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Background: With the rapid advancement of the One Health approach, the 
transmission of human infectious diseases is generally related to environmental 
and animal health. Coronavirus disease (COVID-19) has been largely impacted 
by environmental factors regionally and globally and has significantly disrupted 
human society, especially in low-income regions that border many countries. 
However, few research studies have explored the impact of environmental 
factors on disease transmission in these regions.

Methods: We used the Xinjiang Uygur Autonomous Region as the study area to 
investigate the impact of environmental factors on COVID-19 variation using 
a dynamic disease model. Given the special control and prevention strategies 
against COVID-19  in Xinjiang, the focus was on social and environmental 
factors, including population mobility, quarantine rates, and return rates. The 
model performance was evaluated using the statistical metrics of correlation 
coefficient (CC), normalized absolute error (NAE), root mean square error 
(RMSE), and distance between the simulation and observation (DISO) indices. 
Scenario analyses of COVID-19 in Xinjiang encompassed three aspects: different 
population mobilities, quarantine rates, and return rates.

Results: The results suggest that the established dynamic disease model can 
accurately simulate and predict COVID-19 variations with high accuracy. This 
model had a CC value of 0.96 and a DISO value of less than 0.35. According to the 
scenario analysis results, population mobilities have a large impact on COVID-19 
variations, with quarantine rates having a stronger impact than return rates.

Conclusion: These results provide scientific insight into the control and 
prevention of COVID-19  in Xinjiang, considering the influence of social and 
environmental factors on COVID-19 variation. The control and prevention 
strategies for COVID-19 examined in this study may also be  useful for the 
control of other infectious diseases, especially in low-income regions that are 
bordered by many countries.
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1 Introduction

The coronavirus disease (COVID-19) pandemic, caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been a 
global public health problem since 2020 and has changed all aspects 
of society and natural ecosystems. As of August 30, 2023, more than 
770 million confirmed cases and more than 6.95 million deaths due 
to COVID-19 were reported, according to the World Health 
Organization.1 The pandemic has adversely affected regional and 
global economic growth, and post-COVID-19 economic recovery has 
been slow (1–3). Global levels of nitrous oxide and wetland methane 
have changed during the COVID-19 lockdown (4–6). Moreover, the 
COVID-19 pandemic is likely to alter the world order (7).

To control the COVID-19 pandemic, numerous measures have 
been employed in the last 3 years, such as non-pharmaceutical 
interventions (NPIs) (e.g., lockdown, limiting public gatherings, 
physical distancing, and quarantine) and universal mass vaccination 
(8–11). Accurate simulation and prediction of COVID-19 using 
mathematical models can provide scientific guidance for the 
application of reasonable interventions (12–16). Future variations in 
the COVID-19 pandemic in 88 countries have been explored using 
the innovation method of Yi Hua Jie Mu based on the Koppen–Geiger 
climate classification (17).

Highly accurate simulation and prediction of COVID-19 have 
been performed using the distance between indices of simulation and 
observation (DISO) (18, 19) in Guangzhou, mainland China, and 
Kazakhstan using dynamic epidemic models (20–24). Cross-border 
transmission of COVID-19 can have more adverse effects in 
undeveloped regions (e.g., Xinjiang) than in developed areas. Xinjiang 
has the largest area among all provinces in China and borders eight 
countries. With the development of the One Belt and One Road, the 
movement of people between Xinjiang and other countries has 
increased, complicating the control of COVID-19. Thus, the 
simulation and prediction of COVID-19 based on mathematical 
models will play a key role in the precise control and prevention of this 
pandemic and provide important insights for the prevention and 
control of other infectious diseases in the future.

Therefore, in this study, we focused on Xinjiang using a dynamic 
epidemic model to simulate and predict COVID-19 pandemic 
variations and project dynamic changes under different scenarios. In 
the second section below, a dynamic epidemic model is established 
according to COVID-19 variations in Xinjiang, and different scenarios 
are set based on different population mobilities and quarantine 
measures. The simulation and prediction results are displayed in the 
third section. Moreover, to investigate the dynamic variations of 
COVID-19 in Xinjiang that are sensitive to key parameters, we set 
different scenarios, and a brief conclusion is provided in the 
last section.

1 https://covid19.who.int/

2 Constructing a 
susceptible-exposed- 
asymptomatic-infectious-recovered 
epidemic model of COVID-19 in 
Xinjiang

Xinjiang has experienced three waves of COVID-19 since 2019. 
The dynamic zero COVID-19 strategy, which has been employed 
throughout the pandemic, has been effective in protecting the local 
population. Given the COVID-19 variations in Xinjiang, a dynamic 
epidemic model was constructed as follows:

The population was divided into five groups: susceptible (S), 
exposed (E), asymptomatic (A), symptomatic (I), and recovered (R). 
Considering quarantine measures, the corresponding quarantined 
populations were defined as quarantined susceptible populations (Sq), 
quarantined exposed populations (Eq), quarantined asymptomatic 
populations (Aq), and quarantined symptomatic populations (Iq). K 
is the output population at time t and Λ denotes the input population 
at time t. COVID-19 has a bilinear incidence rate, with β1 for the 
unquarantined population and β2 for the quarantined population; a 
is the fraction of the transmission rate for E, and b is the fraction of 
transmission rate for A. δ1 and δ2 are the transmission rates from E to 
A and I, respectively. Γ1 and γ2 are the recovery rates for A and I, 
respectively. Qi (i = 1, 2, 3, 4) is the quarantine rate of S, E, A, and I 
populations, respectively, and pi (i = 1, 2, 3, 4) is the release rate of Sq, 
Eq, Aq, and Iq populations, respectively. Details of the other parameters 
of the dynamic SEAIR model are provided in Table 1. A flowchart of 
the dynamic variations of COVID-19  in Xinjiang is shown in 
Figure 1. The corresponding dynamic SEAIR epidemic model was 
constructed, as shown in the model (2.1).

After constructing the SEAIR model, the parameters in Table 1 
were established by the least-squares method using COVID-19 data 
from Xinjiang from August 6 to September 27, 2022 (data from 
National Health Commission of the People’s Republic of China; http://
www.nhc.gov.cn/). Using the established parameters, the cumulative 
cases, cumulative asymptomatic cases, daily new cases, and daily new 
asymptomatic cases will be simulated in the next section. To quantify 
the simulation performance of the model (2.1), some statistical 
metrics were employed (21), including the correlation coefficient 
(CC), absolute error (AE), root mean square error (RMSE), and DISO 
(18, 19, 23). They are expressed as follows:
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absolute error; NPI, Non-pharmaceutical intervention; RMSE, Root mean square 

error; SEAIR, Susceptible-exposed-asymptomatic-infectious-recovered.
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TABLE 1 Parameter estimations of the SEAIR model for COVID-19 in Xinjiang.

Parameter Definitions Estimated value Source

β1 Transmission incidence rate of unquarantined 

individuals

4.95 × 10−8 Estimated

β2 Transmission incidence rate of quarantined individuals 3.14 × 10−9 Estimated

a The fraction of transmission incidence rate for E class 0.4 Assumed

b The fraction of transmission incidence rate for A class 0.95 Assumed

δ1 Transmission rate of individuals from E class to A class 0.29 Estimated

δ2 Transmission rate of individuals from E class to I class 0.0082 Estimated

γ1 The recovery rate of asymptomatic class 1/4 Assumed

γ2 The recovery rate of symptomatic class 1/14 Assumed

q1 Quarantined rate of S class 0.15 Estimated

q2 Quarantined rate of E-class 0.15 Estimated

q3 Quarantined rate of A-class 0.22 Estimated

q4 Quarantined rate of I class 0.26 Estimated

p1 The return rate of Sq class 0.015 Estimated

p2 The return rate of Eq class 0.01 Estimated

p3 The return rate of Aq class 0.01 Estimated

p4 The return rate of Iq class 0.001 Estimated

K The Output population at time t - Estimated

Λ The Iutput population at time t - Estimated

Initial values Definitions Estimated value Source

N(0) Initial total population 2.589 × 107 Data

S(0) Initial susceptible population 1.5 × 107 Estimated

E(0) Initial exposed population 300 Estimated

A(0) Initial asymptomatic population 600 Estimated

I(0) Initial symptomatic population 5 Estimated

Sq(0) Initial quarantined susceptible population 1.0887 × 107 Estimated

Eq(0) Initial quarantined exposed population 180 Estimated

Aq(0) Initial quarantined asymptomatic population 300 Estimated

Iq(0) Initial quarantined symptomatic population 4 Estimated

R(0) Initial recovered population 1,005 Data

FIGURE 1

Flowchart of the SEAIR model for coronavirus disease (COVID-19) in Xinjiang. SEAIR, Susceptible-exposed-asymptomatic-infectious-recovered.
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where ai and bi (i  = 1, 2, …, n) represent the observed and 
simulated data, respectively. NAE and NRMSE are normalized by the 
average values of the observed time series.
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(2.1)

To investigate the dynamic variations of COVID-19 in Xinjiang that 
are sensitive to key parameters, we set different scenarios with different 
population mobilities, quarantine rates, and return rates. All the simulations 
and predictions were obtained by the Mathematica 9.0 software.

3 Results

In this section, the COVID-19 variations in Xinjiang were 
simulated and predicted using model (2.1). Simulation and 

prediction accuracies were quantified using CC, AE, RMSE, and 
DISO. Different scenario analyses were performed to 
investigate the sensitivities of COVID-19 variations to 
key parameters.

3.1 Simulation and prediction of 
COVID-19 in Xinjiang based on model (2.1)

The COVID-19 variations were simulated and predicted based 
on model (2.1) and the parameters in Table  1, as shown in 
Figures  2, 3. The model (2.1) captures the cumulative case 
variations and cumulative asymptomatic case variations well 
(Figure 2). The CC values for the simulated cumulative cases and 
simulated cumulative asymptomatic cases against the OBS were 
both 0.9988 (Table  2). The simulated results overestimated the 
OBS, with RE values of 0.0339 and 0.0520, respectively. The RMSE 
values were 0.0295 and 0.0314, respectively, and DISO values were 
0.0449 and 0.0607, respectively.

For the simulated daily new cases and simulated daily new 
asymptomatic cases, model (2.1) captured the observed daily new 
cases and observed daily new asymptomatic case variations, with 
underestimation of the peak values and slight overestimation of 
the smallest values (Figure 3). The simulated results of the daily 
new cases and daily new asymptomatic cases had lower accuracy 
than the simulated cumulative cases and cumulative asymptomatic 
cases (Table 2). The CC values for the simulated daily new cases 
and simulated daily new asymptomatic cases against the OBS were 
0.9610 and 0.9589, respectively (Table 2), while RMSE values were 
0.3180 and 0.3376, respectively. The corresponding DISO values, 
which were used to examine the overall performance of model 
(2.1), were 0.3204 and 0.3420.

3.2 Scenario analysis of COVID-19 in 
Xinjiang with different key parameters

Given that the transmission of infectious diseases is generally 
influenced by some key factors (24), the impact of these key 
parameters in the model (2.1) on the dynamic variations of 
COVID-19 in Xinjiang should be investigated. In this section, scenario 
analyses of COVID-19 in Xinjiang comprise three aspects: different 
population mobilities, quarantine rates, and return rates. For 
comparison with the scenario results, the COVID-19 variations with 
the established parameters in Section 3.1 are defined as the 
baseline results.

3.2.1 Scenario analyses of COVID-19 in Xinjiang 
with different population mobilities

In this section, we  identify the impacts of the input 
population Λ and output population K on the COVID-19 
variations in Xinjiang. The size of the population is controlled 
by changing the numbers of Λ and K, that is, the 
percentage parameter values (μ and ω) of different populations 
are changed.

For the changed numbers of the input population Λ and output 
population K, the scenarios are set as follows: (1) fix the input 
population Λ number and change (i.e., increasing and decreasing) the 
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output population K number; (2) fix the output population K number 
and change (i.e., increasing and decreasing) the output population 
Λ number.

By increasing the number of Λ and fixing the number of K, 
the local maximum daily new cases increase and the 
corresponding time is delayed compared to the baseline. 

FIGURE 3

Simulation and prediction results of the daily new cases (A) and daily new asymptomatic cases (B) of coronavirus disease (COVID-19) in Xinjiang from 
August 6 to September 28, 2022.

TABLE 2 Evaluation results of the simulation and prediction of daily new confirmed cases and cumulative confirmed COVID-19 cases in Xinjiang.

Case CC Name RMSE DISO

Cumulative 0.9988 0.0339 0.0295 0.0450

Cumulative asymptomatic cases 0.9988 0.0520 0.0314 0.0607

Daily new cases 0.9610 0.0060 0.3180 0.3204

Daily new asymptomatic cases 0.9589 0.0363 0.3376 0.3420

CC, Correlation coefficient; COVID-19, Coronavirus disease; DISO, Distance between the simulation and observation; NAE, Normalized absolute error; and RMSE, Root mean square error.

FIGURE 2

Simulation and prediction results of the cumulative cases (A) and cumulative asymptomatic cases (B) of coronavirus disease (COVID-19) in Xinjiang 
from August 6 to September 28, 2022.
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Moreover, the number of daily new cases increases with time 
(Figure  4). When Λ is decreased and K is fixed, the local 
maximum daily new cases reduce at an earlier time than that for 
the baseline. Over time, a further decrease in the number of daily 
new cases is observed.

When the number of Λ is fixed at baseline and the K number 
is increased, the local maximum daily new cases are reduced at an 
earlier time. Moreover, the degree of decrease in the daily new 
cases is larger than when the number of Λ is decreased and the 
number of K is fixed (Figure 4). When the number of Λ is fixed 
and that of K decreases, the daily new cases increase compared to 
the baseline, which indicates that the higher the population 
number, the higher the number of infected cases.

3.2.2 Scenario analysis of COVID-19 in Xinjiang 
with different percentage rates of Λ and K for 
different populations

During the COVID-19 pandemic, population mobility increases 
when the exposed population E is added, including the asymptomatic 
population. Therefore, the percentages of different populations in the 
input population Λ and output population K have serious impacts on 
COVID-19 transmission. In this section, μi (i = 1, 2, 3, 4) and ωi (i = 1, 
2, 3, 4) represent the percentage rates of S, E, A, and I for Λ and K, 
respectively. Assuming Λ = 20,000 and K = 12,000 at baseline, when 
the percentage values of different populations for K are fixed, changing 
the percentage μ and ω values results in the variation of daily new 
cases (Figure 5). Figure 5A shows the variations in daily new cases, 

FIGURE 4

Scenario analyses of daily new cases with different input and output population numbers (A), fixed the input population Λ number and changing the 
output population K number;fixed the output population K number and changing the output population Λ number (B).

FIGURE 5

Scenario analyses of daily new cases of coronavirus disease (COVID-19) with different percentage parameters μ and ω values (B). In (A), the baseline 

with 1 1 5
2iµ = − =∑ μi = 0.9488, μ2 = 0.05, μ3 = 0.001, μ4 = 0.0001, μ5 = 0.0001; In (B), the baseline with same values as in (A), but for ω.
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with the percentage parameter μ larger than the baseline. When the 
percentage rates μi (i = 2, 3, 4) of E, A, and I for Λ are increased, the 
daily new cases also increase compared to baseline.

Among μ2, μ3, and μ4, the percentage μ2 of E has the largest impact 
on COVID-19 transmission. A larger percentage μ2 of Λ can result in 
a larger infected population. When the percentage values of different 
populations for Λ are fixed and ωi (i = 2, 3, 4) are decreased, the daily 
new cases increase compared to baseline (Figure 5B). In addition, the 
percentage of the exposed population E is suggested to have the largest 
impact compared with the percentage of the other populations.

3.2.3 Scenario analysis of COVID-19 in Xinjiang 
with different quarantined rates

In the past 3 years, the dynamic zero COVID-19 strategy has been 
employed in Xinjiang to prevent and control COVID-19. Therefore, 
adjusting quarantine strategies has a significant impact on COVID-19 
transmission. In this section, different scenarios are explored by 
adjusting the strength of the quarantine strategy compared to the 
baseline, assuming no input or output populations.

Adjusting quarantine rates can change the peak values and peak 
value times, as shown in Figure 6. In particular, when the quarantine 
rates decrease, the peak values reduce and are reached earlier than the 
baseline (Figure 6A). When the quarantine rates are increased, the 
peak values also increase, and the peak value times are delayed more 
than the baseline (Figure 6B). Moreover, the impacts of quarantine on 
S and A are greater than those on E and I, indicating that quarantine 
is more effective for S and A than for E and I.

3.2.4 Scenario analysis of COVID-19 in Xinjiang 
with different return rates

Given the dynamic zero COVID-19 strategy, the quarantine 
strategy is adjusted, allowing the quarantined population to return to 
the non-quarantined population. Therefore, we set different return 
rates to explore their impact on COVID-19 transmission with 
non-population mobility. Figure 7 shows that return rate variations 
have a weak impact on disease transmission, with small changes in the 

peak values of daily new cases. Compared with the quarantine rates, 
the influence of the return rates was smaller (Figures 6, 7).

4 Discussion

During the past years, how the environmental factors (i.e., mainly 
including natural factors and social factors) impacting the COVID-19 
variations has obtained lots of attention. For the natural factors (e.g., 
climate factors), our previous work suggested that temperate and cold 
climate regions had a larger transmission rate than arid and tropical 
climate regions (17). The daily death counts of COVID-19 were 
negatively influenced by the absolute humidity (25). For the social 
factors, the large total population number with high population 
density can cause large infected cases of COVID-19 in large cities (26). 
To boost vaccine effectiveness, infection control measures can 
minimize the COVID-19 infection for the at-risk populations (27).

Many factors have a significant impact on the incidence, 
transmission, and outbreak of human infectious diseases. The One 
Health concept seeks to integrate all the elements of environmental, 
animal, and human health and track the entire disease process from 
incidence to extinction. Environmental, animal, and human health 
interact closely and influence disease occurrence.

Generally, environmental factors include natural (e.g., temperature, 
precipitation, and wind) and social environmental elements (e.g., 
population mobility, population density, and government measures). As 
a zoonotic disease, the outbreak and transmission of COVID-19 are 
influenced closely by environmental and animal factors (6, 16, 17). 
Understanding the impact of environmental factors on COVID-19 plays 
a key role in controlling and preventing its transmission. The NPIs 
employed by the government and local population comprise adjustments 
to social and environmental factors.

Numerous studies have focused on the influence of social and 
environmental factors on COVID-19 (9–11, 15). The roadmap policy 
can successfully offset the increased transmission resulting from the 
lifting of NPIs (11). The early detection and isolation of cases 

FIGURE 6

Scenario analysis of daily new cases with different quarantined rates, rates decrease (A), and rates increse (B).

https://doi.org/10.3389/fpubh.2024.1297007
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Fu et al. 10.3389/fpubh.2024.1297007

Frontiers in Public Health 08 frontiersin.org

prevented more infections than travel restrictions and contact 
reduction, and the combination of NPIs achieved the strongest and 
most rapid effect (9). This study suggests that strict management of 
population movement plays a significant role in reducing the risk of 
COVID-19 transmission, which is consistent with our previous results 
(21, 22). However, Walker et al. (3) pointed out that increasing the 
income of low- and middle-income countries should be  a global 
priority for controlling and preventing disease transmission.

In model (2.1), most parameters are estimated by the least square 
method using the limited real-world data, which may result in some 
uncertainties about the simulation and prediction results. However, 
the limited real-world data are restricted by the data management 
policy. Another limitation of this study is the constant value of the 
transmission incidence rate. The transmission incidence rate is mostly 
determined by the contact rate and the probability of transmission per 
contact. To address these limitations, we wish more special real-world 
data can be obtained in the future.

Other interesting topics related to COVID-19 in Xinjiang should 
be  considered. For example, the impact of vaccination on disease 
transmission, the age structure of the infected population, and multiple 
wave simulation can be explored for in-depth analysis. These topics will 
be studied in the future when the relevant datasets become available.

5 Conclusion

In this study, the impacts of major social environmental factors, 
particularly population mobility, quarantine measures, and return 
rates, on COVID-19 in Xinjiang have been analyzed comprehensively 
using a dynamic epidemic model.

The major conclusions are as follows:

 1 The established dynamic SEAIR model can capture COVID-19 
variations in Xinjiang with high accuracy. The SEAIR model 
weakly overestimates cumulative and new daily cases, with an 
AE of approximately zero. The CC values between the OBS 
and simulated data were greater than 0.95. The DISO values 

were smaller than 0.5, indicating the high overall performance 
of the model.

 2 For population mobility, when the input population Λ is 
increased with the output population K fixed, the infected 
population increases, and the disease transmission is 
strengthened. When the output population K is decreased with 
the input population Λ fixed, the infected population also 
increases. These findings suggest that decreasing the input 
population and increasing the output population are useful for 
controlling disease transmission.

 3 The percentages of different populations in the input and 
output populations play important roles in controlling and 
preventing diseases. Decreasing the percentages of S and E in 
the input population can reduce the infected population.

 4 When there is no external population mobility, quarantine 
measures, especially for susceptible and asymptomatic 
populations, have a large impact on disease transmission. In 
other words, the return rates of different populations have 
similar impacts on disease transmission as quarantine rates do.

The above analyses comprehensively explored the impact of major 
social and environmental factors on disease transmission. These results 
provide insight into the control and prevention of COVID-19 in Xinjiang 
and can be useful in managing outbreaks of other infectious diseases.
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