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Background: Socioeconomic factors and the COVID-19 pandemic influence 
children’s physical and mental health. We aimed to investigate the association 
between a census tract’s median household income [MHI in United  States 
Dollars ($)] and pediatric intoxications in Rhode Island, the smallest state in the 
United States of America. Geographical hotspots, as well as interactions with the 
COVID-19 pandemic, should be identified.

Methods: This study is a retrospective analysis of ambulance calls for pediatric 
(<18  years) intoxication in Rhode Island between March 1st, 2018, and February 
28th, 2022. March 1st, 2020 was considered the beginning of the COVID-19 
pandemic. Prehospital data were joined with information from the United States 
Census Bureau. The census tracts’ case counts and MHI were examined using 
Poisson regression. Geographical clusters were identified with the Global 
Moran’s I  and local indicators of spatial association tests in ArcGIS Pro (Esri 
Corporation, Redlands, CA).

Results: Inclusion criteria were met by 208 incidents (48% female, median age 
16 (IQR 15 to 17) years). The regression model showed a 0.6% increase (IRR 
1.006, 95% CI [1.002, 1.01], p  =  0.003) in pediatric intoxications for every $ 1,000 
increase in MHI. Interaction analysis showed that the effect of MHI was less 
pronounced during the pandemic (IRR 0.98, 95% CI [0.964, 0.997], p  =  0.02). 
Thirty-four (14%) of the 244 census tracts contributed to geographical clusters, 
which changed after the onset of the pandemic.

Conclusion: Higher median household income could be  a risk factor for 
pediatric intoxications. Geographical hotspots changed with the pandemic.
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Introduction

Socioeconomic status highly influences child health (1). Minors living in poverty have a 
high risk of dying before adulthood (1). The COVID-19 pandemic has further worsened these 
circumstances (2).

Self-harm is a problem of increasing global importance in the pediatric population (3–6). 
Mental health crises could lead to self-treatment or intoxicating oneself with drugs or 
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medications. Current literature suggests that deliberate ingestion of all 
kinds of psychoactive substances has increased since the beginning of 
the ongoing COVID-19 pandemic (7).

This is possibly attributed to the fact that COVID-19 is an 
additional stress factor, especially for already vulnerable populations 
with limited coping resources (8). Teenagers were found to be an age 
group particularly at risk (7).

Prior data indicate that the effects of the COVID-19 pandemic on 
emergency care facilities greatly varied globally and regionally. This 
also affects the pediatric population, which the American Academy of 
Pediatrics (AAP) defines as individuals below 18 years of age (9–11). 
The pandemic has increased emergency medical service (EMS) 
response times, potentially compounding the risk of poor outcomes 
for pediatric patients with intoxications (9). In other places, EMS calls 
and hospital admissions rapidly declined (9, 12). The population may 
have been more reluctant to call 9-1-1 or seek care at an emergency 
department as COVID-19 surged (13). Both circumstances can lead 
to patients presenting later in their course of illness and, therefore, in 
a worse clinical condition: Individuals suffering from a medical 
emergency without receiving adequate first aid immediately are likely 
to deteriorate swiftly. This might be reflected by altered vital signs, 
Glasgow Coma Scale (GCS) score, and the clinical gestalt at EMS 
arrival (14). A complex model investigating patient (i.e., vital signs, 
clinical impression of prehospital professionals) and operational, 
EMS-centered (i.e., time intervals) risk factors might therefore deliver 
valuable clues about the timeliness of care of an ambulance system.

Given the importance of demographic and socioeconomic risk 
factors and the stressing effect of the ongoing COVID-19 pandemic, 
it is helpful for ambulance providers and policymakers to anticipate 
the characteristics of their population at risk to properly allocate their 
resources. These properties comprise clinical characteristics, 
geographical clusters of disease entities, and their eventual dynamics. 
Targeted measures include redirecting EMS resources and establishing 
first-aid training programs for potential lay bystanders.

Rhode Island is the smallest of the United States of America (US). 
It has approximately one million inhabitants, and its population 
demography is around the national average (15). Rhode Island is 
similar to many cities worldwide in terms of geographic and 
demographic characteristics. These sociodemographic characteristics 
are published by the US Census Bureau based on census tracts, i.e., 
small districts with similar sizes of population (16). The state’s EMS 
services upload their patient records to a central database overseen by 
the Rhode Island Department of Health. All reports are stored 
following the principles of the National EMS Information System 
(NEMSIS) (17, 18). Rhode Island EMS patient population data can 
be accessed using filters for categorical (e.g., coded diagnoses) and 
non-categorical (e.g., trigger words in free text narratives) information. 
The first cases of COVID-19  in Rhode Island were diagnosed on 
March 1st, 2020, which is considered as the beginning of the pandemic 
in the state (19). There was an immediate impact on public health.

Methods of data analysis include non-spatial and geospatial 
statistics. Common measures of the latter are the Global Moran’s I and 
local indicators of spatial association (LISA) tests. Both examine the 
distribution pattern of data points in a geographical area. However, 
Moran’s I examines the entire map of interest, while LISA investigates 
individual neighborhoods (20, 21). Clusters, i.e., neighbors with 
similar characteristics, and outliers, i.e., areas with different properties, 
can thus be identified. High-high and low-low clusters are areas with 

similarly high or low rates of an event, respectively. High-low outliers 
are regions with high rates surrounded by neighbors with low rates. 
Conversely, low-high outliers are areas with low rates next to regions 
with high rates (20).

The primary aim was to investigate possible associations between 
the economic risk factors of median household income (MHI) and 
child poverty rate, with rates of prehospitally encountered pediatric 
intoxications. Our secondary aim was to identify high-and low-risk 
geographical areas. Third, the influence of the COVID-19 pandemic, 
with its onset on March 1st, 2020, on the condition and clinical 
presentation of patients was examined. Fourth, the association of the 
pandemic with both patient-and EMS-centered outcomes 
was investigated.

Materials and methods

This study is a retrospective analysis of Rhode Island’s EMS calls 
for acute intoxications in individuals below the age of 18 within the 
state of Rhode Island between March 1st, 2018, and February 28th, 
2022. We  distinguished between the periods before and after the 
beginning of the COVID-19 pandemic on March 1st, 2020.

We filtered for alcohol, heroin, methamphetamine, opioid 
intoxications, and substance overdose in general in NEMSIS using a 
proprietary search engine [biospatial tool (22, 23)]. Afterward, all 
patient care narratives were screened manually to ensure that inclusion 
criteria were met. Inconclusive calls, non-primary, non-9-1-1 
responses, and victims of mass casualty incidents were excluded. Data 
acquisition and screening were performed by a board-certified EMS 
physician, who is also a licensed paramedic. Based on the geolocations 
of the EMS calls, the dataset was joined with the most recent year 2020 
census tract geographical, demographical, and socioeconomic data in 
ArcGIS Pro 2.9.3 (Esri Corporation, Redlands, CA), which was used 
for spatial analysis. This includes the population under 18 years of age, 
the percentage of children living in poverty, and MHI, measured in 
2020 inflation-adjusted United States Dollars ($). This information 
was provided by the US Census Bureau (24, 25). For ease of analysis 
purposes, MHI was converted to units of $1,000.

Poisson regression models with counts as dependent and the 
economic risk factors as independent variables were used with a census 
tract as a unit of analysis. Interaction analyzes were undertaken for the 
pandemic with MHI and child poverty rate. Individual random-effects 
linear regression models were used to investigate the association 
between EMS intervals as the dependent variables and the COVID-19 
pandemic, as well as the socioeconomic risk factors as independent 
variables with the cases as units of analysis. Results are presented as 
point estimates, 95% confidence intervals (CI), and p-values.

Global Moran’s I statistics and LISA for EMS call rates within 
census tracts (number of calls per 10,000 people under 18 years of age) 
were computed for the entire observation period and the subperiods 
before and after the beginning of the COVID-19 pandemic. The 
Queen contiguity spatial relationship, defining neighbors as census 
tracts sharing common edges or borders, was used to construct the 
row-standardized weight matrix across all spatial analyzes. Local 
clusters and outliers were identified.

Four census tracts without any population at risk (identifiers 
44,003,980,000, 44,005,990,000, 44,009,990,100, and 44,009,990,200) 
were excluded from the study. Two census tracts being islands 
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(identifiers 44,009,041,500 and 44,005,041,300) do not have neighbors 
and were excluded from the geospatial analysis.

Differences in initial vital signs frequently measured by EMS in 
children during the primary survey [i.e., heart rate, respiratory rate, 
body temperature, blood sugar levels, and peripherally measured 
oxygen saturation (SpO2)] between, before, and after the onset of the 
COVID-19 pandemic were investigated. Normal parameters were 
defined as follows:

 • Heart rate and respiratory rate: ≥10th and ≤ 90th percentiles, 
according to the commonly referenced work of Fleming et al. 
(26), in order to achieve comparability across different age groups.

 • Body temperature ≥ 36.0 and ≤ 37.9°C.
 • Blood sugar levels ≥70 and ≤ 150 mg/dL.
 • SpO2 ≥ 95%.

Patients deemed “critical” or “emergent” by EMS crews were 
defined as unstable, and those assessed to be of “lower acuity” as 
stable. Proportions of the study population with normal and abnormal 
vital signs, and initial stability (stable vs. unstable) as assessed by the 
ambulance crews were compared between, before, and after the 
beginning of the pandemic using the chi-squared test.

Differences in EMS-related intervals were examined using median 
regression. They were defined as follows:

 • Response interval: From the EMS unit being notified to arrival at 
the patient.

 • On-scene interval: From arrival at the patient to leaving the scene.
 • Transport interval: From leaving the scene to arriving at 

the destination.
 • Back-to-service interval: From arriving at the destination to 

reporting the unit being back in service. This interval comprises 
patient handover, decontamination, doffing of personal 
protection equipment, and cleaning the vehicle.

 • Overall mission interval: Sum of all intervals.

The response, transport, and back-to-service times were 
log-transformed to better fit the regression model. All test results with 
a two-sided p-value of ≤0.05 were considered to be  statistically 
significant. MS Excel 16.62 (Microsoft Corporation) was used for data 
curation. Stata 17MP (Stata Corporation) was utilized for non-spatial 
analyzes. All statistical analyzes were conducted involving a geospatial 
analyst and a clinical epidemiologist. The RECORD statement for our 
manuscript can be found in Supplementary Table S1 (27).

The Rhode Island Department of Health’s institutional review 
board approved the study protocol with an exemption from full review 
(vote #2022-01). This project was conducted in accordance with the 
principles of the Declaration of Helsinki.

Results

Inclusion criteria were met by 208 emergency calls (99 (48%) 
female). The patients’ median age was 16 (IQR 15 to 17) years (see 
Table 1 for baseline characteristics of the study population). Four 
census tracts had no population at risk and were excluded. The 
statewide rate of pediatric intoxications was 6 before and 5 per 10,000 
children after the beginning of the pandemic, respectively. The median 

rates per census tract were 0 (IQR 0 to 8) before and 0 (IQR 0 to 9) per 
10,000 children since the onset of COVID-19.

The Poisson regression model on a census tract basis revealed an 
incidence rate ratio (IRR) of 1.006 (95% CI [1.002, 1.01]; p = 0.003) for 
pediatric intoxications for each $1,000 increase in MHI. Thus, higher 
MHI was associated with higher rates of the condition. Higher child 
poverty percentages were insignificantly associated with lower rates of 
pediatric intoxication (IRR 0.996, 95% CI [0.987, 1.005]; p = 0.35). 
Interaction analysis showed that the effect of MHI was less pronounced 
during the pandemic (IRR 0.98, 95% CI [0.964, 0.997], p = 0.02)/ This 
effect was not present regarding the child poverty rate (IRR 0.969, 95% 
[0.919, 1.022], p = 0.24). Figure 1 displays the relationship between 
economic risk factors and call rates.

Excluding two islands, 244 census tracts with 207 incidents 
underwent geospatial statistical analysis. Global Moran’s I  testing 
revealed that cases of pediatric intoxication occurred in geographical 
clusters over the entire observation period (z-score 6.5; p < 0.001), as 
well as in the subperiods before (z-score 5.4; p < 0.001) and after 
(z-score 2.9; p < 0.001) the beginning of the COVID-19 pandemic. 
Clustering was less pronounced after the pandemic than before. The 
high-risk regions for pediatric intoxications shifted over time. The 
greater, less wealthy area of the capital, Providence, in the northeast, 
was a diverse and fluctuating region in terms of intoxication rates. The 
likewise less wealthy mid-west of the state faced fewer cases than 
the east.

Using LISA to investigate immediate neighborhoods, 23 census 
tracts encountered low rates of pediatric intoxications and were 
surrounded by other census tracts with low rates. Eleven census 
tracts faced high rates and bordered areas with similarly high rates 
of the condition. In contrast, 3 were census tracts with higher rates 
of pediatric intoxications surrounded by census tracts with lower 
rates. Four were identified as census tracts with lower rates, 
surrounded by areas with higher rates over the entire observation 
period (see Figure 2A). Figures 2B,C display the LISA results of the 
two split periods: The geographical pattern on a neighborhood 

TABLE 1 Characteristics of the study population.

Overall
(N =  208)

Before 
COVID-19
(n =  115)

Since 
COVID-19

(n =  93)

Female, n (%) 99 (48) 47 (41) 52 (56)

Age, years, median (IQR) 16 (15 to 17) 16 (16 to 17) 16 (15 to 17)

Age groups, n (%)

Teenager (13–17 years) 201 (97) 111 (97) 90 (97)

Other age groups 

(1–12 years)

6 (3) 4 (3) 2 (2)

Suspected agent, n (%)

Alcohol 174 (84) 97 (84) 77 (83)

Cannabis 26 (13) 19 (17) 7 (8)

Medications 9 (4) 0 (0) 9 (10)

Opioids 5 (2) 3 (3) 2 (2)

Other 5 (2) 4 (3) 1 (1)

unknown 17 (8) 10 (9) 7 (8)

Multiple substances 28 (13) 18 (16) 10 (11)

Percentages rounded to integers. IQR interquartile range, N/n number of subjects.
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basis also changed between before and after the onset of the 
pandemic. Again, the greater area of the city of Providence faced 
shifts of neighborhood hotspots between before and after the 
beginning of the pandemic.

More patients encountered during the pandemic had an abnormal 
heart rate (43% vs. 56%; p = 0.04). No significant differences regarding 
any other vital parameters, the proportion of patients with at least one 

abnormal vital parameter, unstable conditions, or a GCS of less than 
15 points were found (see Table 2).

Response times [6 (IQR 5 to 9) vs. 8 (5 to 10) minutes; p = 0.03] 
and on-scene times [11 (IQR 7 to 15) vs. 14 (9 to 20) minutes; p = 0.02] 
were significantly shorter after the onset of the pandemic. Transport, 
back-to-service, and overall mission times remained unaltered. Please 
see Table 2 for details.

FIGURE 1

Association between economic risk factors associated with census tracts and their rates of pediatric intoxications. Census tracts without cases are 
omitted for better visualization.

FIGURE 2

Local indicators of spatial association (LISA) for rate of pediatric intoxication on a census tract basis. (A) Entire observation period. (B) Before beginning 
of COVID-19 pandemic. (C) After beginning of COVID-19 pandemic.
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Higher MHI was associated with longer response (coefficient 
0.004, 95% CI [0.001, 0.006]; p = 0.004), overall mission (coefficient 
0.15, 95% CI [0.02, 0.27]; p = 0.02), and transport times (coefficient 
0.01, 95% CI [0.01, 0.01]; p < 0.001). The pandemic (coefficient-3.6, 
95% CI [−6.1, −1.2]; p = 0.004) was associated with shorter times 
spent on scene, and higher MHI (coefficient 0.06, 95% CI [0.02, 
0.09]; p = 0.001) was associated with longer times spent on scene. 
Over the entire study period, patients in high-high clusters 
experienced longer on-scene (coefficient 5.5, 95% CI [2.2, 8.9]; 
p = 0.001) and shorter transport times (coefficient-0.3, 95% CI [−0.6, 
−0.1]; p = 0.02). The former was still the case after adjusting for the 
individual LISA characteristics before and after the pandemic, 
respectively (coefficient 6.6, 95% CI [3, 10.1]; p < 0.001). The 
complete Poisson and linear regression models can be  found in 
Supplementary Table S2.

Alcohol (84%) was the most often suspected substance causing the 
intoxication, followed by cannabis (13%) and various medications 
(4%). All nine incidents involving the latter took place after the 
beginning of the pandemic. Although suspected opioid overdose was 
rare in this study’s population (n = 5, 2%), nine (4%) patients were 
treated with naloxone prehospitally. This number includes 3 (60%) of 
the children with suspected opioid overdose. Twenty-eight individuals 
(13%) ingested multiple substances (see Table 3).

Discussion

The findings indicate that census tracts with a higher MHI have 
higher rates of pediatric intoxications. Events are geographically 
clustered, with a weaker pattern after than before the pandemic. Hotspots 
are not stable geographical areas but are subject to change over time.

Our results deviate from those of Salmi et al., who found that 
children living in less wealthy circumstances were, in general, more 
likely to be encountered by EMS (28). However, their study did not 
exclusively focus on intoxications. Chalfin and colleagues showed that 
higher parental education, which often correlates with income, resulted 
in less underage binge drinking but had no influence on cannabis 
consumption (29). Regarding the clustering around urban areas, our 
results are consistent with the work of Stopka et al. from Massachusetts 
(30). Additionally, Bearnot et al. (31) found hotspots of drug use in 
areas facing socioeconomic hardships and around hospitals. However, 
both studies focused on opioid overdose in the general population.

Fewer records were identified for the period after than before the 
onset of the pandemic. These findings are in accordance with prior 
data (9, 10, 12, 13). In contradiction, Raffee and colleagues found 
higher numbers of poison center activations after the onset of the 
pandemic in Jordan. This fact raises the question of whether the 
number of cases in the present study’s population truly decreased or 
if incidents were just not reported as often as beforehand (32).

Alcohol and cannabis, sometimes taken in combination, were the 
most common suspected agents in this present study’s mainly adolescent 
population. The mechanisms of ingestion of these two substances, orally 
or by smoking, are highly suggestive of a predominantly intentional 
consumption. Both decreased after the onset of the pandemic. This could 
be related to the fact that these substances were then more difficult to 
obtain. In contrast, all intoxications involving medication occurred after 
the onset of the pandemic. The unavailability of alcohol and cannabis 
may have led to self-treatment using pharmaceuticals. This theory is 
supported by the findings of Wallis et al., indicating that cannabis is 
frequently used to self-medicate to relieve anxiety and pain in young 
adults (33). Medicinal products might be viewed as an alternative when 
cannabis is less easily accessible.

Interestingly, almost twice as many patients as those in whom 
opioid intoxication was suspected received naloxone. This fact is likely 
related to successful multilingual overdose awareness campaigns, 
which have been launched in the light of rising numbers of fatal cases 
(34, 35). When in doubt, the antidote might rather be administered 
than withheld.

Our data show that response times were longer in areas with 
higher MHI. This is likely related to the lower population density of 

TABLE 2 Findings in primary survey.

Overall
(N =  208)

Before 
COVID-19
(n =  115)

Since 
COVID-19

(n =  93)

Emergent or critical, n 

(%)

51 (25) 30 (26) 21 (23)

Any abnormal vital sign, n 

(%)

140 (67) 76 (66) 64 (69)

GCS score below  

15 (points), n (%)

73 (35) 44 (38) 29 (31)

abnormal vital signs, n (%)

Heart rate 102 (49) 50 (43) 52 (56)

Respiratory rate 65 (31) 37 (32) 28 (30)

SpO2 3 (1) 1 (1) 2 (2)

Blood glucose 23 (11) 15 (13) 8 (9)

Body temperature 1 (0) 0 (0) 1 (0)

Percentages rounded to integers. GCS Glasgow Coma Scale, N/n number of subjects, SpO2 
peripheral oxygen saturation.

TABLE 3 Comparison of emergency medical service-related times before and after the beginning of the COVID-19 pandemic.

Overall Before 
COVID-19 
pandemic

After beginning 
of COVID-19 

pandemic

before vs. after beginning of 
COVID-19 pandemic, 

median [95% CI]

Response time, minutes, median (IQR), n = 208 7 (5 to 10) 8 (5 to 10) 6 (5 to 9) 1 [0, 3]a

Time on-scene, minutes, median (IQR), n = 189 12 (8 to 18) 14 (9 to 20) 11 (7 to 15) 3 [1, 6]b

Transport time, minutes, median (IQR), n = 181 9 (5 to 15) 9 (5 to 14) 11 (6 to 17) −2 [−5, 1]

Back-to-service time, minutes, median (IQR), n = 181 21 (14 to 35) 21 (14 to 35) 22 (14 to 33) −1 [−6, 4]

Overall mission time, minutes, median (IQR), n = 208 52 (40 to 66) 53 (41 to 69) 51 (39 to 65) 3 [−4, 9]

All values rounded to integers. ap = 0.03, bp = 0.02. IQR interquartile range, n number of subjects, 95% CI 95% confidence interval.
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richer suburban areas. Our results were similar to those of Eskol et al., 
who also found longer times spent on scene since the beginning of the 
COVID-19 pandemic, with all other prehospital intervals being 
unaltered (36). This issue may be related to the additional time needed 
to put on PPE during the pandemic, which was required by the Rhode 
Island Department of Health. Considering the shorter EMS-related 
intervals but a largely unaltered proportion of patients with abnormal 
initial vital signs, patients were likely primarily not suffering from 
worse clinical conditions before compared to after the onset of the 
pandemic. In this context, the clinical relevance of the statistically 
significant differences in EMS intervals between the subperiods 
remains debatable.

This study has two important limitations. First, the generalizability 
of its findings for regions outside the US might be threatened by legal 
issues: Alcohol was the most often consumed substance in this study’s 
population. Laws regulating the legal drinking age vary greatly across 
countries. Being afraid of liability implications, children suffering from 
alcohol intoxication themselves or their bystanders could be inherently 
more reluctant to call 9-1-1 in the US than in other countries. We used 
simplified models to elaborate our study question. Aside from the 
important risk factors taken into account, there are likely many other 
circumstances influencing the risk of pediatric intoxication in a region. 
These may include the presence of child protection services and social 
work, as well as the individual political environment.

Second, the economic risk factors chosen for the analysis are only 
available on a census tract basis. The actual financial background of 
the individual cases remains unknown. However, this approach is 
well-established and has been frequently used by other researchers in 
the past (37–40).

Conclusion

Higher economic status is possibly associated with increased rates 
of prehospitally encountered pediatric intoxications. The COVID-19 
pandemic led to shorter response and on-scene intervals for 
emergency medical service personnel responding to these incidences.
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