideration of multiple disruptions

at transportation links and facilities.

3. Description of injury deterioration

The injury deterioration can be described by a Markov chain

proposed by Wilson et al. (43). The injury state of the wounded

evolves toward the direction of gradual aggravation or continues to

maintain the original state, with a certain probability in the process

of waiting for rescue. And death is the end of the injury evolution in

process. If the injury at the current stage is severe, the injury may be

transferred to the death state or remain severe if effective treatment

is not available at the next stage. If the injury is minor at the current

stage, the injury may be transferred to severe or remain minor if no

rescue is available at the next stage. It can be seen from the evolution

of the injury state that the state transfer is stochastic, and the state

of the wounded at the next stage only depends on the current state

independent of the historical state, which is consistent with the no

aftereffect of the Markov process. Therefore, the evolution of the

injury has a Markov character.

In this paper, the evolution process of injury is divided into

three finite-stateMarkov processes: minor injury (Green, G), severe

injury (Red, R), and death (D). The process is repeated until the

casualty dies or is saved. Let the initial time t = 0. All rescue teams

are ready at the initial time. The injury level of the casualty is

randomly and unidirectionally changed once per minute without

any medical treatment, as shown in Figure 1.

It is assumed that there is a linear relationship between

the severity of injury and the time before the wounded is

treated. According to the random transfer probability between the

injury states, the possible death probability of the casualty j whose

initial injury state is R is expressed as formula (1).

PDr (T
r
ij, Lr) = prdT

r
ij (1)

In expression (1), Tr
ijindicates the time required to transport a

severe casualty from the affected point i to the medical point j. Lr
represents the injury state of the casualty in the initial time is r.

prd indicates the probability that a casualty’s injury state changes

from severe to death and let prd = 0.1 in this article referring to

literature (43).
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If prdT
r
ij > 1, the wounded may die in a waiting process. The

death probability of the severe casualty while waiting for rescue can

be expressed by Equation (2).

PDr (T
r
ij, Lr) = min

(

1, prdT
r
ij

)

(2)

The death probability of the minor casualty can be written

by the transition probability equation. That is, the probability of

changing from a minor injury to a severe injury is calculated first,

and then the probability of deteriorating from the severe injury to

death is calculated. The time T that the wounded fully evolves from

G to R should be first judged when calculating the death probability.

According to Figure 1, the transition probability from state G to

R is 0.05. Let 0.05∗T = 1, then, T = 20 when G evolves into R.

When the ambulance arrival time is <20 units, the wounded does

not evolve to death, and the death probability is 0. When the arrival

time of the ambulance is >20 units, the death probability in this

state is PDg (T
g
ij, Lg) = min

(

1, prd(T
g
ij − T)

)

. So, the probability

function of death in a minor state is a time-segment function, see

expression (3).

PDg (T
g
ij, Lg) =

{

0, 0 < T
g
ij ≤ T

min
(

1, prd(T
g
ij − T)

)

, T
g
ij > T

(3)

Therefore, the death probability functional of a casualty can be

expressed as (4).

PDw(T
w
ij , Lw) =















min
(

1, 0.1Tw
ij

)

, w = r;

0, w = g, 0 < Tw
ij ≤ 20;

min
(

1, 0.1(Tw
ij − 20)

)

, w = g,Tw
ij > 20;

(4)

4. Model

4.1. Problem description

The impact of aftershocks, mudslides, and other secondary

disasters, not only leads to medical points failure but also causes

road damage or interruption, in the early stage of post-earthquake

relief. There is a mixed failure of facility nodes and routes in the

emergency logistics network. The transport network diagram with

the point-edge mixed failures in the early stage of post-earthquake

relief is shown in Figure 2. As can be seen from Figure 2, based

on the failures of facility points H and G, the secondary disaster

also leads to the interruption of roads between affected point 4 and

medical point D, and between affected point 4 and medical point

E. At this time, ambulances cannot normally pass on the two roads,

so it is necessary to use helicopters to transport the wounded to

ensure timely treatment, reduce the death rate of the wounded, and

improve the efficiency of emergency rescue.

The purpose of emergency rescue is to treat as many casualties

as possible in the shortest time and reduce the death rate of the

wounded. Therefore, the goal of the model is to minimize the

expected death probability of casualties.

4.2. Assumptions

Model assumptions are as follows. First, the location of affected

points and medical points is known, and the resources available at

the medical point are limited. Second, each medical point can serve

multiple casualty groups at the same time, and each casualty group

can be assigned just one medical point. Third, the casualty groups

have been classified in advance according to the trauma index of

the injured. The severe injuries should be treated first according

to the medical resources and ambulance and helicopter transport

conditions. Four, each ambulance can only transport two casualties

at a time, and each helicopter can transport four casualties at

a time.

4.3. Notations

The parameters are as follows.

I: Set of affected points, i ∈ I;

J: Set of medical points, j ∈ J;

S: Set of Scenarios, s ∈ S;

R:The severe state of casualties (marked as red);

G:The minor injury state of casualties (marked as green);

W:Set of injury states, ;

PDw :The death probability of casualties;

H: Set of ambulances, h ∈ H;

N: Set of rescue helicopters, n ∈ N;

M: A large positive integer number;

dij: Transportation distance from affected point i to medical

point j;

εij: Degree of route damage between affected point i and

medical point j; if εij > 0.5, the route is disrupted, and

the ambulances cannot pass. Then, the helicopter transportation

should be considered. With the support of modern remote sensing

technology and communication technology, the damage degree of

route in the early stage after earthquake can be sensed in real time

without constant trial and error.

d′ij: Generalized transportation distance from affected point i to

medical point j. Themore damaged the route, the slower the vehicle

speed, and the longer the transport time. That is, the longer the d′ij.

d′ij can be obtained according to themethodmentioned in literature

(50), as d
′

ij =

{

dij
(

1+ εij
)

εij ≤ 0.5

M εij > 0.5
.

tij: The time taken to transport the wounded from affected point

i to medical point j;

T: The horizon of scheduling time,∀t ∈ T;

△ Tw
ij : The waiting time for ambulances or helicopters rescue

for a casualty with injury state w;

vh: The speed of ambulance h;

vn: The speed of helicopter n;

Qj: The number of available resources at medical point j;

Qh: The number of available ambulance h at medical points;

Qn: The number of available helicopter n at medical points;

qh: The number of casualties can be transported by ambulance

h at one time;
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FIGURE 2

Transport network diagram in the early stage of post-earthquake relief.

qn: The number of casualties can be transported by helicopter n

at one time;

Cw: Resources needed to treat a casualty with injury state w,

W = {w|w = r, g};

a: Number of times an ambulance or a helicopter arrived at an

affected point;

fiw: The number of casualties with injury state w in affected

point i;

βjs: βjs = 0represents the medical point j fail in scenario s;

otherwise βjs = 1.

The decision variables are as follows.

kijw: The number of casualties with injury state w transported

from affected point i to medical point j;

Xij: A binary variable. If medical point j allocated to affected

point i, Xij = 1;otherwise Xij = 0;

Xi′j: A binary variable. If medical point j reallocated to affected

point i′ after the initial allocated medical point j′ failed, Xi′j =

1;otherwise Xi′j = 0;

Yi′jh: A binary variable. If ambulance h travels from affected

point i′ to medical point j after the initial allocated medical point

j′ failed, Yi′jh = 1; otherwise Yi′jh = 0;

Yi′jh: A binary variable. If ambulance h travels from affected

point i′ to medical point j after the initial allocated medical point

j′ failed, Yijh = 1; otherwise Yijh = 0;

Zijn: A binary variable. If helicopter n travels from affected point

i to medical point j, Zijn = 1; otherwise Zijn = 0;

Zi′jn: A binary variable. If helicopter n travels from affected

point i′ to medical point j after the initial allocated medical point

j′ failed, Zi′jn=1; otherwise Zi′jn = 0.

4.4. Mathematical formulation

The mathematical model can be formulated as follows.

Z = min
∑

w∈W

fiwP
D
w , ∀i ∈ I, j ∈ J (5)

∑

w∈W

PDw =



















∑

w∈W
min

(

1, 0.1 △ Tw
ij

)

, w = r

0, w = g, 0 <△ Tw
ij ≤ 20; ∀i ∈ I, j ∈ J

∑

w∈W
min

(

1, 0.1(△ Tw
ij − 20)

)

, w = g, △ Tw
ij > 20

(6)

∑

Qj ≥
∑

h∈H

∑

w∈W

Cwkijw, ∀i ∈ I, j ∈ J, s ∈ S (7)

Q0
j = Qj, ∀j ∈ J (8)

Qt
j = Qt−1

j −
∑

w∈W

Cwkijw
t−tij−1

, ∀i ∈ I, j ∈ J, t ∈ T (9)

∑

h∈H

aQhqh ≥
∑

h∈H

∑

w∈W

kijwYijh+
∑

h∈H

∑

w∈W

ki′jwYi′jh, ∀i, i′ ∈ I, j ∈ J (10)

∑

n∈N

aQnqn ≥
∑

n∈N

∑

w∈W

kijwYijn+
∑

n∈N

∑

w∈W

ki′jwYi′jn, ∀i, i′ ∈ I, j ∈ J (11)
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1Tr
ij =

{

(2a− 1)tij, Q
t
j − kijrCr − kijgCg ≥ Cr , ∀i ∈ I, j ∈ J, t ∈ T

M, Qt
j − kijrCr − kijgCg ≥ Cr

(12)

1Tr
ij =

{

(2a− 1)tij, Q
t
j − kijrCr − kijgCg ≥ Cg , ∀i ∈ I, j ∈ J, t ∈ T

M, Qt
j − kijrCr − kijgCg ≥ Cg

(13)

tij =

{

dij(1+ εij) εij ≤ 0.5 ∀i ∈ I, j ∈ J

M εij ≤ 0.5
(14)

tij =











d
′

ij
vh

Xijβjs +
d
′

i′j
vh

Xi′j εij ≤ 0.5

dij
vn

Xijβjs +
di′j
vn

Xi′j εij > 0.5

, ∀i, i′ ∈ I, j ∈ J, s ∈ S (15)

Xi′j =











1,

{

j|
⋂

(min
j∈Jj′

ti′j,βjs = 1,βj′s = 0)

}

,

0, otherwise

∀i, i′ ∈ I, j ∈ J, s ∈ S (16)

Xij,Xi′j,Yijh,Yi′jh,Zijn,Zi′jn ∈ {0, 1} , ∀i, i′ ∈ I, j ∈ J (17)

The objective function (5) is to minimize the total expected

death probability of casualties. Constraint (6) denotes the death

probability of casualties with different injury states. Constraint

(7) is the resource limitation of medical points. Constraint (8)

denotes the initial resources of medical points. Constraint (9)

denotes the restriction of available resources at medical points

at time t. Constraints (10) and (11) denote the restrictions on

the number of available ambulances and helicopters from affected

points to medical points respectively. Constraints (12) and (13)

denote the waiting time for casualties with injury state g and r,

respectively. Constraint (14) denotes the transportation distances

from affected points to medical points. Constraint (15) denotes

the time taken to transport casualties from affected points to

medical points. Constraint (16) denotes each affected point will

be served by the nearest open backup medical point if its initial

allocated medical point has failed. Constraint (17) is a 0–1

variables restriction.

4.5. A robust optimization model

As the destructive earthquake occurred suddenly, and

aftershocks may result in injuries in the initial stage after an

earthquake, the number of casualties in affected points cannot

be accurately estimated. Therefore, robust optimization was used

to deal with the number of casualties to reduce the risk caused

by uncertainty.

The parameter Ŵiw and corresponding variables are introduced

to process the objective function and constraint Referring (51).

Objective function equation (5) has uncertain variables of fiw.

Define the value range of f̃iw as
[

fiw − f̂iw, fiw + f̂iw

]

. fiw is

the nominal value of uncertain number of casualties. f̂iwis the

maximum deviation of the uncertain number of casualties.

We introduce variable f to transform the objective function

(5) referring to (52). The objective function (5) is equivalent

to (18)–(19).

min f (18)
∑

w∈W

f̃iwP
D
w ≤ f (19)

A protection function for the number of casualties is introduced

here as equation (20). Ŵiw is the control coefficient of the number

of casualties.

A protection function for the number of casualties is introduced

here as equation (20). Ŵiw is the control coefficient of the number

of casualties. Ŵiw ∈ [0, |Jiw|]. Where Jiw is the number of Ŵiw. The

objective of this robust method is that the number of casualties

varies within their interval at most ⌊Ŵiw⌋ affected points. Ŵiw is

the balance between robustness and optimality. The bigger the Ŵiw,

the more conservative the mode. The protection function for the

number of casualties is introduced as with ϕ(X,Ŵiw) consideration

of the uncertainty of the number of casualties. The objective

function (5) can be transformed into formula (20).

ϕ(X,Ŵiw) = max
{Siw

⋃

{tiw}|Siw⊆Jiw ,|Siw|=⌊Ŵiw⌋,tiw∈Jiw\Siw}






∑

i,w∈Siw

f̂iwP
D
w + (Ŵiw − ⌊Ŵiw⌋) f̂tiwP

D
w







(20)

Where, Siw represents the group set of the maximum number of

casualties deviating from the nominal value. When Ŵiw = 0, ∀i,w,

the robust model is equivalent to the nominal model.

Formula (20) can be expressed as (21).

∑

w∈W

{

fiwP
D
w + max

{Siw
⋃

{tiw}|Siw⊆Jiw ,|Siw|=⌊Ŵiw⌋,tiw∈Jiw\Siw}






∑

i,w∈Siw

f̂iwP
D
w + (Ŵiw − ⌊Ŵiw⌋) f̂tiwP

D
w













≤ f , ∀i ∈ I, j ∈ J

(21)

If Ŵiw, ∀i,w is a integer,Ŵiw = ⌊Ŵiw⌋ , ∀i,w, then

∑

w∈W

{

fiwP
D
w + max

{Siw
⋃

{tiw}|Siw⊆Jiw ,|Siw|=⌊Ŵiw⌋,tiw∈Jiw\Siw}






∑

i,w∈Siw

f̂iwP
D
w













≤ f , ∀i ∈ I, j ∈ J (22)

IfŴiw = 0, ∀i,w,all the number of casualties are nominal.When

Ŵiw = γ , the number of casualties in all injury states deviates

from the nominal values, the model is equivalent to the Soyster

model. As Ŵiw changes, the conservatism of the model also changes

accordingly. The objective function (5) can be finally transformed

into the following expressions based on the strong duality.

∑

w∈W

fiwP
D
w + ZiwŴiw +

∑

i∈Jiw

Piw ≤ f (23)

s.t.



















Ziw + Piw ≥ f̂iwP
D
w

Piw ≥ 0,

Ziw ≥ 0,

∀i,w ∈ Siw, ∀w ∈ W

(24)
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Therefore, the robust optimization model considering the

uncertain number of casualties can be given as follows.

min f (25)

s.t.(6)− (17).

5. Algorithm

The built model is a 0–1 mixed integer non-linear

programming model, which cannot be solved by exact algorithms

such as branch and bound algorithm or operations research

software such as CPLEX. An improved integer-coded PSO

algorithm is designed to solve the model.

The algorithm steps are described as follows.

5.1. Population initialization

① Initialization of parameters: Set population size as popsize,

maximum iterations as max gen, learning factors as c1 and c2,

inertia weight as w.

② Particle encoding and decoding: Supposing there are n

casualty groups and kmedical points in the model, each particle has

a code length of n. Each position of the particle is a positive integer

randomly generated between 1 and k, and denotes the relation

of assign between a casualty group and a medical point. Taking

Figure 3 for example, there are 6 medical points in the affected area,

which are required to provide rescue services to 11 casualty groups.

The length of the particle is 11. Casualty group 2 and 11 are assigned

to medical point 1, casualty group 1 and 10 are assigned to medical

point 2, and so on.

③ Initialization of the best value of individuals and groups:

The initial location and velocity of particles can be randomly

FIGURE 3

A diagram of particle coding.

FIGURE 4

(A) Updated particle position. (B) Updated particle position round up

to integers.

generated. The fitness value of the current population can be

calculated by the fitness function. The fitness function is the

objective function (25). The individual position is the optimal

position of the current individual Pbest . The minimum value of the

current particle Pbest_value is the initial optimal value of individuals

that can be got by comparing the optimal values of all individuals.

Then set the initial Pbest_value as the best value of groups gbest .

5.2. Updating speeds and locations

Population speed and location can be updated as expressions

(26) and (27).

vid = w∗vid + c1r1(pid − xid)+ c2r2(pgd − xid) (26)

xid = xid + vid (27)

In which, r1,r2 are uniform random numbers within the range

of [0,1].

Traditional PSO is mainly used to solve the continuous

optimization problem, while the model in this paper belongs to a

discrete combinatorial problem. So, the updated particle positions

and speeds need integer processing. Figure 4A is the result of an

updating particle according to the particle update equations, and

Figure 4B is the result of a particle rounds up to integers. Here,

casualty group 5 and 10 are assigned to medical point 1, casualty

group 1 and 8 are assigned to medical point 2, and so on.

5.3. Updating the best value of individuals

Comparing the current particle fitness value fitness with the

individual historical optimal value Pbest_value, the smallest value is

taken as the current individual optimal value Pbest_value, and its

FIGURE 5

The convergence diagram of PSO.
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corresponding position is taken as the current individual optimal

position Pbest .

5.4. Updating the best value of groups

Comparing the current individual optimal value Pbest_value with

the group historical optimal value gbest_value, the smallest value

is taken as the current group optimal value gbest_value, and its

corresponding position is taken as the current group global optimal

position gbest .

5.5. Termination of the algorithm

Determining whether the algorithm reaches the maximum

iteration, if so, the algorithm terminates and outputs the optimal

solution. Otherwise, go to step 4.2 and continue the iteration.

6. Computational experiments

6.1. Case description and data

The data of emergency medical rescue for Ya’an, in the

Lushan earthquake, Sichuan province of China is used for

numerical simulation. Taking town or township as units,

Lushan County has jurisdiction over 5 towns and 4 townships.

So, 9 affected points are set in this article. The nominal

number of casualties in each affected point is shown in

Supplementary Table S1. The number of treatment resources

required by casualties with injury state r and g is 3 units and 2

units respectively.

Data shows that the Chinese government andmilitary deployed

15 helicopters to transport and rescue casualties in the Lushan

earthquake. Therefore, the number of available helicopters in

medical points is set as 15. According to the basic Standard for

Medical Institutions (Trial) issued by the Chinese Ministry of

Health, there is one ambulance for every 50,000 people in the city.

The number of ambulances in Ya’an city and Chengdu city is about

30 and 300, respectively. In this paper, it is assumed that 50% of

ambulances in Ya’an city can be used normally, and due to the time

crunch, only 50% of ambulances from nearby Chengdu city are

used for the transport of casualties. So, the total number of available

ambulances in this paper is set as 165. The other parameters to

the model are set as following. Cr = 3 units, Cg = 2 units,

vh = 40 km/h, vn = 120 km/h, qh = 2 persons, qn = 4

persons, T = 30 h. The number of medical resource limitations

for each medical point is shown in Supplementary Table S2. The

distance between medical points and affected points is shown in

Supplementary Table S3.

TABLE 4 Sensitivity analysis results of Ŵw .

Ŵw Objective function value Gap

0 561.553 0.00%

2 577.834 2.90%

4 595.820 6.10%

8 596.725 6.26%

TABLE 5 Comparison of the results solved by di�erent algorithms.

Algorithm Objective function value CPU
time (s)

Min Max AVG SD

PSO 531.629 624.441 561.553 30.905 10.171

IA 855.691 965.369 898.150 35.622 12.762

GA 1,172.350 1,282.256 1,193.264 31.381 9.178

DE 1,123.614 1,272.032 1,194.355 56.335 8.886

TABLE 2 Treatment information at medical points.

Medical
points

Casualty group with injury
state r

kjr Casualty group with injury
state g

kjg kjw

1 R1, R2, R3 291 – 0 291

2 R6 178 G3 142 320

3 – 0 G2, G6 540 540

4 R4 116 G1 292 408

5 R7 42 G4, G5 324 366

6 R5, R8 126 G7, G8 222 348

7 R9 20 G9 40 60

TABLE 3 Comparison of the two schemes.

Schemes Scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 4

1 Considering the point-edge mixed failures 531.629 531.629 531.629 531.629

2 Without considering the failures 459.334 751.217 851.767 612.256

– Gap −13.60% 41.30% 60.22% 15.17%
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Referring to literature (46), four failure scenarios are set in

Supplementary Table S4. The failure scenarios are set as follows.

No medical point failure in scenario 1, medical point 2 failure in

scenario 2, medical point 4 failure in scenario 3, medical point

7 failure in scenario 4. 0 means the medical point failure in

FIGURE 6

Computational accuracy comparison of the four algorithms.

Supplementary Table S4. Supplementary Table S5 shows the degree

of route damage εij.

6.2. Calculation results

The PSO parameters are set as follows. Population size

popsize = 100, learning factors c1 = c2 = 2, inertia weight

w= 1, the maximum iterations max gen = 300. MATLAB

R2018b is used for programming, and it runs on a notebook

computer with Intel(R) Core (TM) I5-5200U CPU and 12G

memory. The optimal solution of the results of 10 operations

is taken as the final solution. The convergence time of the

algorithm is 10.171 s, and the objective function is 531.629. The

convergence diagram of the algorithm is shown in Figure 5. Table 2

and Supplementary Table S6 are treatment information at medical

points and affected points respectively.

6.3. Considering failures vs. without
considering failures

To test the reliability of the scheme got by considering the

point-edge mixed failures, a comparison was made between two

schemes. Scheme 1 is the current optimization results got by

TABLE 6 Scale analysis of the group 1.

Nodes Algorithm Objective function value GAP CPU time (s)

Z∗ Z −MAX Z − AVG

10∗10 PSO 518.290 724.181 628.742 – 13.886

IA 775.670 1,010.727 881.677 33.18% 15.268

GA 909.409 1,573.435 1,265.659 43.01% 10.267

DE 910.378 1,167.492 1,000.632 37.17% 10.818

10∗20 PSO 1,610.292 2,331.576 1,961.454 – 26.414

IA 1,825.655 2,764.848 2,331.196 11.80% 26.985

GA 2,348.573 3,265.085 2,852.104 28.39% 24.359

DE 2,133.259 2,917.516 2,480.780 20.93% 23.422

10∗30 PSO 2,882.112 3,589.796 3,319.307 – 38.898

IA 2,900.485 3,706.958 3,392.738 0.63% 40.256

GA 3,580.927 4,248.524 3,859.806 19.51% 39.245

DE 3,539.897 4,017.549 3,790.272 12.43% 38.429

10∗40 PSO 5,403.128 5897.38 5,605.815 – 51.517

IA 5,621.404 7,186.703 6,506.498 3.88% 53.541

GA 6,636.561 8,432.381 7,456.442 18.59% 53.149

DE 6,432.144 7,571.784 7,043.505 20.41% 52.498

10∗50 PSO 8,684.691 9,947.969 9,320.860 – 64.694

IA 9,452.603 10,039.604 9,750.315 8.12% 70.845

GA 8,952.025 11,020.991 10,021.034 2.99% 65.754

DE 9,308.26 9,877.368 9,501.766 1.90% 64.691

Z, Objective function value; Z∗ , the best objective function value; Z − AVG, the average value of Z; GAP, [Z∗(algorithm) – Z∗(PSO)]/Z∗(algorithm)∗100%.
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TABLE 7 Scale analysis of the group 2.

Nodes Algorithm Objective function value GAP CPU time (s)

Z∗ Z −MAX Z − AVG

15∗20 PSO 650.165 856.959 753.769 – 34.923

IA 839.106 1,044.125 972.196 22.52% 36.215

GA 856.959 1,243.259 1,021.565 24.13% 35.512

DE 856.497 1,191.873 1,029.144 26.76% 34.048

15∗30 PSO 1,752.119 2,488.724 2,078.086 – 50.588

IA 1,973.053 2,815.589 2,257.744 11.20% 54.154

GA 2,118.788 3,032.033 2,487.702 17.31% 50.455

DE 2,162.947 2,914.494 2,579.405 19.44% 49.081

15∗40 PSO 3,108.708 3,754.086 3,346.931 – 65.382

IA 3,032.033 4,257.05 3,524.326 −2.53% 71.452

GA 3,251.877 4,433.367 3,949.915 4.40% 64.514

DE 3,257.023 4,390.083 3,759.763 10.98% 64.017

15∗50 PSO 5,543.338 6,340.27 5,981.089 – 78.216

IA 5,758.349 6,878.194 6,165.836 3.73% 82.041

GA 5,596.413 6,983.324 6,219.371 0.95% 81.463

DE 5,436.843 6,799.166 6,103.492 2.01% 80.470

15∗60 PSO 9,091.521 9,950.73 9,456.331 – 91.231

IA 9,210.278 9,995.259 9,592.015 1.29% 97.778

GA 9,698.788 11,177.334 10,534.336 6.26% 93.544

DE 9,917.568 10,815.637 10,327.333 8.43% 92.102

considering the point-edge mixed failures. Scheme 2 is the results

got without considering the failures. It is noted that the original

objective function value in scheme 2 contains no factors of failures.

The objective function value under each scenario in scheme 2

should be recalculated considering the facility failures and road

disruption again (Table 3).

The results show that when there is no failure (scenario 1),

the casualty scheduling results under scheme 1 are slightly worse

than those under scheme 2. However, when the failure occurs after

the earthquake, the solution result considering the failures is better

than that without considering the failures. As shown in scenario

3, the total expected death probability of casualties under scheme

2 was 60.22% higher than scheme 1. Therefore, considering the

point-edge mixed failure in advance can make more casualties

receive timely treatment and reduce the death rate. The reliability

of the system can be improved by considering the failures in the

design stage of the emergency rescue network.

6.4. Robust optimization vs. deterministic
optimization

To verify the effectiveness of the robust optimization model,

the running results of the robust optimization model and the

deterministic model were compared in the same scenario. Four

numerical examples are designed according to different control

coefficients Ŵw, and the maximum disturbance value of casualty

number deviating from the nominal value is 20%, that is f̂iw =

0.2 × fiw. Table 4 shows the sensitivity analysis results of different

robust control coefficients Ŵw. In general, although the objective

function value of the robust optimization model is higher than that

of the deterministic model, the gap is not significant. It shows that

the robust optimization model can reduce uncertain risk. From the

results of sensitivity analysis of Ŵw, the smaller the Ŵw, the stronger

the robustness of the model. With the increase of the uncertainty

of casualty numbers, the objective function value increases. The

gap between the robust optimization model and the deterministic

model (when Ŵw is 0) is gradually increasing. The appropriate

scheme should be chosen according to the uncertain situation in

practical decision-making.

6.5. Algorithm performance analysis

To test the performance of PSO, the algorithm was compared

with GA, IA and DE. Each algorithm was run 10 times. The results

are shown in Table 5 that the PSO is significantly superior to other

algorithms. The average objective function value calculated by PSO

reduces by 53.2% compared with GA, 37.5% compared with IA, and

53.0% compared with DE. The computational accuracy of PSO is

better than GA, IA and DE, as shown in Figure 6.

Frontiers in PublicHealth 11 frontiersin.org

https://doi.org/10.3389/fpubh.2023.995829
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Zhou et al. 10.3389/fpubh.2023.995829

TABLE 8 Scale analysis of the group 3.

Nodes Algorithm Objective function value GAP CPU time (s)

Z∗ Z −MAX Z − AVG

20∗20 PSO 632.999 936.483 759.6515 – 42.126

IA 849.089 1,173.23 1,015.6294 25.20% 43.546

GA 820.388 1,235.643 998.1089 23.89% 43.255

DE 904.581 1,168.351 1,059.019 28.27% 42.459

20∗30 PSO 1,506.62 1,798.516 1,648.0398 – 56.745

IA 1,662.516 2,567.568 2,066.8692 20.26% 59.455

GA 1,882.057 2,798.983 2,500.5531 34.09% 57.642

DE 1,964.425 2,736.591 2,283.3327 27.82% 56.593

20∗40 PSO 2,230.89 2,952.151 2,501.9441 – 73.941

IA 2,569.914 3,290.935 2,950.2068 15.19% 78.366

GA 2,609.005 3,149.086 2,885.3733 13.29% 72.031

DE 2,582.686 3,054.551 2,837.5028 11.83% 72.603

20∗50 PSO 4,602.979 5,212.538 4,964.0735 – 85.426

IA 5,106.732 5,611.11 5,342.7636 7.09% 89.484

GA 5,004.926 5,852.391 5,389.0979 7.89% 83.749

DE 5,255.002 5,966.101 5,576.6224 10.98% 83.519

20∗60 PSO 8,445.469 10,071.947 8,973.9028 – 98.203

IA 9,201.623 10,543.646 9,928.9542 9.62% 105.628

GA 8,616.743 10,223.87 9,201.7031 2.48% 99.946

DE 8,816.551 10,913.478 9,851.5502 8.91% 98.023

FIGURE 7

(A) Box diagram of group 1. (B) Box diagram of group 2. (C) Box diagram of group 3.

To further test the performance of the algorithm, three groups

of examples are set for scale analysis. Each group contains five

examples. The three groups have 10, 15 and 20 candidate medical

points respectively. The calculation results are shown in Tables 6–8,

and the box diagrams of the four algorithms for the three groups

are shown in Figures 7A–C. The results show that PSO is better

than GA, IA and DE obviously in terms of calculation accuracy.

Among the 10 examples, only one example IA is better than PSO.

The computational accuracy of PSO is better than GA, IA and

DE for most examples. Therefore, the PSO designed in this paper

can increase the optimization ability of the algorithm and has a

good performance.

7. Conclusions

A robust optimization model was established in this paper to

minimize the total expected death probability of casualties in the
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early stage of emergency rescue after an earthquake, considering the

characteristics such as casualty classification, injury deterioration,

point-edgemixed failures, medical resource limitation, and casualty

number uncertainty. An improved PSO is proposed to solve

the problem. Numerical experiments are conducted to verify the

effectiveness of the model and algorithm under the context of the

Lushan earthquake in China.

The results reveal that the operation effect of the

emergency rescue network is significantly improved, and the

optimization results are more reliable if the failure scenario

is considered in advance. Moreover, robust optimization

considering the casualty uncertainty can reduce the uncertainty

risk of the system. Therefore, it is necessary to consider

the point-edge mixed failures and casualty uncertainty

simultaneously in the design stage of the emergency

rescue network to establish a more reliable emergency

rescue network.

Future research can consider the characteristics of the later

stage of post-earthquake rescue comprehensively to study the

casualty scheduling problem in the post-earthquake emergency

recovery period while considering factors such as resuming normal

passage of affected points and transporting the injured.
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