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Introduction: Early identification of hypothermia or hyperthermia is of vital

importance, and real-time monitoring of core temperature (CT) of the workers

exposed to thermal environments is an extremely valuable tool. From the existing

literature studies, the model developed by Buller et al. in their study of 2013

that generates real-time estimates of CT from heart rate (HR) measurements

using the Kalman filter (KF) shows good potential for occupational application.

However, some aspects could be improved to reliably handle the existing very

wide range of workers and work activities. This study presents a real-time

CT estimation model, called the Biphasic Kalman filter-based (BKFB) model,

based on HR measurement, with characteristics suited to application in the

occupational field.

Methods: Thirteen healthy subjects (six female and seven male) were included

in the study to perform three consecutive tasks simulating work activities. During

each test, an ingestible CT sensor was used to measure CT and a HR sensor to

measure HR. The KF methodology was used to develop the BKFB model.

Results: An algorithm with a biphasic structure was developed using two

di�erent models for the increasing and decreasing phases of CT, with the ability

to switch between the two based on an HR threshold. CT estimates were

compared with CT measurements, and with respect to overall root mean square

error (RMSE), the BKFB model achieved a sizeable reduction (0.28 ± 0.12◦C)

compared to the Buller et al. model (0.34 ± 0.16◦C).

Discussion: The BKFB model introduced some modifications over the Buller

et al. model for a more e�ective application in the occupational field. It was

developed using data collected from a sample of workers (heavily weighted

toward middle-aged, not very fit, and with a considerable fraction of female

workers), and it also included two di�erent modeling of CT (for the up- and

down-phases), which allowed for better behavioral modeling in the two di�erent

stages. The BKFB model provides CT estimates reasonably in comparison to the

measured intra-abdominal temperature values in both the activity and recovery

phases but is more practical and easier to use for a real-time monitoring system

of the workers’ thermal states.
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1 Introduction

There are several occupational sectors (e.g., construction

and agriculture) where specific combinations of environmental

thermal conditions, clothing, and metabolic activity may induce

a potentially critical thermal strain for the worker, for example,

those occurring in recent years due to the effects of climate

change. Some of the strategies that generally can be deployed

involve work organizations (1, 2), technical interventions, and

the use of innovative technologies (usually wearable devices);

the latter strategy attempts to mitigate the effect of exposure

to thermal environments (3–6) and/or to provide real-time

thermophysiological monitoring of the worker. This monitoring

can be accomplished through a sensorized wearable device

designed ad hoc, which may allow, for example, the monitoring

of the worker’s thermal state in order to prevent the onset

of any hypothermic or hyperthermic conditions and to alert

the worker when necessary. The physiological parameter that

is generally used as the indicator of human thermal state is

the core body temperature (CT), i.e., the temperature of the

deep tissues of the human body core (7). A wide range of

methods, including the measurement of rectal, esophageal, intra-

abdominal, sublingual, tympanic membrane, external auditory

canal, and urine temperature [all of which are discussed in ISO

9886:2004 (8)], are available to record a “direct” estimate of

CT. These methods are more typically used in the clinical field

or in laboratory studies and appear impractical for continuous

monitoring of CT in workplaces due to different reasons related

to the invasive nature of the measurement, worker safety,

possible interference with the work activity and any personal

protective equipment (PPE), and non-acceptance by workers.

A potentially more practical alternative is to get an “indirect”

estimate of CT using one or more correlated physiological

parameters that can be measured without introducing appreciable

discomfort for the worker. There are two main approaches

available to estimate CT indirectly: the first is based on

thermoregulation models, and the second involves the use of data-

driven models.

Thermophysiological models are typically more complex

because they include several equations that simulate the behavior

of the various functions of the human thermoregulation system.

Several models have been developed, with different degrees of

complexity depending on how many body segments and nodes

are considered in the model (9). These include one-node models

(10, 11) that simulate the human body as a single unit, two-node

models (12–15) that consider the human body to consist of two

shells (i.e., core and skin), multi-nodemodels (16–18) that assume a

multilayer structure of the human body, and multi-element models

(19–22) that simulate different parts of the human body with

their different geometric properties, but without considering the

uniform temperatures of the nodes. These models are typically

employed in laboratory studies, sometimes in combination with

thermal manikins (23–25). Thermophysiological models typically

necessitate various input variables that must be known in advance,

difficult to acquire by a wearable device, and potentially less

suitable to be used in real-time mode, due to the complexity of

their management.

The alternative strategy for estimating CT is to employ

data-driven models (26). These models rely on the exploration

of relationships between the inputs and outputs of a system

without direct knowledge of its physiological behavior. Using

regression algorithms, these models enable the estimation of

the value of a variable that is not directly observable from the

measurement of one or more directly observable variables. Data-

driven models are more suitable than thermoregulation models for

real-time monitoring of CT in workplaces because they require less

complex mathematical operations and fewer input variables (and,

consequently, fewer sensors are worn by the worker, which, in turn,

generates less discomfort).

A previous systematic review (27) identified several data-driven

models for estimating CT in real-time but only few of these models

appeared suitable for integration in a wearable device such as those

based on heat flux (28, 29), skin temperatures (30), heart rate

(HR) (31–34), or a combination of these (35–38). Among these

parameters, HR seems to be a good compromise between being

the most suitable for monitoring and application in occupational

contexts (its measurement does not interfere with work activities or

the presence of PPE), correlating with CT, easy to measure (using

a non-invasive sensor) and accepted by workers. Buller et al. (31)

developed a model that requires only continuous monitoring of

HR and employs a simple but very powerful mathematical method,

i.e., the Kalman filter (KF) (39, 40), to calculate the step-by-step

time evolution of CT. The model has been updated over time.

Different functional forms have been explored, starting with a

linear function for the observational model (41), evolving first to

a quadratic function (31) and finally to a sigmoidal functional form

(42, 43). The original model has been tested by Buller et al. (31, 32)

in a variety of settings with regard to the environment, activity

performed, acclimatization, hydration, and clothing. Estimates of

CT show good overall agreement with measurements (31, 32),

although they appear to underestimate CT for low work rates

(31, 34) and overestimate CT for very high work rates (31). The

model also seems to provide better predictions during the activity

phase with respect to the recovery phase (44), and this is likely due

to the fact that it is based on a single relationship that correlates

HR with CT, whereas the latter has an inherent hysteretic nature

and can follow two separate behaviors during the warm-up and

cool-down phases. One challenge associated with the use of this

method is that it requires an initial (t = 0) CT value. Buller et al.

(32) attempted to overcome this issue by comparing the Buller et al.

model (31) performance outcomes obtained using the subjects’

initially measured CT values vs. those obtained using the initial

CT value set at 37.1◦C for all participants. The results of this study

revealed that the higher accuracy provided by the initial measured

CT values was reduced within approximately 30 min.

In general, it is difficult to extend the findings from Buller

et al.’s study (31) to the worker population, because most of

the participants in the study were young, athletic, and male

soldiers, while a large part of the workers are less young (45)

and not fit, with a considerable fraction of women as well. It is

well recognized that subjective factors, such as gender, as well

as anthropometry, age, and fitness, may have an impact on the

thermoregulation system response (46, 47); therefore, obtaining an

estimation CT model calibrated to the real working population
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is crucial. Overall, while the method proposed by Buller et al.

(31) provides an unquestionably significant advancement in CT

estimation methods, there is still potential for improvement,

especially in terms of the adaptation for use in the occupational

field. In this context, the present study intends to contribute to

the real time CT estimation modeling, developing an algorithm

based on two different models (biphasic model). The algorithm

is specifically designed in an attempt to provide a more accurate

modeling of the CT up- and down-phases, with the ability to

switch between the two phases automatically, and obtained by data

collected from a population of workers (both male and female

participants) during simulations of a sequence of work activities.

The biphasic model developed was based on the application of

the KF to HR data, which make the model implementable in a

sensorized wearable device that is suitable to be used in workplaces.

2 Materials and methods

2.1 Participants

Thirteen healthy participants (six female and seven male)

were included in the study, whose mean (m) ± 1 standard

deviation (SD) of the descriptive characteristics are summarized

in Table 1. The participants were recruited among the employees

of the National Institute for Insurance against Accidents at

Work (INAIL), Research Center of Monte Porzio Catone, Italy.

Participants who do not have a history of metabolic, cardiovascular,

pulmonary, musculoskeletal, and gastrointestinal diseases were

selected for the study. All participants gave their written informed

consent, and the study was conducted according to the Declaration

of Helsinki and approved by the local ethics committee (protocol

number 0078009/2021).

2.2 Experimental protocol

Participants were asked to abstain from smoking, drinking

alcohol or coffee, and performing heavy exercise in the 24 h

prior to the test. For each participant, a training section was

scheduled during the days before the test, and instructions about

swallowing the ingestible core body temperature sensor 3 h before

arriving at the laboratory were given. Participants, each on a

TABLE 1 Average descriptive characteristics of the participants.

All participants

n 13 (7M, 6F)

Age (year) 47± 4

Height (m) 1.73± 0.10

Weight (kg) 75.5± 17.7

BMI (kg/m2) 24.98± 3.35

BSA (m2) 1.88± 0.26

Data are presented as m ± 1 SD; BMI, body mass index; BSA, Body Surface Area; F, female

participants; M, male participants; n, number of participants.

different scheduled test day, arrived at the laboratory at the

same time in the morning in order to rule out the effects

of circadian rhythms. They wore a t-shirt, shorts, and athletic

shoes and were asked to abstain from drinking throughout the

duration of the experiment. The height and weight of participants

were collected using a professional height rod (Height Rod

5003, Soehnle Industrial Solutions, Germany) and a digital scale

(Seca supra 719, Seca, USA), respectively. An ingestible core

body temperature sensor (CorTemp Monitoring System, HQ Inc.,

Palmetto, FL, accuracy ± 0.1◦C) was used to measure CT values

every 15 s that were wirelessly transmitted to a data recorder

worn by the participant at the waist level. Participants were

instrumented by a heart rate sensor (Polar Electro, Finland,

accuracy ± 1%) positioned at the chest using a band to measure

HR data and connected with a wearable metabolic system (K4b2,

Cosmed, Italy), which recorded cardiorespiratory data breath

by breath. Before the tests, participants remained seated in a

room in a thermoneutral environment (ta = 23◦C), allowing

CT and HR to settle at the respective resting values. Once

resting values were reached, participants were asked to enter the

climate chamber (INAIL, Monte Porzio Catone, Italy) with an air

temperature (ta) of 32
◦C, a relative humidity (RH) of 40%, and

an air velocity (va) of 0.3 m/s and perform the following three

consecutive tasks (with a total duration of 24min, without pause

between tasks):

• Task 1 (T1): going up and down from a three-step work ladder

for 6min with a repetition frequency of 28 actions per minute

(14 ascents and 14 descents);

• Task 2 (T2): lifting a 5-kg plastic crate from the ground to a

standing position and returning it to the ground, for 6min

with a repetition frequency of 12 lifts per minute;

• Task 3 (T3): walking on a treadmill for 12min at a speed

of 5 km/h.

For each task, a metronome imposed the rhythm at the

repetition frequency selected for the task.

After completing the tasks, participants were asked to leave the

climatic chamber and sit in the room at ta = 23◦C to allow the

parameters to reach the resting values.

2.3 Data analysis and signal processing

Data were processed usingMATLAB software (version R2021a,

MathWorks, Natick, MA, US).

HR and CT signals were synchronized. Any few missing

CT data were reconstructed with estimates extrapolated from

autoregressive fits of the remaining samples. The noise from

the two signals was minimized by applying a smoothing, which

uses an outlier non-influenced linear polynomial regression

weight function between five neighboring data points. This

method attributes a weight of zero to data outside six mean

absolute deviations, excluding outliers from the smooth

calculation. Both signals were averaged over consecutive time

windows of 30 s.
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2.4 Biphasic Kalman filter-based model

A model, called Biphasic Kalman filter-based (BKFB), was

developed to estimate CT from HR independently during the

up- and down-phases. The KF method was applied to develop

the two analytical relations to model the up- and down-

phases (39, 40):

• For the up-phase, the analytical relation was derived from

the dataset that contained the data from all the 24min of the

activity phase that included T1, T2, and T3;

• For the down-phase, the analytical relation was obtained

from the dataset that comprised data from the 19min

of the recovery period immediately following the activity

phase.

As required by the KF methodology (39, 40), two sets of

equations were implemented for each of the previous two phases

corresponding to the time update and the measurement update.

Two linear equations were derived for the time update by applying

a linear regression between the CT values measured at time t

and those measured at time t-1. The process noise (u) of the

estimates was assumed to be a normal probability distribution

[u ∼ N(0, γ 2)], and γ was calculated as the SD of the normal

probability distribution of the 1CT(CTt − CTt−1) on the time

windows of 30 s. For the measurement update, 2 second-degree

polynomial fits were derived employing the regression method

and applied to the HR and CT data, the latter binned every

0.1◦C, meaning that discretization with 0.1◦C steps has been

applied to the CT data in the CT–HR plane. This step implies

that different HR values may correspond to the same detected CT

value, and in order to obtain a univocal correspondence between

CT and HR values, the HR values were averaged. The squared

sum of error (SSE) weighted by the square of the uncertainty of

each bin was minimized in the regression to yield the optimal

estimation coefficients. The measurement noise (v) was assumed

as a normal probability distribution [v ∼ N
(

0, σ 2
)

], and σ

was computed as the mean of the SD of the HR values of each

CT bin.

The BKFB model selects one of the two phases (either up

or down) switching between them according to the following

criteria: when at least three consecutive HR measurements exceed

a given threshold, the model runs in the up-phase; when at least

three consecutive HR values fall below the threshold, it runs in

the down phase. The choice of the value to be assumed as the

threshold was addressed by exploring different values, ranging from

a minimum of 100 bpm to a maximum of 120 bpm with a step

of 5 bpm, and looking for the one that minimized the total SSE,

calculated as the sum of the SSE of all subjects over time. The

analysis revealed that the optimal transition threshold was 115

bpm, and this value was assumed as the switching threshold. At

the beginning of the estimation, this switching criterion requires

three consecutive HR measurements and thus results in an initial

three-sample lag. The initial CT value required by the model

to derive the subsequent CT estimates was fixed at 37.43◦C

and was computed by averaging the CT data collected from all

participants during 3min of rest before the activity phase. The

initial variance value (v0) required for estimating the variance over

time was set to 0.

2.5 Performance evaluation

The root mean square error (RMSE) was computed to

quantify the agreement between the measured and estimated

values of CT.

2.6 Statistical analysis

The statistical analysis was performed using MATLAB software

(version R2021a, MathWorks, Natick, MA, US).

The normality of the data was tested using the Kolmogorov-

Smirnov test.

The Mann-Whitney U test was applied to detect statistical

differences in the RMSE values between the BKFB model and the

Buller et al. model (32) (inter-model analysis) and to compare

the performance of the two models both by subject and overall

(considering all subjects), with the statistical significance level set

at a p-value of <0.05.

3 Results

The results obtained in this study were presented first showing

the time trends of the average measured data for CT and HR,

then outlining the equations developed for the BKFB model,

and finally exhibiting the comparison between the time trend

of measured and estimated CT data [the latter by applying the

Buller et al. (32) and the BKFB models] with corresponding

performance outcomes.

3.1 Measured HR and CT

Figure 1 shows the time trend of the m and SD of the HR

values measured during the activity phase (T1, T2, and T3) and the

recovery phase for all 13 tested subjects.

In Figure 1, it can be observed that HR starts to increase

immediately with the onset of T1 and continues to increase in T2,

while, with the onset of T3,HR starts to decrease and then stabilizes

around the 6thmin due to the lower metabolic activity compared to

T2. In the recovery phase, an exponential trend toward pre-activity

conditions was observed.

Figure 2 shows the time trend of m and SD of CT values

measured by the ingestible core body temperature sensor during

the activity phases (T1, T2, and T3) and the recovery phase for all

13 tested subjects.

As can be noticed from Figure 2, CT showed a much

slower response compared to HR; in fact, CT time course was

approximately steady during T1, and it only started to increase in

T2. In T3, it increased over time and then stabilized during the

recovery phase, showing a very gradual decline.
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FIGURE 1

The time trend of the m ± 1 SD of the HR calculated on all subjects during the three tasks (T1, T2, and T3) and the recovery phase.

FIGURE 2

The time trend of the m ± 1 SD of the CT calculated on all subjects during the three tasks (T1, T2, and T3) and the recovery phase.

3.2 Biphasic Kalman filter-based model

In both the up- and down-phases of the model, the same

equation was obtained for the CT time update and is as follows

(Eq. 1):

CT′
t = CTt−1 (1)

The regression coefficients were 0.9997 (determination

coefficient, R2 = 1.00) and 1.0001 (R2 = 1.00)

for the up- and down-phases of the model,

respectively, and were then approximated to 1 for

both phases.

For the up-phase of the model, γ was 0.016, while for the down-

phase of the model, γ was 0.011. The two measurement update

models of both the up- and down-phases, with the corresponding

datasets from which the model was developed, are shown in

Figure 3. The two graphs also include m and SD of HR values

corresponding to each CT bin of 0.1◦C.

The regression equation obtained for the up-phase

measurement update model is given as follows (Eq. 2):

HR = −35.3 CT2
+ 2678 CT − 50060 (2)

The respective R2 value was 0.46, while the regression equation

for the down-phase measurement update model is as follows

(Eq. 3):

HR = 5.922 CT2
− 416.4 CT + 7366 (3)

The R2 value was 0.72.

For the up-phase, σ was 14.081, while for the down-phase, it

was 8.692.
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FIGURE 3

The BKFB model: (A) The up-phase measurement update model with the corresponding datasets and m ± 1 SD of HR values corresponding to each

CT bin of 0.1◦C; (B) The down-phase measurement update model with the corresponding datasets and m ± 1 SD of HR values corresponding to

each CT bin of 0.1◦C.

3.3 Measured vs. estimated core
temperatures

CT estimates obtained by using the BKFB model were

compared with the CT data measured with the ingestible core body

temperature sensor and the CT estimates obtained by the Buller

et al. model (32) on the same dataset, where the latter implemented

a monophasic quadratic function and used 37.1◦C as the initial CT

value (t= 0). The comparisons were performed both by subject and

considering all subjects (overall).

3.3.1 Comparisons by subject
Figures 4, 5 show, for each tested subject, the time trend of

the CT as follows: (a) measured by using the ingestible core body

temperature sensor; (b) estimated by the BKFB model; and (c)

estimated by the Buller et al. model (32).

From the graphs in the two panels (Figures 4, 5), it can

be observed that the BKFB model estimates CT time trend

reasonably well for most subjects, following their CT behaviors

over time. In 10 cases (S1, S2, S3, S4, S5, S7, S8, S10, S11,

and S13), the BKFB model seemed to slightly underestimate the

time trend of the corresponding measured CT for the majority

of the time, while in three cases, the model seemed to slightly

overestimate it (S6, S9, and S12) for most of the time. To

quantify the subject-by-subject agreement between measured CT

values and those estimated by the BKFB model and the Buller

et al. model (32), the RMSE values were calculated over the

entire duration of the test (RMSEtotal) and for the activity phase

(RMSEactivity) and the recovery phase (RMSErecovery) and are listed

in Table 2.

Based on the RMSE values reported in Table 2, three classes of

agreement between the measured CT values and those estimated by

models were assumed: high agreement with RMSEtotal ≤ 0.30◦C,

moderate agreement with 0.30◦C < RMSEtotal < 0.40◦C, and poor

agreement with RMSEtotal ≥ 0.40◦C. With this assumption, an

intra-model comparison revealed that the BKFB model showed 9

out of 13 subjects in high agreement, two (S7 and S8) in moderate

agreement, and two (S3 and S11) in poor agreement, while the

Buller et al. model (32) showed seven subjects in high agreement,

three (S4, S5, and S10) in moderate agreement, and three (S3, S11,

and S13) in poor agreement.

Table 2 shows the statistically significant differences in the

RMSE values between the BKFB model and the Buller et al. model

(32), by subject, for the three phases considered. Among the

significant differences detected, the lowest RMSE value between the

two models is highlighted in bold in Table 2. According to an inter-

model comparison based on these values, the BKFBmodel obtained

five out of eight (statistically significant) lowest RMSE values for the

total phase [three out of eight for the Buller et al. model (32)], six

out of eight for the activity phase [two out of eight for the Buller

et al. model (32)], and eight out of twelve for the recovery phase

[four out of twelve for the Buller et al. model (32)] showing progress

associated with the BKFB model.

3.3.2 Comparisons considering all subjects
Figure 6 shows the time trend of the mean values (all subjects)

of the measured and estimated CT [by both BKFB and Buller et al.

(32) models].

The mean trend obtained by the BKFB model showed similar

behavior to the mean trend of measured CT in all the phases

monitored, remaining below it from around the middle of T2.

The overall agreement between the measured and estimated

values of CT [by both BKFB and Buller et al. (32) models] was also

quantified using the overall RMSE values, which were calculated

by averaging the RMSE over all tested subjects (Table 3). Three

different overall RMSE values were calculated by taking averages,
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FIGURE 4

The time trends of the measured CT, the CT estimated by the BKFB model, and the CT estimated by the Buller et al. (32) model for subjects 1 to 6.

namely, (a) over the entire duration of the test (Overall RMSEtotal);

(b) over the activity phase only (Overall RMSEactivity); and (c)

over the recovery phase only (Overall RMSErecovery), and the inter-

model differences were tested by the Mann-Whitney U test, as

shown in Table 3.

As can be noted in Table 3, an inter-model comparison between

the BKFB model and the Buller et al. model (32) showed that the

BKFB model recorded lower RMSE values than the Buller et al.

model (32) for all the phases considered, even if the statistical

analysis applied does not reveal significant differences between the

two models.

4 Discussion

The present study proposes a biphasic model for real-time CT

estimation to be implemented in a sensorized wearable device with

the aim of providing thermophysiological monitoring of a worker

during his work activity. The choices made to obtain the BKFB

model are the result of an attempt to find the right compromise

between the need for a reasonably acceptable accuracy of the CT

estimations, a suitable computational complexity to be managed,

and the non-invasiveness of the system. With this approach, the

BKFB model has many strengths, such as: (a) being obtained from
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FIGURE 5

The time trends of the measured CT, the CT estimated by the BKFB model, and the CT estimated by the Buller et al. (32) model for subjects 7 to 13.
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TABLE 2 RMSE and p-values calculated for subject-by-subject.

Subjects The BKFB model The Buller et al. (32) model p-values

RMSEtotal RMSEactivity RMSErecovery RMSEtotal RMSEactivity RMSErecovery Total Activity Recovery

S1 0.22± 0.04 0.26 ± 0.03 0.15 ± 0.03 0.23± 0.08 0.26± 0.10 0.19± 0.04 0.144 ∗ ∗

S2 0.23± 0.06 0.20 ± 0.04 0.27± 0.07 0.19± 0.04 0.23± 0.05 0.13 ± 0.02 0.160 ∗ ∗∗∗

S3 0.49± 0.23 0.24± 0.08 0.69 ± 0.11 0.63± 0.50 0.19± 0.05 0.92± 0.43 0.436 0.68 ∗∗∗

S4 0.15 ± 0.01 0.15± 0.02 0.15 ± 0.01 0.36± 0.16 0.11 ± 0.01 0.52± 0.15 ∗ ∗∗ ∗∗∗

S5 0.13 ± 0.03 0.07 ± 0.01 0.18 ± 0.03 0.34± 0.16 0.19± 0.03 0.46± 0.20 ∗∗∗ ∗∗∗ ∗∗∗

S6 0.13 ± 0.02 0.16 ± 0.02 0.06 ± 0.00 0.25± 0.06 0.29± 0.06 0.20± 0.04 ∗∗∗ ∗∗∗ ∗∗∗

S7 0.39± 0.11 0.24± 0.06 0.51± 0.01 0.19 ± 0.06 0.21± 0.07 0.11 ± 0.01
∗∗∗ 0.81 ∗∗∗

S8 0.37± 0.11 0.32± 0.09 0.43± 0.11 0.25 ± 0.07 0.20 ± 0.06 0.29 ± 0.07
∗∗∗ ∗∗∗ ∗∗∗

S9 0.30± 0.05 0.33± 0.06 0.25± 0.03 0.26 ± 0.05 0.29± 0.05 0.21 ± 0.05
∗ 0.12 ∗

S10 0.27± 0.06 0.16± 0.04 0.36± 0.02 0.32± 0.12 0.22± 0.05 0.41± 0.15 0.81 0.09 0.88

S11 0.46± 0.20 0.51± 0.23 0.41 ± 0.15 0.40± 0.09 0.33± 0.06 0.47± 0.08 0.97 0.13 ∗∗

S12 0.17 ± 0.03 0.22 ± 0.03 0.05 ± 0.00 0.26± 0.07 0.31± 0.07 0.18± 0.03 ∗∗∗ ∗∗∗ ∗∗∗

S13 0.30 ± 0.12 0.16 ± 0.03 0.41 ± 0.14 0.70± 0.39 0.45± 0.06 0.92± 0.31 ∗∗∗ ∗∗∗ ∗∗∗

Values are presented as m ± SD computed for each subject by averaging the values for the duration of the phase considered. RMSEactivity , Root mean square error calculated considering the

activity phase, in ◦C; RMSErecovery , Root mean square error calculated considering the recovery phase, in ◦C; RMSEtotal , Root mean square error calculated considering both the activity and

recovery phases, in ◦C; S, Subject. ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001 according to Mann-Whitney U test.

FIGURE 6

The time trends of the mean measured CT, the mean CT estimated by the BKFB model, and the mean CT estimated by the Buller et al. (32) model

considering all subjects.

a sample of workers that is around middle-age, not very fit and

includes both male and female workers; (b) being based on the

HR, a physiological parameter that can be easily and continuously

measured in a non-invasive way and is generally accepted by the

workers; (c) using the KF which is suitable for real-time data

processing; (d) being an algorithm that uses two different models

to estimate the CT up and down-phases, all aspects that will be

discussed in the following.

The use of theHR value alone in the estimation ofCTmakes the

monitoring system simple, due to the HR sensor that can be easily

worn by workers without causing interference with work activity or

discomfort to the worker. CT and HR, however, behave differently

in response to the activities performed (44), and in fact, as observed

from Figures 1, 2, these two parameters react differently during the

three tasks and the recovery phase. In particular,HR responds faster

to changes in activity than CT, because the response of the latter

is delayed by the large thermal inertia of the human body (44, 48).

Nevertheless,HR appears to be a good predictor of CT (31, 41). The

results obtained in this study suggest that the agreement between

HR and CT is quite strong in the down-phase (R2 = 0.72), while it

is more limited in the up-phase (R2 = 0.46). One of the potential

solutions to improve the model’s predictive ability could be to use
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TABLE 3 Overall RMSE and p-values.

The BKFB
model

The Buller
et al.

model (32)

p-values

Overall RMSEtotal 0.28± 0.12 0.34± 0.16 0.40

Overall RMSEactivity 0.23± 0.11 0.25± 0.08 0.47

Overall RMSErecovery 0.30± 0.19 0.39± 0.27 0.46

Values are presented as m ± SD computed by averaging the values for the duration of

the phase and for all subjects. RMSEactivity , Root mean square error calculated considering

the activity phase, in ◦C; RMSErecovery , Root mean square error calculated considering the

recovery phase, in ◦C; RMSEtotal , Root mean square error calculated considering both the

activity and recovery phases, in ◦C.

more predictor variables (such as heat flux and skin temperature

measured in various parts of the body) in combination with HR

(36, 37). However, the use of more variables in the model implies

a more complex handling of a real-time monitoring system. In

addition, the worker has to wear several sensors, and this can cause

inconvenience to the workers. Thus, the gain in performance may

not justify the possible loss of monitoring practicality.

The choice of using the KF methodology to estimate CT from

HR seems to be appropriate because this offers a powerful and fast

recursive computational method, which is ideal for real-time data

processing. Two functional forms were preliminarily explored for

the development of the two measurement update models (in the

up- and down-phases of CT) as required by the KF: a second-

degree polynomial function [proposed in the study of Buller et al.

(31, 32)] and a sigmoidal functional form [proposed by Looney

et al. (42) as an updated version of the Buller et al. model (31) to

increase the accuracy of the lowest CT estimates]. The application

of the monophasic sigmoidal model (42) to the dataset of this

study resulted in a slightly lower overall RMSErecovery (0.30 ±

0.20◦C) than that obtained by applying the Buller et al. model

(31) (quadratic monophasic function) to the same dataset, and a

marginally higher overall RMSEactivity (0.29 ± 0.08◦C). Because

modeling the activity phase with the sigmoidal function was not

performant and modeling the recovery phase was only marginally

better, it was consequently decided to adopt the quadratic biphasic

function for the BKFB model and to use the Buller et al. quadratic

monophasic model (32) as the alternative reference method (in

addition tomeasuredCT) for comparisons with themodel obtained

in this study.

The BKFB model achieved very promising results in terms of

the overall RMSE values during the activity phase (0.23 ± 0.11◦C),

during the recovery phase (0.30 ± 0.19◦C), and when considering

both (0.28 ± 0.12◦C). The overall RMSE values obtained by the

application of the BKFB model were lower than those obtained

by the Buller et al. model (32) indicating better estimates of the

CT data measured in this study. The RMSEtotal, RMSEactivity, and

RMSErecovery were also calculated subject-by-subject in this study.

The BKFB model in the recovery phase outperformed the Buller

et al. model (32) in more cases compared to the activity phase,

suggesting that the former likely modeled the recovery phases

better. This finding is presumably because the Buller et al. model

(32) used the same equation for both the activity and recovery

phases, whereas the BKFB model uses an equation that is especially

designed to shape the recovery phases. The lower number of cases

in which the BKFB model outperformed the Buller et al. model

(32) in the activity phase may depend on the limited dataset with

a not very extensive CT range and the use of an initial estimated

CT instead of the measured CT. Indeed, a big challenge in using

the KF methodology for CT estimation is that an accurate CT

value at t = 0 is required. In this study, it was decided to estimate

the initial CT value by averaging the CT data collected from all

participants during the 3min rest period prior to the activity phase

in order to obtain a more representative value of the workers’

population considered. The initialCT value, on the other hand,may

vary depending on the subjective characteristics (46, 47), and this

subject-to-subject difference is also highlighted by the time courses

of the measured CT of the 13 selected subjects (Figures 4, 5). In

any case, the necessity to provide the model with the most accurate

CT value to use at t = 0 is an ongoing common issue (32, 44), and

more in-depth investigations on the quantification of the impact of

the initial CT value on subsequent estimates are needed.

In general, the BKFB model appears to have the potential to

be applied for real-time CT estimation in the occupational field.

However, a limitation may be attributed to the not very wide range

of CT values in the dataset that most likely made the determination

of the measurement update models more challenging and may

limit the predictive capabilities of the BKFB model to the CT

values up to 38◦C. A larger sample size (composed of a wider

and more diversified population of workers in terms of age,

anthropometry, and physical fitness) could improve the estimation

and could also allow the development of age- or gender-specific

models so as to make it oriented to the individual target groups.

Future investigations should focus on testing the performance of

the BKFB model in a wider range of stressful situations, with

respect to (a) other work activities performed in real workplaces

(considering also static work); (b) multi-layer clothing, possibly

also including PPE; and (c) additional environmental thermal

conditions, both warmer and colder conditions than those explored

in this study. Effects due to psychological stress shall also be

addressed. Estimation models should evolve toward progressive

customization (i.e., taking into account age, gender, and other

variables) as a contribution to future research.

5 Conclusion

This study focuses on the development of a real-time

core temperature (CT) estimation model for application in the

occupational field. Employing two separate phases, one designed

specifically for the CT up-phase and the other for the CT down-

phase, with the ability to switch between the two, a model was

developed that leverages the Kalman filter (KF) to estimateCT from

HRmeasurements.

The Biphasic Kalman filter-based (BKFB) model obtained

introduces some modifications over the Buller et al. model (31) for

a more effective application in the occupational field. In particular,

the BKFBmodel was developed fromCT andHR data acquired on a

more realistic sample of workers (which is heavily weighted toward

middle-aged, not very fit, and with a considerable part of female

workers) while simulating real work activities. This new model

also includes two different modeling of CT, namely, one for the

increasing phase and the other for the decreasing phase, allowing

Frontiers in PublicHealth 10 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1219595
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Falcone et al. 10.3389/fpubh.2024.1219595

for better behavioral modeling of the CT in the two different stages.

The BKFB model only requires HR measurement to run, which is

measured with a non-invasive sensor that can be used for extended

periods, without disturbing the worker. In addition to being easily

used in workplaces, the model found in this study performed well

(overall RMSEtotal = 0.28 ± 0.12◦C, overall RMSEactivity = 0.23

± 0.11◦C, and overall RMSErecovery = 0.30 ± 0.19◦C) when its

CT estimates were compared to CT measurements obtained from

the ingestible core body temperature sensor. The BKFB model also

achieved lower overall RMSE values than the Buller et al. model (32)

(overall RMSEtotal = 0.34 ± 0.16◦C, overall RMSEactivity = 0.25 ±

0.08◦C, and overall RMSErecovery = 0.39 ± 0.27◦C). Despite the

CT application range of up to 38◦C, it can be concluded that the

BKFB model appears to be a suitable solution to be integrated into

a real-time monitoring system of the workers’ thermal state due to

its good performance and its ease of application and management.

Future studies should aim to extend the application range of the CT

in order to model more stressful conditions.
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