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A mixture of mobility and
meteorological data provides a
high correlation with COVID-19
growth in an infection-naive
population: a study for Spanish
provinces
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Introduction: We use Spanish data from August 2020 to March 2021 as a
natural experiment to analyze how a standardizedmeasure of COVID-19 growth
correlates with asymmetric meteorological and mobility situations in 48 Spanish
provinces. The period of time is selected prior to vaccination so that the level of
susceptibility was high, and during geographically asymmetric implementation
of non-pharmacological interventions.

Methods: We develop reliable aggregated mobility data from di�erent
public sources and also compute the average meteorological time series of
temperature, dew point, and UV radiance in each Spanish province from
satellite data. We perform a dimensionality reduction of the data using principal
component analysis and investigate univariate and multivariate correlations of
mobility and meteorological data with COVID-19 growth.

Results: We find significant, but generally weak, univariate correlations for
weekday aggregated mobility in some, but not all, provinces. On the other hand,
principal component analysis shows that the di�erent mobility time series can
be properly reduced to three time series. A multivariate time-lagged canonical
correlation analysis of the COVID-19 growth rate with these three time series
reveals a highly significant correlation, with a median R-squared of 0.65. The
univariate correlation between meteorological data and COVID-19 growth is
generally not significant, but adding its two main principal components to
the mobility multivariate analysis increases correlations significantly, reaching
correlation coe�cients between 0.6 and 0.98 in all provinces with a median R-
squared of 0.85. This result is robust to di�erent approaches in the reduction of
dimensionality of the data series.

Discussion: Our results suggest an important e�ect of mobility on COVID-
19 cases growth rate. This e�ect is generally not observed for meteorological
variables, although in some Spanish provinces it can become relevant. The
correlation between mobility and growth rate is maximal at a time delay of 2-3
weeks, which agrees well with the expected 5?10 day delays between infection,
development of symptoms, and the detection/report of the case.
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1 Introduction

Following the onset of the COVID-19 pandemic in March
2020, measures were taken to avoid or limit transmission. Prior
to the development of vaccines, non-pharmaceutical interventions
(NPIs) were put in place. Being the virus causing COVID-19, SARS-
CoV-2, a virus that is transmitted by the air, some of the first
measures implemented were meant to avoid interpersonal contact.
Such measures included strict lockdowns, and later on curfews
and limits on mobility. In effect, mobility, usually measured by
tracking mobile phone positions, was considered a proxy of social
interactions, and therefore, was deemed an important advanced
indicator of the evolution of the disease.

During the initial stages of the pandemic, within a quasi-naive
population, mobility was shown to be correlated with the effective
reproduction number, Rt , finding that a 10 percentage point
reduction in mobility was associated with a 0.04–0.07 reduction
in Rt (1). Mobility reductions of about 20–40% were thought to
be needed to achieve an Rt below 1.0 (2). Also, a shift in mobility
was shown to present a high correlation with death rates one
month later (3). Furthermore, within mobility, that related to retail,
recreation, and workplaces showed the highest correlation with
deaths (4), as well as grocery and pharmacy, and public transport
(5). Many other works, at both local and national levels, showed
a similar relation between mobility variations and changes in the
growth rate of the epidemics, or in the number of deaths (6). In
fact, mobility data has been used to improve the prediction of
COVID-19 evolution (7). However, some works seem to suggest
that, after the first months after March 2020, mobility did not
play such an important role in the prediction of transmission, due
to the implementation of other non-pharmaceutical interventions
(NPIs), as wearingmasks, ventilation, etc. (8–10). This could also be
related to the existence of super-spreading events, such that focused
limitations on the maximum occupations at certain events, could
be more effective than overall mobility reduction in hampering
transmission (11).

It has also been suggested that seasonal changes affect the
transmission, similar to other respiratory diseases (12, 13). Changes
in temperature, humidity, and/or UV-radiation have been observed
to affect viral transmission (12, 14–17). In the case of temperature,
most studies show a negative correlation with growth rate (12, 13),
but there are also opposite observations (18). This contradictory
data is probably due to the fact that temperature alone cannot
explain the changes in disease transmission. A prominent role has
also been attributed to UV radiation, which has been shown to
decrease both COVID-19 growth rate (19) and associated deaths
(20, 21). For the specific case of Spain, a similar negative (but small)
correlation has been found between temperature and UV index and
COVID-19 incidence and severity (16, 22–24), although, for the
first months of the epidemics, no consistent evidence was found
regarding the existence of a relationship between the accumulated
number of COVID-19 cases and temperature values at the province
level (25). Studies of the combined effect of seasonal environmental
factors and human mobility (26), show that UV-index, together
with mobility changes in Grocery & Pharmacy, Transit Station,
and Workplaces displayed the best performances in predicting
Rt . In any case, climatic variables have been found to have a

much weaker explanatory power compared to socio-economic and
disease control factors (27).

In this work, we aim to assess the role of both mobility and
seasonality on SARS-CoV-2 propagation in a rather infection-
naive population by analyzing data for all peninsular Spanish
provinces plus the Balearic Islands. We study this relation at a
time period when the level of susceptibility to the disease was very
high [above 80% during summer 2020, see Supplementary material
and Instituto de Salud Carlos III (28)]. This is, before the
massive vaccination campaign (see Supplementary material) and
the appearance of the Omicron variant in Spain during the winter
of December 2021 (29), which dramatically reduced the susceptible
population. The outcomes of the 48 different provinces provide a
nice natural experiment to check for the presence of correlations
between COVID-19 growth rates and mobility/meteorological
data. The reason is that, on the one hand, the criteria for
the detection of cases and their protocols were uniform across
the different provinces given the Spanish legislation, which
mandated the different regions to report all COVID-19 cases as a
Enfermedades de Declaracion Obligatoria (Compulsorily Notifiable
Disease) in the national statistics (30). On the other hand, the
different regions in Spain, known as Autonomous Communities in
English or Comunidades Autónomas (CC.AA.) in Spanish, were the
political entities in charge of deciding and implementing different
non-pharmaceutical interventions. With the exception of a certain
general ban on gathering, which was compulsory in all Spain during
some short period of time, most measures affecting mobility were
decided by the different regional governments (31, 32).

Another important reason to choose this analysis period is
the COVID-19 infection rates. The data indicate that the different
infection waves during this period (known as the second and
third wave of COVID-19 in Spain) did not end due to a lack
of susceptible individuals, but rather due to external factors. The
evolution of the waves differed between provinces, but they always
followed a similar pattern of a sharp increase in cases followed by
a rapid decrease. This similar behavior in the two epidemic waves
must be related to interactions between the population (mobility)
and other factors (such as climate) to maintain different levels
of growth at different times. Furthermore, data from the ENE-
COVID-19 surveys (a national-level epidemiological study) not
only shows that the level of people with prior immunity before
September 2020 was very low (below 6.5% on average for the
national level), but also during this period (September 2020–March
2021) this level increased only marginally, to around 13% on
average for Spain (see Supplementary material) (28). These reasons,
along with the previously mentioned initial vaccination coverage
and the emergence of the new Alpha variant, seem to be sufficient
arguments to reject any explanation associated with a lack of
susceptible individuals to justify the change in the growth curve
and to highlight the relevance of temperature and mobility in the
epidemic dynamics.

Mobility data was obtained from Facebook Data for Good,
which uses GPS mobile information, as well as from aggregated
mobile phone antennae information, provided by the Spanish
Ministry of Transport, Mobility and Urban Agenda or, in Spanish,
Ministerio de Tansportes, Movilidad y Agenda Urbana (MITMA).
Meteorological data was obtained by processing public satellite
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data. COVID-19 growth was processed from raw case counts
from Instituto de Salud Carlos III, the institute in Spain that
compiles and produces uniform and standard case counts of
COVID-19. The high correlation between the different series
of mobility and meteorological data requires a reduction of
dimensionality, achieved using Principal Component Analysis
(PCA). Univariate and multivariate correlations with different
time-lags between mobility and meteorological data series and
COVID-19 growth rate were assessed together with its robustness.
We show that correlations are absent between themobility/seasonal
signal and the measure of epidemic growth at the same
data, while very high correlations are present in all provinces
at the expected time delays of 1 or 2 weeks. As a global
assessment, COVID-19 growth showed a very high correlation
with mobility data and a small but not negligible correlation
with meteorological data, following the anticipated direction: lower
mobility leads to slower growth, and lower temperatures result in
faster growth.

2 Methods

The political structure of Spain divides the country into 17
Autonomous Communities (Comunidades Autonomas or CC.AA.).
Most of these CC.AA. are further divided into provinces, up to
a total of 50 provinces. We investigate the evolution of COVID-
19 epidemic and its relation to mobility and seasonal data in all
provinces except for the two in the Comunidad Autonoma of the
Canary Islands, given that mobility data from Facebook does not
present complete data of the islands. The 48 remaining provinces
encompass all the provinces of the Spanish part of the Iberian
Peninsula plus the Balearic Islands (see Figure 1).

We consider the time series from 04/09/20 to 04/03/21 (181
days), encompassing the time span where most Spanish provinces
were experiencing the second and third waves of the epidemic. We
stop in March 2021 when vaccination could influence the evolution
of the epidemic. After that, in the summer of 2021, tracking of key
mobility data was discontinued, so we can not compare our analysis
with and without vaccination. All data sets came from public
sources but required important post-processing. A description of
the process is shown in Figure 1.

We obtained six different mobility data sets from two
sources: Facebook movement range data sets and individual
travel information from the Spanish Ministerio de Transportes,
Movilidad y Agenda Urbana (MITMA). We also obtained three
meteorological data sets from satellite measures. All in all, nine data
sets plus case-count information.We perform principal component
analysis (PCA) of the six mobility data series and three seasonal
data series in each province. We show that most of the information
can be compressed into three mobility components and two
meteorological components. If combined, PCA also shows that five
series, mixing all signals, explain more than 95% of the variability.
From this information, we construct two different sets of principal
components, integrated and split, and use them to investigate
the level of explanatory power on COVID-19 growth. A visual
schematics of this research framework is provided in Figure 2.

2.1 Epidemiological data

Data of cumulative SARS-CoV-2 positives are taken from
public repositories at Instituto de Salud Carlos III. From this, the
daily number of new cases x(i) is obtained, where i indexes the day.
To calculate the growth rate for each province, we first calculate the
past 2-week average number of daily cases A14(i) for province k

(Equation 1):

A14k(i) =
1

14

i
∑

j=i−13

xk(j). (1)

The log growth rate is then calculated and averaged across 2
weeks to smooth spurious daily patterns ρ, which is a well-known
practice in European data case count [see for example Villanueva et
al. (33)], as

ρk(i) =
1

14

i
∑

j=i−13

log(A14k(j)/A14k(j− 1)) (2)

The growth rate is computed with a backward average to
eliminate any possible information about the future. This way, the
growth rate at time i only includes information on case counts
in the past. This is important to identify possible cause-and-
effect explanations behind correlations. For example, a decrease
in mobility/seasonal data on a given day must lead to variations
in the COVID-19 growth signal necessarily in the future, given
the time delays involved between infection and the detection of
the case, among others. Then, with the above definition, any
correlation between the COVID-19 growth cases and the mobility
or meteorological data without a time delay is spurious. If there is
any possible causal relation behind the correlation of both signals,
a time-delayed analysis must be included. We explain this point in
more detail in the following sections and in the discussion.

2.2 Meteorological data

Temperature, dew point, and UV data are obtained from the
Climate Data Store of the European Union Copernicus Programme
(34). They provide estimates of atmospheric quantities, such as the
temperature and dew point temperature at two meters above the
surface of the Earth or the downward UV radiation at the surface.
These estimates are the result of data assimilation: the combination
of previous forecasts and new observations made by the ECMWF
(European Centre forMedium-RangeWeather Forecasts). Data are
given hourly and, spatially, every 0.25 degrees for both latitude and
longitude. To relate this satellite data with seasonal information
of each province, the space is divided into squares of 0.25 × 0.25
degrees, centered on the latitude and longitude points of the given
data set, and it is determined, for each of these squares, which
province is the dominant (which province is present the most in
the corresponding square). Then, a temporal average across the day
24 h, and a spatial average across all Province squares, give the
corresponding daily data for each one of the provinces.

Each of the surface squares Si is associated with the province
more present in the area. In some cases the square is fully within a
province, but this is not the case near a border (see Figure 1B). So,
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FIGURE 1

Schematics of processing in all the signals considered in the manuscript from 4/9/2020 to 4/3/2021 in all Spanish provinces. We use as an example
the dataset from the province of Cadiz (South of Spain). (A) Left: case counts and biweekly average from Instituto de Salud Carlos III (public source).
Right: computation of the local epidemic growth (red dots) as defined in Equation 2. (B) Left: scheme of the Spanish covering for satellite data and
selection for Cadiz as described in Equations 3, 4. Right: Daily time series of temperature, UV radiation, and dew point, as well as the resulting smooth
processing. (C) Left: district/area subdivision of Cadiz in MITMA data structure. As example, we use three subdivisions (green, red, and blue). Right: In
each graph we show trips in the same subdivision, trips from the subdivision to any other in the province, and trips from each subdivision and a
location out of province. The final graph shows the result of adding the previous data from all the subdivisions in the province. This amount of

(Continued)
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FIGURE 1 (Continued)

trips is then compared to the baseline mobility obtained from data obtained in February 2020 to compute, below, the reduction in mobility. Finally,
weekday and weekend data series are split and interpolated with a spline function. (D) Original source of mobility in Facebook is already provided as a
reduction. Only the weekend/weekday split is implemented, as with data from MITMA.

FIGURE 2

Schematics of the research framework pursued in this paper. We consider meteorological and mobility data series at province level (leftmost box)

and COVID-19 case-count data from which we compute the growth rate (upper middle box). We first compute univariate correlations between
growth rate and each one of the signals independently at each province. This univariate correlation analysis is done at di�erent time lags of 0, 1, and
2 weeks (as shown in the upper right box). Secondly, we perform two types of Principal Component Analysis (PCA) to the meteorological and
mobility signals (bottom central box). In one, we compute the principal components (PCs) of the meteorological signals separated from the PCs of
the mobility signals. In the other, we compute the PCs with all meteorological and mobility signals together. Then, we perform a multivariate analysis
of the growth rate with the resulting PCs (bottom right box). For the case in which principal components are computed separately, we introduce a
fixed delay of 2 weeks for meteorological data and 3 weeks for mobility data, as these are the delays that present highest univariate correlations. For
the multivariate analysis of the growth rate with the PCs that mix all signals together, we perform a moving delay analysis to check which time delays
present the highest correlation between the PCs of the signals and the growth rate. These multivariate analysis are done independently for each
province, obtaining di�erent highest correlation coe�cients for di�erent provinces.

the set of squares Si that corresponds to a given province p, named
Sp, is mathematically defined as

Sp = {Si|Si ∩ Ap > Si ∩ Ap′ , ∀p
′ ∈ P\p} (3)

where P\p is the set containing all Spanish provinces except
province p and Ap is the area of province p.

After defining the set of squares of the grid that encompasses
a province, i.e., the squares from the set Sp of each province p, the
meteorological signal of a province can be computed as the average
of the signals of these squares. More formally, let the squares in
Sp be numbered from 1 to NSp . Then, the corresponding value of
a given meteorological variable X for the province p and day d,
X(p, d), is computed as

X(p, d) =
1

24

24
∑

t=1

(∑

Si∈Sp
X(Si, d, t)

|Sp|

)

(4)

where |Sp| is the cardinality of set Sp and X(s, d, t) is the value of the
meteorological variable X at the square Si on day d and hour t.

2.3 Mobility data

Mobility data is obtained from two independent data sources,
Facebook and MITMA. In these, mobility is measured in
complementary ways, providing a unique opportunity to have
accurate aggregated mobility data and interaction in a geographical
area with a cross-comparison of methods.

Facebook movement range maps are provided by the program
Facebook Data for Good. They aggregate GPS information from
mobile devices that use the Facebook app and have the GPS tracking
system active, as described in detail in (35). Each province is divided
into level-16 Bing tiles (which are approximately 500 meters by
500 meters in Spain) and the amount of tiles visited on average
per person in a given day is computed. Facebook does not provide
the average number of trips, but rather its reduction (or increase)
compared with equivalent days in February 2020. Figure 1 shows
typical raw data for Cadiz as an example. For instance, a value of
0.2 indicates a reduction of the mobility of 20% compared with the
equivalent day in February 2020. A negative value would indicate an
increase inmobility. Therefore, a higher value of the signal indicates
a larger reduction in the average number of tiles visited per person.
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We observe a marked difference in the mobility data between
weekdays and weekends. Mondays and Fridays also have slightly
different behavior. In order to aggregate comparable data, we
split the original data set into weekdays and weekends. Weekdays
include all Tuesdays, Wednesdays, and Thursdays, except bank
holidays, and the first day before and after a bank holiday.
Weekends encompass Saturdays, Sundays, and bank holidays. In
order to have a continuous data set, we interpolate and smooth
the signal using the csaps function in MATLAB with a smoothing
parameter of 0.05 so as to have a value for each day that captures
properly the trend, at least in the same 2-week window frame
that we use to compute the average growth of the epidemics. The
smoothing procedure did not change significantly the outcomes,
as long as the smoothing parameter was set around 0.2–0.02,
averaging information below the 1-week scales. We also checked
that increasing the smoothing parameter up to 0.5 did not change
our results significantly.

The second source of mobility information is provided by
MITMA and has its source in the geolocalization of more than 13
million mobile phone carriers. These devices record the nearest
mobile tower each time the user employs his or her phone or
each time that phone actively connects to an antenna. From
these records, anonymized by the data source, MITMA captures
the mobility patterns, dividing Spain into 2,850 areas (mostly
municipalities or aggregations of them and districts for big cities)
for that purpose, and computing the number of trips from one area
to another and within the areas, every hour. A trip is defined as
a detection which is more than 500 meters apart. We aggregate the
public data both in time and space.We divide trips into internal and
external to a particular province depending on whether the trip’s
initial and final positions are within MITMA areas that belong to
the same province or not. We compute all trips within a province
and those within/without of the province, constructing two data
sets. From this, we calculate the reduction in mobility with respect
to a baseline, taking the 7-day average mobility in the first week
after February 21, 2020, as a reference. Notice that MITMA strictly
measures the number of trips, while the data from Facebook can
be better related to the total distance traveled in each trip. Each
variable measures thus something slightly different providing a
rather complete and detailed description of mobility.

As for Facebook data, we similarly observe the
weekday/weekend separation, and we thus split the data as
above. Again, all data series were subject to the same cubic-spline
smoothing process. All in all, for each province there are 6 mobility
measures. Facebook movement range on weekdays (FB WD),
Facebook movement range on weekends (FB WE), MITMA trips
within a province on weekdays (MITMA WD), MITMA trips
within a province on weekends (MITMA WE), MITMA trips
out/in of the province on weekdays (MIO WD), and MITMA trips
out/in of the province on weekends (MIOWE).

2.4 Principal component analysis

The different day-based time series defined previously are
heavily correlated, as shown in Figure 3A. The pairwise average
value of the correlation coefficient in all 48 provinces on average

shows that the correlation is very high among different measures
of mobility on weekdays and on weekends, but not so much
crossing weekends and weekdays. This reinforces the idea of
splitting the series of mobility between weekdays and weekends,
as they convey different mobility information. This is critical
during the period analyzed, since some restrictions in a number
of provinces were activated only on weekends. Interestingly,
there is also a correlation (or anticorrelation) between mobility
and meteorological data (Figure 3). The higher the temperature
the lower the decrease in mobility. Similarly, better weather
conditions are correlated with a higher level of mobility, which is
to be expected.

Given these correlations, we employ Principal Components
Analysis (PCA) of normalized mobility/meteorological signals
when performing multivariate analysis (see research framework in
Figure 2). More specifically, we use PCAs on two different types of
data. First, we consider a PCA of the full set of nine data series
(integrated PCA). Secondly, we also use PCA for the six mobility
time series on the one hand and for three meteorological on the
other (split PCA).

2.5 Time-lagged correlation

Changes in mobility or in environmental variables do not affect
immediately the evolution of the epidemics. To start with, there are
structural epidemiological causes due to delays between infection
and the registration of a case in the COVID-19 case count in
each province. Then, there is a time-lapse until the development
of symptoms, which can range from three days up to, in some
cases, more than a week (36). There is also a time-lapse between
the development of symptoms and the visit to a doctor, with the
consequent registered diagnosis. So, at minimum, there must be a
5–7 day delay between mobility/seasonal signal and its effects on
epidemic growth.

Furthermore, this delay between a possible cause and its effect
could be larger. The growth of epidemics is not only determined
by the mixing itself but also by the very level of incidence. All
things equal, a higher level of incidence requires a higher level
of mixing. Besides, there are second-round effects on any given
infection process, where the first round of reduction of infections
will produce further reduction down the road due to the lower
level of infected people. To have a better idea of the expected
time-lags in the correlation analysis, we use a SIR model where
the number of susceptible and recovery rates are known from the
literature, and the infection rate is deterministically fixed by an
external signal. With this SIR model, we can then test how a causal
relationship between a given signal and the infection rate translates
into a correlation between the signal and the growth rate, as defined
in this manuscript. We observe that, if there is no delay between
infection and its reporting, the maximum correlations are typically
obtained with time-lags around 1 or 2 weeks depending on the type
of signal and parameters of the model (see Supplemental material
for details). However, given the typical five/ten day delay between
infection and report, we expect the largest correlations with a time
lag between signal and growth rate of 2-3 weeks. This is why the
analysis (Figure 2) must include these time delays.
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FIGURE 3

(A) Color-coded table with the average value of the correlation coe�cient between the nine variables considered in this work for 48 provinces. (B)
Cumulative percentage of the variance of the nine time series explained with di�erent number of principal components in each province. (C) Same
analysis as in (B) but only with six mobility data series. (D) Same analysis but with the three meteorological data series.

It is important to stress that zero time-delays should not present
any correlation with growth if there is a possible causality behind
the correlation. On the other hand, correlations with a time-lag
between 2 and 3 weeks can be expected. For this reason, in our
univariate analysis, we analyze correlation coefficients with 0, 1, 2,
and 3 weeks delays between the signals and the growth rate. Later,
we use multivariate analysis between the PCs of the nine time series
and epidemic growth. In this case, due to the mixture of signals,
there might be different time-lags with respect to epidemic growth.
In this situation, a more detailed spanning of the time-delays is
used.We study different correlation coefficients as the time-lags are
moved continuously between 7 and 28 days so that we can track the
time-lag that produces themaximum correlation between these two
values (see Figure 2).

2.6 Multivariate analysis

Given the notable correlation observed between the original
signals (see Figure 3A in the Results section), we perform multiple
linear regression in each province between the growth rate and
the principal components of meteorological and mobility data
to quantify the partial contribution of each variable into the
reported epidemiological trends. More specifically, we infer the
statistical associations between the COVID-19 case growth and the
principal components (PCs) within each data type (meteorological

or mobility data), and across both types (combined meteorological
and mobility data), as described in Figure 2.

By using PCA within and across the time series of each
data type, we performed in total four different multiple linear
regression analysis. First, for each province j, we took the first two
PCs (XPCMet1

j and XPCMet2
j ) of the three meteorological series as

independent variables (Equation 5):

ρj(i) = β1jX
PCMet1
j (i− τ )+ β2jX

PCMet2
j (i− τ )+ β0j, (5)

where ρj(i) is the COVID-19 case growth rate of province j, at time
i and τ is the time lag used for the analysis. We use τ = 0, 7, 14, and
21 days. For each one of the provinces, we obtain the coefficients
β1j and β2j and the goodness of fit. Then, we repeated the same
procedure for the first three components of the six mobility time
series (XPCMob1

j , XPCMob2
j , and XPCMob3

j ) (Equation 6):

ρj(i) = β1jX
PCMob1
j (i− τ )+ β2jX

PCMob2
j (i− τ )+

β3jX
PCMob3
j (i− τ )+ β0j. (6)

Finally, we consider linear regression models that
simultaneously include mobility and meteorological PCs as
regressors. In particular, we study two possible combinations of
the regressors. The first model is to use the PCs obtained within
mobility and meteorological data, each with its corresponding time
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lag (Equation 7):

ρj(i) = β1jX
PCMob1
j (i− τmob)+ β2jX

PCMob2
j (i− τmob)+ (7)

β3jX
PCMob3
j (i− τmob)

+β4jX
PCMet1
j (i− τmet)+ β5jX

PCMet2
j (i− τmet)+ β0j.

Because of the observed amount of regressor co-linearity, it
might be of interest in this model to disentangle the specific
contribution of each data type conditioned on the other. To this
end, we resort to the estimation of partial R-squared [R2p(·)] (37)
for mobility and meteorological data, respectively. The partial
R-squared (also called the coefficient of partial determination)
is the proportion of variance explained by a given subset of
regressors over the dependent’s variable variability that is not
explained by the remaining regressors. Hence, it accounts for the
unique and added contribution of the given subset of regressors
with respect to the remaining set. More formally, let SSEfull ≡

SSE(X1,X2, · · · ,XM) denote the residual sum of squares of the
above model Equation 8 when considering the entire set of possible
M regressors and let SSE(Xi1 ,Xi2 , · · · ,Xin ) be the SSE for a
regressors’ subset of size n, where n < M. Then, for a given
province j, the partial R-squared of the mobility PCs is estimated
as (37):

R2p(X
PCMob1
j ,XPCMob2

j ,XPCMob3
j )=

SSE(XPCMet1
j ,XPCMet2

j )−SSEfull

SSE(XPCMet1
j ,XPCMet2

j )
.

(8)
Similarly, the partial R-squared of the meteorological PCs may

be estimated as (Equation 9):

R2p(X
PCMet1
j ,XPCMet2

j )=
SSE(XPCMob1

j ,XPCMob2
j ,XPCMob3

j )−SSEfull

SSE(XPCMob1
j ,XPCMob2

j ,XPCMob3
j )

.

(9)
To overcome regressors’ co-linearity, an alternative model is

to use the leading PCs of the nine original time series altogether
(Equation 10), that is, XPCm

j (i), where m = 1, 2...,M indexes the
first, second,...,M-th principal component as regressor:

ρj(i) =
m=M
∑

m=1

βmjX
PCm
j (i− τj)+ β0j. (10)

In this latter analysis, we consider up to a maximum of
five regressors M = 5 since they had been shown to explain
most of the total variance in the original signals. Furthermore,
we assume that for a given province, the time lag τj is fixed
across all PCs. We note that the fitted time lags might slightly
vary across provinces but they are expected to be narrowly
distributed if causation between mobility/meteorological variables
and growth rate underlies the measured correlations. Overall,
this model allows for a simple decomposition of the total R-
squared into the sum of each separate regressor’s R-squared.
Instead, the interpretation of the analysis outcomes in terms of
PCs with mixed meteorological and mobility information might be
challenging.

3 Results

3.1 Principal components

As explained in the previous section, we compute PCs either
separately from the six mobility and the three meteorological times
series (split PCA), or obtain mixed PCs from all nine time series
(integrated PCA). In both cases, most information is contained
in just five time series. Figure 3B illustrates, for each province,
the fraction of the variance explained by an increasing number
of components for the integrated PCA. The first five components
explain more than 95% of the variance. In fact, four components
explain more than 90% in all provinces. Figure 3C shows the same
analysis but for the mobility time series where reducing from 6
to 3 time series, in all provinces, conserves more than 90% of the
total variance. For a PCAwith onlymeteorological information, the
three time series can be reduced to 2, explaining close to 98% of the
total variance as shown in Figure 3D. All in all, the integrated PCA
seems to reduce more efficiently the information contained in the
original time series. From the variance explained we conclude that
two components are relevant for meteorological data, and three for
mobility.When integrating all signals, four or five PCs explainmost
of the variance and, thus, are the ones significant.

Even if the integrated PCA reduces more efficiently
dimensionality than the split PCA, we keep also the latter to
help with the interpretability of the results. This can be understood
by analyzing how the different principal components weigh the
different signals in each province. For the integrated PCA where
all nine signals are introduced, we find that weights of the first
PC in each province are nearly equally distributed among the
different variables, with different signs due to anticorrelation
between variations in mobility and in Temperature/DewPoint/UV.
The coefficient corresponding to each signal is color-coded in the
left graph in Figure 4A for each province. The second component,
also in the panel, generally weighs more heavily meteorological
data series together with weekday mobility time series, neglecting
the weekend mobility time series. There are, however, important
exceptions in Girona, Toledo, Tarragona, or Avila. In the third
component, there are more exceptions, but generally, a strong
separation of Dew Point from UV radiation (large coefficients with
different signs) joins an important weight of the in/out weekend
time series. The last graph in Figure 4A shows that the fourth
component presents a clear mix of mobility and meteorological
signals that is very different from province to province. There
is a general split between labor and weekend mobility, but with
very different weights on Dew Point and UV radiation depending
on the particular province. The fifth component, not shown, is
similarly dependent on province without a clear pattern although
there is a tendency to split Facebook labor mobility from MITMA
with different relative weights for meteorological variables. Table 1
shows the average value of each of the nine coefficients of the first
four principal components for the 48 Spanish provinces.

The PCA split for mobility and meteorological time series leads
to a more consistent picture of each component, see Figures 4B, C.
The two first PCs of the meteorological time series are simple to
interpret, the first one is an average of all the time series, while the
second component splits UVB radiation on the one hand and Dew
Point on the other, with a smaller contribution of temperature (see
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FIGURE 4

Color-coded coe�cients from the PCA in each province for (A) the first, second, third, and fourth PCs of the nine data time series considered
together; (B) first, second, and third PCs of the six mobility data series (C) first and second PCs of the three meteorological data series.

TABLE 1 Coe�cients of the first four PCs with respect to all the variables, averaged over the 48 provinces.

Temp DP UV rad FB WD FB WE MITMA WD MITMA WE MIO WD MIO WE

1st PC –0.3313 –0.2621 -0.3300 0.3070 0.3721 0.2745 0.3568 0.3342 0.3704

2nd PC 0.3335 0.3248 0.2664 0.3663 –0.0404 0.4093 0.0926 0.1958 –0.0713

3rd PC 0.1418 0.4576 –0.2744 0.0684 0.0423 -0.1803 –0.0122 0.0556 0.2114

4th PC 0.1376 0.1502 0.0642 –0.1816 0.3821 -0.0839 0.2953 -0.2992 0.1166

Supplementary material). Mobility interpretation is more complex.
As shown in Figure 4C, the first component represents an average
of all mobility signals across all provinces, the second component
splits the weekday, and weekend data and the third component
splits trips In/Out of the province measured by MITMA from
the rest. We notice that some provinces have these patterns for
the second and third components interchanged. Tables 2, 3 display
the average values of the coefficients for the main components of
meteorological and mobility data respectively, showing this clear
interpretation.

To sum up, joining all time series to perform a single integrated
PCA reduces the effective dimension very efficiently to four,
maximum five relevant signals. The interpretation of the fourth
and fifth components, however, is not straightforward. On the
other hand, when the separation between signals is kept, the
resulting time series from the PCA have a clearer interpretation,
uniform across-provinces. We present in the following sections

TABLE 2 Coe�cients of the first two PCs with respect to the

meteorological variables, averaged over the 48 provinces.

Temp DP UV rad

1st PC 0.6252 0.5570 0.5452

2nd PC –0.0928 –0.6355 0.7475

how the signals resulting from both types of PCA reductions in
dimensionality correlate with epidemic growth and how robust
these correlations are to changes in PCA analysis.

3.2 Univariate analysis

First, we compute the correlation between the nine time series
(three meteorological and six related to mobility) and the infection
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TABLE 3 Coe�cients of the first three PCs with respect to the mobility variables, averaged over the 48 provinces.

FB WD FB WE MITMA WD MITMA WE MIO WD MIO WE

1st PC 0.4006 0.4187 0.3628 0.4245 0.4032 0.4155

2nd PC 0.3387 –0.3166 0.4541 –0.1281 0.1087 –0.3319

3rd PC 0.0090 –0.1740 –0.2329 –0.2668 0.4381 0.2242

FIGURE 5

(A) Histograms of R-Squared values from the univariate correlation analysis between each meteorological time signal and the growth rate in
COVID-19 cases for 48 Spanish provinces. Four di�erent histograms are shown for each time signal corresponding to four di�erent time delays
between the meteorological signal and COVID-19 growth rate. (B) Equivalent histograms for each of the univariate analyses using mobility data. (C)
Color-coded Pearson coe�cient of the univariate correlation between the growth rate of COVID-19 cases for each province and each one of the
nine time signals. For each time signal, four values of the Pearson coe�cient are shown corresponding to 0, 1, 2, and 3 week delays between signals.

growth rate for all Spanish provinces with four different time delays
(from 0 to 3 weeks), as described in the methods section. That is,
for each time series and for each time delay we obtain 48 different
coefficients of determination. Figure 5 presents histograms of these
coefficients for each univariate analysis. In Figure 5A, for example,
the first row shows the correlation between the average temperature
time series and the growth rate, with the four different time lags. It
is clear that this correlation is very low in all provinces. A similar
pattern is observed with UV radiation in the third row. This can
also be seen in Table 4, where the median over all provinces is
shown. The only exception is the appearance of a certain correlation
between the Dew Point and the growth rate with 1–2 weeks
delays. Still, the R-squared does not reach levels above 0.5. It

also demonstrates that correlation at zero delay is negligible, as
discussed in the methods section.

Figure 5B shows the same histograms for univariate analysis
between growth rate and mobility time series. Here, correlations
are generally larger. Their maximum occurs with time lags
between 2 and 3 weeks, roughly 1 week later than for
meteorological variables. The highest correlations are obtained
between growth rate and labor day mobility time series. Table 4
presents the median coefficient of determination using a 2-
week delay lag for meteorological data and 3-week lag for
mobility data. Mobility data have across the board higher level
of correlation than meteorological data. The median values reach
0.6 for the correlation between Facebook weekday mobility and
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TABLE 4 Median values over all provinces of R-squared of the correlation between di�erent signals and the growth rate.

Temp DP UV rad FB WD FB WE MITMA WD MITMA WE MIO WD MIO WE

R2 0.0179 0.1145 0.0383 0.5275 0.1240 0.4455 0.2272 0.2721 0.1948

The meteorological and mobility variables are taken with a time lag of 2 and 3 weeks with respect to growth.

the growth rate and 0.5 for the mobility data output from
MITMA.

Figure 5C displays color coded Pearson coefficients of the
correlation between the growth rate in COVID-19 cases and each
of the nine signals in each province. For each signal, four different
time delays are shown. As discussed above, correlations with
meteorological time series are very low, except for the dew point
temperature in some provinces, but when present, the correlation
is negative, meaning the lower the temperature the higher the
growth rate. Correlation, as indicated, is higher between COVID-19
growth rate and mobility when using 2–3 week time delay. Pearson
coefficients are negative indicating that the lower the reduction in
mobility (higher mobility) the higher the growth rate in COVID-19
cases.

This last figure also shows that a high correlation, however,
is not present systematically over all provinces. Madrid and
Guadalajara, two central neighboring provinces, for example,
present a very low correlation in all univariate analysis between
COVID-19 growth rates and mobility. Similarly, some of the
provinces with the lowest population densities, like Teruel and
Soria, present very low correlation coefficients.

3.3 Multivariate regression analysis
between COVID-19 growth rates and the
principal components of mobility and
meteorological signals

We start the multivariate analysis by studying the correlation of
the COVID-19 case-count growth rate ρ with the three principal
components of the mobility data series, on one hand, and with
the two principal components of the meteorological data series
on the other. We obtain first the multivariate linear coefficients
for different time lags between the components and the growth
rate, as indicated in the methodology. Figure 6A shows the first
and second coefficients β1 and β2 color-coded for each province.
Four values of β1 and β2 are shown, corresponding to no time-
lag and time-lags of 1, 2, and 3 weeks between the growth rate and
the two principal components of the meteorological data series. In
Figure 6B, the same but for the three coefficients β1, β2, and β3 in
the same analysis for the three principal components of themobility
data series.

The graph shows that, for zero time lag, coefficients are roughly
zero across all provinces. The goodness of fit, not shown, is close
to zero as expected. Coefficients deviate from zero when the delay
is about 1 or 2 weeks. This is the earliest effect possible between
a potential cause and effect as we will discuss later in more detail.
Coefficients are negative for the first component and positive for
the second. For mobility, large coefficients appear with a 3-week
delay, with the corresponding β1 being highly negative, as expected

if a larger reduction of mobility leads to a lower growth rate of the
disease propagation.

We then focus on time lags of 2 weeks between meteorological
data and growth rate, and 3 weeks between mobility data and
growth rates. Figure 6C shows the R-squared for all provinces
using 2-week time delays between the growth in case counts of
COVID-19 and meteorological time series. We observe that, with
few exceptions, R2 is systematically lower than 0.4, and in some
provinces, it falls below 0.2. Figure 6D shows that the goodness of
fit is much higher for the correlation between COVID-19 growth
and mobility. Most provinces have R2 larger than 0.6. Interestingly,
a few provinces do present a very low correlation. For example,
Teruel, one of the less densely populated provinces in Spain, along
with Madrid and Guadalajara (a neighboring province of Madrid
that has strong mobility interactions with the capital) present R2

values below 0.3.
In principle, both mobility/interactions and environmental

factors affect growth rate, so the next step is to check the correlation
when both data series are combined. Figure 6E shows the R-squared
coefficient of a multivariate analysis between the growth rate of
COVID-19 cases and the 2 meteorological plus 3 mobility PCs,
using a 2-week time lag between growth rate and meteorological
time-series and a 3-week delay between growth rate and mobility
data. Combining both, a remarkable result arises. The goodness
of fit raises significantly in all provinces. There is no longer any
province with a low goodness of fit. Most provinces exhibit a
goodness of fit above 0.8 and, almost all above 0.6.

We have checked that this increase is not merely due to
the increase in the number of time series in the multivariate
analysis. Figure 6E shows that adding two random time series to
the principal components of the mobility time series increases the
goodness of fit marginally. This implies that, while meteorological
data on its own, does not present important correlations, when
it is added to mobility data it provides relevant complementary
information.

3.4 Relative contribution of mobility and
meteorological variables to the epidemics
growth

The average and median values of R-squared for the previous
multivariate analyses are shown in Table 5. It is of special interest
to focus on the R-squared value between the growth of COVID-
19 cases and the five time series (two meteorological plus three
mobility) that provide this high correlation over all Spanish
provinces. The median R2 value is 0.81. It is interesting to compare
this value with the square value of the five weights βi shown
in the Supplementary material. While the principal components
of mobility and meteorology are by construction not correlated
among them, the principal components of mobility can present
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FIGURE 6

(A) Color-coded coe�cients β1 and β2 for the multivariate regression between the COVID-19 case count growth rate and the two principal
components (PCs) of the meteorological time series using four di�erent time lags between the time series: 0, 1, 2, and 3 weeks. (B) Color-coded
coe�cients β1, β2, and β3 for the multivariate regression between the COVID-19 case count growth rate and the three PCs of the mobility time series
using four di�erent time lags between the time series: 0, 1, 2, and 3 weeks. (C) Goodness of fit for each province of the multivariate analysis with the
two PCs of the meteorological data time series with a 2-week time lag. (D) Goodness of fit for each province of the multivariate analysis with the three
PCs of the meteorological data time series with a 3-week time lag. (E) Goodness of fit for the multivariate analysis between the COVID-19 growth
rate and five time series, the two PCs of the meteorological time series plus the three PCs of the mobility series using 2 and 3-week lags respectively.

TABLE 5 Average and median value of the coe�cient of determination (R-squared) for several of the multivariate analyses performed.

2 PC meteo 3 PC mobility 3 PC mobility + 2 PC meteo

Average r2 0.28 0.58 0.77

Median r2 [Q1–Q3] 0.29 [0.19–0.36] 0.60 [0.47–0.77] 0.81 [0.69–0.87]

The time lags used are 2 weeks with the principal components of the meteorological time series, and 3 weeks with the PCs of the meteorological time series.

correlations with those from meteorology. In this sense, the
quadratic sum of the weights is not equal to R2.

In this context, we wish to provide a fair comparison
between the individual explanatory power of meteorological and
mobility information. To this end, we consider three PCs for
meteorological and mobility time series, respectively, to avoid
any bias in the analysis due to differences in the number of
regressors. Then, we follow two approaches. First, we analyze
two separate models, one for meteorological data and another
for mobility time series and compute the corresponding R-
squared in each province. Finally, we represent the difference
in R-squared between mobility and meteorological data for each

province in decreasing amounts (see solid line in Figure 7).
Due to the reported correlation between the PCs of each data
type, the R-squared of each separate model captures a fraction
of shared explanatory power by meteorological and mobility
variables. Hence, in order to account for the amount of COVID-
19 growth variability that each data type explains uniquely,
we compute the partial R-squared of each subset of PCs in a
joint model including three meteorological and three mobility
PCs, respectively. The partial R-squared of the meteorological
(resp. mobility) signals computes the added contribution of these
variables to explain the variance unexplained of the dependent
variable (growth) when only mobility (resp. meteorological) signals
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FIGURE 7

In solid line, di�erence between the R2 of the mobility and
meteorological variables. The dashed line correspond to the
di�erence of the partial R2.

are present in the model. Finally, we represent the partial R-
squared difference for each province in Figure 7 (see dashed
line) superimposed to the above-mentioned R-squared difference.
Interestingly, both curves consistently show positive differences
(>0.2, medium effect size threshold) in a large ensemble of
provinces, while negative differences (<−0.2) in a much smaller
subset. This suggests that in the majority of provinces the relative
contribution of mobility into COVID-19 growth is stronger
than the contribution of meteorology because it also explains a
great deal of epidemiological variability that is not associated to
meteorological variables.

3.5 Robustness analysis. Multivariate
analysis with principal components mixing
mobility and meteorological data

We check now the robustness of this high correlation
between the growth rate of COVID-19 case counts and a proper
combination of meteorological and mobility data. To this aim,
we consider all nine signals and compute the different principal
components for each series. Most of the information in the
variance is collected in the first four signals, more than 90% in all
provinces, withmarginal improvement in the next two components
(see Figure 3B and Section 2.4). We proceed to compute now a
multivariate linear regression of the growth rate of COVID-19 case
counts with the first four principal components of the time series.

As described in the Method Sections, different provinces
present slightly different mixtures of the signal in each component
because there are some correlations or anticorrelations between
mobility and meteorological data. This implies that the delay
between the signals and their effects are necessarily different in
each province. To test that correlations are indeed high, we look
for different time lags between the principal components and the
growth case count of COVID-19.

Figure 8A shows in color code, for each province, the R-squared
as a function of the time-lag indicated in the X-axis. Most of the
provinces present very high R2 for time delays between 15 and 25
days. As we will show in the discussion, 10–14 days is the minimum
time lag that must be present between cause and effect. Figure 8B
presents a scatter plot of the time lag with the best goodness of
fit for each province. A simple cluster algorithm (38) indicates
the presence of four groups of provinces. Those with a very high
correlation cluster around 3-week delays (red dots). A second
cluster has an intermediate high r2 at 0.65–0.85, but presents the
maximum correlations sooner, around 2 weeks (yellow), a third one
with rather larger correlations but with a maximum correlation at
longer delays (blue) and a final cluster of slightly lower correlation
(r2 at 0.6–0.8) which seems to present time delays at slightly more
than 3 weeks (green).

A very important result is shown in Figure 8C. The R2 for
the time lag is shown in Figure 8B using a different number
of PCs in the multivariate analysis. The graph shows how the
correlation levels in each province do not change much once the
three first PCs are used in the multivariate analysis. More than ten
provinces sharply increase the correlation when three PCs are used.
Adding more components still produced an improvement, but
more marginally. Seven provinces do present a significant increase
in the correlation with five components compared with four, but the
increase is not as broad-based as when three PCs are used instead of
four. It is highly possible that when third components are included,
further information simply overfits without any more meaningful
explanatory power. In order to further test the robustness of
this analysis, we perform the same multivariate analysis using a
common 3-week delay between all PCs and the growth rate. Table 6
shows that the median R2 does not change appreciably. In any
case, when information from four time series is included the lowest
quartile is always above, and the median is not affected.

4 Discussion

In this article, we have demonstrated that a very high level of
correlations between the growth rate and the principal components
of mobility and meteorological data is sustained under different
analyses and scenarios in all Spanish provinces. More than half
of the provinces present a high R-squared above 0.85, with all
provinces above 0.5. In fact, with the exception of one province,
R-squared is always above 0.6 when using 4 PCs with a province-
adjusted optimum time delay. We consider this to be a reliable
indicator of the actual correlation between meteorology, mixing,
and growth rate of the epidemics since all signals are obtained
through well-established protocols.

First and foremost, the growth rate of cases is based on the
detection by health services at both primary care and hospital/ICU
admittance levels. Cases detected in the hospital carry considerably
more delays than those detected in primary care. However, in
the national register, cases are provided according to the date
of diagnosis. Another important point is that, during the period
analyzed, the level of detection of cases in Spain was very high,
most of the symptomatic cases and an important number of
asymptomatic cases were detected (see Supplementary material).
An important fact is that the evolution of cases in each province is
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FIGURE 8

(A) Color-coded value of R2, for each province, of the multivariate linear regression of the four PCs of the mobility and meteorological time-series in
front of the growth rate in the case count of COVID-19. The X-axis presents the di�erent time lags used between the PCs and the epidemic growth
rate. (B) Shows a scatter plot where the maximum goodness of fit is plotted against the time delay used for this maximum. (C) Shows the highest R2

for each province when two, three, four, or five PCs are used in the multivariate analysis. Provinces are sorted from higher to lower correlation using
four PCs.

TABLE 6 Average and median value of the coe�cient of determination (R-squared) in the multivariate analysis using four PCs.

4 PC all series (common delay) 4 PC all series (adapted delay)

Average r2 0.75 0.79

Median r2 [Q1–Q3] 0.79 [0.66–0.88] 0.80 [0.69–0.87]

In one case for all time series we use a common time delay of 3 weeks, while in the other we use a province-by-province time delay that presents the higher coefficient of determination.

very different. Some provinces have a first large wave in November
followed by a small one in January. Others have similar waves in
November and in January, and others have mainly one wave in
January. There is a wide spectrum of outcomes, which makes it
possible to hypothesize on the causal origin of correlations, as we
will discuss later.

Regarding meteorological data, most provinces have a rather
similar structure of the evolution of temperature during this period:
It first decays rather linearly from the beginning of September until
late December, then a major drop in temperature happens due to
the storm Gloria that affected Spain during January 19–25 and
finally a return to the low-temperature levels typical for February.
For mobility data, the fact that we have information from two
complementary sources with very different inputs (Antenna and
GPS sources) provides a coherent and trustworthy description of
how people responded to legal non-pharmacological interventions
and the changes in behavior affected by the news provided by

the media. In this sense, it is a very good surrogate of very
different effects that can affect the mixing of people and drive
the epidemics. The fact that different provinces had different non-
pharmacological interventions at different times (39) and with
different effects is key in our interpretability analysis. So, we have
an important asymmetrical shock, very useful to test if this signal
can have an effect on the circulation of the virus. On the other
hand, the time series of mobility during weekdays and weekends
are rather different from province to province (see the graphs in
the Supplementary material). It is no surprise that, with such big
differences in growth but a similar temperature profile, most of
the correlations between purely meteorological time series and
growth are very low. Temperature, at least at this stage of a very
high susceptible population does not seem to play a major role in
transmission on its own.

Our results point in the direction that mobility is either directly
causal or highly directly correlated with other measures that
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directly affect the propagation of the disease via mixing when the
population is highly susceptible. Other papers that use mobility
data to make short-term predictions of the effective reproduction
number (Rt) (40) have shown similar results. From data in Poland,
Turkey, and South Korea (41) it has been shown that while the
stringency index was associated with mobility data of the same
day, mobility changes were associated with the number of cases 1
month later. Another study found that daily new COVID-19 cases
in Spain are directly related to mobility habits 14 days before (42).
Meteorological patterns are less relevant than mixing effects in the
propagation of an epidemic with a large number of susceptible
populations. This is consistent with the observation that warm and
wet climates seem to reduce the spread of COVID-19, but these
variables alone could not explain most of the variability in disease
transmission (43).

In our data, we observe a very high correlation at the
expected time-lags (42), especially when some information on the
temperature is added to the principal components of mobility.
However, the explanatory power of these time signals deserves a
careful analysis regarding their interpretability, which we proceed
to address. It is crucial to understand that correlation does not
directly imply causation. We must delve deeper into whether a
direct model with explanatory power using causal inference such
as the one discussed above can be useful in future stages of the
pandemic.

Figure 9 helps to guide this discussion. On the right, the growth
of cases is our measured output. Epidemic growth is well known
to depend causally on, first, the amount of susceptible population.
The smaller the number of susceptible people, the less ability the
virus has to circulate. This, in our case, depends mainly on the
level of previous infections, the specific variant under circulation,
and the waning of its immunity, given that vaccination was not
available at that point. Secondly, growth is directly linked in a
causal form to the level of mixing. The fewer people interact
with each other, especially in environments where high viral loads
are possible, the more difficult it becomes for the disease to
propagate.

Besides this clear causal link between susceptibility and
mixing with epidemic growth, another two well-known causal
relations have been established: a subset of non-pharmacological
interventions clearly affects mixing, such as the prohibition of
large crowds or prevention of gatherings with more than a
given number of people. The question here, rather than on
causality, is about efficiency regarding the relevance of the
measure, given its costs. But for our purposes, it is clear
that a population-level lockdown prevents the propagation of
epidemics. Similarly, non-pharmacological measures that impose
lockdowns or prevent travel between different geographical
areas directly affect mobility, which is drastically reduced (44).
Yet, other non-pharmacological interventions might also affect
mobility even when no direct prohibition of movement is
established. Heavy restrictions on gatherings on weekends or
during certain times of the day at specific places can affect the
level of mobility by limiting the available leisure activities of
the population. For example, an NPI that prevents gatherings
of more than 10 people in the same bar during the weekend
might affect weekend mobility (45). Given that this effect is

indirect and is not fully understood, we mark it as possible
causality.

Two other possible causal relations have been discussed often in
the literature. First, the possible effect of temperature and humidity
in changing the susceptibility level of the population, whether
directly, as it affects the ability of the nasal mucous membrane
to prevent infection (46), or indirectly, because it reduces the
environmental ability of the virus to remain in the air (47). While
this causal link seems quite well-established and relevant for the flu,
its relevance can not be extrapolated for a disease such as COVID-
19 where a large part of the population was infection-naive.
The second possible causal relation involves non-pharmacological
interventions that aim to individually protect people, such as
masking, which might reduce the effective susceptibility of the
population reducing the viral loads that a person receives. So far,
the causation is very clear in laboratory experiments, but it is clearly
not as strong at the population level (48).

With this scheme in mind, our analysis focuses on the
discontinuous lines indicated in red in Figure 9. Testing the
explanatory power and correlation between environmental
variables and growth tries to check if a causal relation is possible
behind the correlations between temperature and growth. Our
results point out that this causal inference might exist. Still, it is
clearly the most dominant one when other non-pharmacological
interventions are present and when the level of susceptible people
is high. We cannot interpret that mobility directly causes the
presence of large correlations, but points to the possible fact
that the effects of non-pharmacological interventions, although
indirect, are much stronger than those that aim to reduce the level
of effectively susceptible people. Some studies have also suggested
that the direct (negative) correlations between temperature and
growth rate could be suppressed by the effect of mobility, since a
higher temperature typically increases mobility, that in turn has a
positive effect of the growth rate (49).

It is important to stress that this picture was valid before
vaccination brought broad-based immunization. Later, it is possible
that, as the number of naive people diminished to very small values,
the effects of non-pharmacological interventions diminished in
their relevance, as personal immunity increased. Still, our analysis
provides highly valuable insight in the case of new epidemics. In
this sense, we do not aim to address the question of the relevance
of mixing/mobility limitations on the virus transmission during the
latter stages of the pandemic, which has been debatable.

Finally, we have not included in the diagram the changes in
susceptibility levels that occur when a major change in the virus
variant appears, resulting in higher transmissibility. In the period
analyzed, the same major variant was present (B.1.177 variant),
except for the appearance of the Alpha variant in different parts
of Spain in February and March. Supplemental material shows
the evolution of the rate of alpha variants in the surveillance
program carried out in the different Autonomous Communities.
In most provinces it has a minor effect at the very end of our
period, in others, it might have an effect during February. To
test that the appearance of the Alpha variant does not have
relevant effects in our arguments on correlation and causation,
we have repeated our analysis eliminating the date from February
from the correlation analysis, and the picture that emerges
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FIGURE 9

Schematics of the di�erent relation between non-pharmacological measures (left in blue boxes), the observable measured in the data time series
(green boxes) and its causation, possible causation, and correlation with the di�erent features (in orange boxes) that are known to a�ect the growth
of the epidemic. More details in the discussion.

remains the same. Some provinces might change a bit the
time lag with the highest correlation and, on average, the R2

between the growth rate and the PCs drops slightly for all, as
expected.

5 Conclusion

In this article, we use Spanish data from 48 Spanish provinces
to study how COVID-19 growth correlates with meteorological
and mobility variables. We do not observe systematic large
correlations with any meteorological data, but we do observe
important correlations with the principal components obtained
from the mobility time series, although not in all provinces. When
combined, there is a sharp increase in the correlation levels. We
observe this pattern of large and important correlations when
we use a mixture of mobility and meteorological data with just
three-four data series. Remarkably, only three or four time series
produce such large correlations in the multivariate analysis of all 48
provinces. Overall, we find that mobility has a larger contribution
to the growth rate than meteorological variables in most provinces,
emphasizing the clear relevance of mobility for the propagation of
the disease.
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