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Introduction: The slow descent in TB burden, the COVID-19 pandemic, along

with the rise of multidrug-resistant strains of Mycobacterium tuberculosis,

seriously threaten TB control and the goals of the End TB strategy. To fight

back, several vaccine candidates are under development, with some of them

undergoing the phases 2B and 3 of the development pipeline. The impact of

these vaccines on the general population needs to be addressed using disease-

transmission models, and, in a country like China, which last year ranked third

in number of cases worldwide, and where the population is aging at a fast pace,

the impact of TB vaccination campaigns may depend heavily upon the age of

targeted populations, the mechanistic descriptions of the TB vaccines and the

coupling between TB dynamics and demographic evolution.

Methods: In this work, we studied the potential impact of a new TB vaccine in

China targeting adolescents (15–19 y.o.) or older adults (60–64 y.o.), according

to varying vaccine descriptions that represent reasonable mechanisms of action

leading to prevention of disease, or prevention of recurrence, each of them

targetting specific routes to TB disease. To measure the influence of the

description of the coupling between transmission dynamics and aging in TB

transmission models, we explored two di�erent approaches to compute the

evolution of the contact matrices, which relate to the spreading among di�erent

age strata.

Results: Our findings highlight the dependence of model-based impact

estimates on vaccine profiles and the chosen modeling approach for describing

the evolution of contact matrices. Our results also show, in line with previous

modeling works, that older adult vaccination is a suitable option in China to

reduce the incidence of TB as long as the vaccine is able to protect already

exposed individuals.

Discussion: This study underscores the importance of considering vaccine

characteristics and demographic dynamics in shaping TB control strategies. In

this sense, older adult vaccination emerges as a promising avenue for mitigating

TB transmission in China but also remarks the need for tailored intervention

strategies aligned with demographic trends.
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1 Introduction

Tuberculosis (TB) is an infectious disease caused by the

bacterium Mycobacterium tuberculosis (M.tb.) that usually affects

the lungs. It is a complex but preventable disease with a high global

burden that requires early detection and long treatments, and that

is still among the leading causes of death for a single pathogen

worldwide. In 2014, the World Health Assembly introduced the

World Health Organization (WHO) “Global Strategy and Targets

for tuberculosis prevention, care, and Control after 2015”, labeled

as the End TB Strategy, which consists of completing a reduction of

TB incidence and mortality rates by 90 and 95%, between 2015 and

2035 (1).

Arguably, the measures and interventions currently under use

for TB control are effective, but also insufficient to meet the goal of

the End TB strategy. Thus, although a decay in TB incidence and

mortality has been achieved worldwide since 1990 (2), its yearly

rate of reduction is still too slow. Furthermore, during 2020 and

2021, and for the first time in decades, the world witnessed a surge

in global TB burden levels with respect to previous years due to

the COVID-19 emergency that led to underdiagnosis and under-

treatment of TB, along with the saturation of most healthcare

systems (3–6). During 2020 and 2021, the WHO estimated that TB

was the cause of death of more than 1.5 and 1.6 million people,

respectively, worldwide, combining HIV-negative and positive

cases (3, 7).

The recent increase in TB burden observed in 2020–2022 due

to the irruption of the COVID-19 pandemic, threatens, in high-

burden countries like India or Indonesia, to raise the TB-related

mortality back to even higher levels than before in the next few

years (8, 9). Moreover, the ever-increasing rates of emergence of

drug resistance (10) evidence the necessity of new tools against

the disease, including new and better drugs as well as improved

diagnosis methods. Among these new resources, the development

of a new vaccine that either boosts or replaces the current bacillus

Calmette-Guerin (BCG) is commonly referred to as the potentially

most impactful single intervention to halt TB transmission, given

the limited and variable efficacy levels observed for BCG against

the more transmissible respiratory forms of the disease in young

adults (11). Consequently, the TB vaccine development pipeline

is populated by a number of novel candidates of different types,

based on a variety of immunological principles and vaccine

platforms (12). For estimating and comparing the potential impact

of each of these candidates on halting the TB transmission chain,

the development of epidemiological models arises as a powerful

tool. Refining these models and addressing the main sources of

uncertainty and bias in their architecture constitutes an important

step toward the development of new TB vaccines.

In this work, we forecast the impact of the introduction of a new

TB vaccine in China, which, as of 2021, represented 7.4% of the total

number of TB cases worldwide (3). To produce robust estimates

for vaccine impact in this country, it is important to consider

aging as a key demographic determinant where China differs from

the majority of high-burden countries in TB. According to the

UN population division estimates, among the top-8 countries with

the highest number of incident TB cases in 2021 (China, India,

Indonesia, Philippines, Pakistan, Nigeria, Bangladesh, and the

Democratic Republic of Congo), China is the one where population

aging in the years to come will be more pronounced, going from

a median age of 39.0 in 2023 to 50.7 years in 2050. Considering

this, recent modeling studies have suggested that targeting elder

population groups in a vaccination campaign may produce a

greater impact than targeting children or young adults (13).

Estimating the impact of a vaccine on an aging populationmust

be done considering several technical aspects. From a modeling

perspective, demographic aging couples with TB transmission

dynamics critically in the age-mixing contact matrices (14). These

objects capture the relative frequency of social and/or physical

contact between individuals of different age strata and constitute

a great tool for representing contact patterns within epidemic

models. When working with TB, whose time scales are comparable

to those of demographic evolution, models need to incorporate

sensible heuristics to describe the evolution of those matrices over

time, which appears as a consequence of demographic evolution

itself. In previous works (15), we identified different methods that

can be used to adapt the contact matrices that were measured in a

given population, as the population ages over time. Two of these

methods are often found in modeling studies of TB (13, 14, 16).

First, contact matrices can be adapted to ensure that the symmetry

of the encoded information is preserved, namely, the number of

contacts per unit of time between two age groups, i and j, should be

the same, when calculated from the number of contacts per capita,

from i to j and from j to i. This method is commonly referred to as

the pairwise correction method and ensures symmetry in reported

numbers of contacts but does not produce contact networks whose

mean connectivity is stable over time. To solve this issue, these

matrices can be further corrected to ensure that not only the

symmetry but also the average connectivity of the networks is

preserved across time while underlying populations are aging. This

second method, firstly proposed in (15), is referred to in this

study as the intrinsic connectivity method, and produces contact

structures that feature controlled contact densities on average,

which are stable over time. The adoption of each of these methods

to describe the evolution of contacts within TB transmission

models may affect model outcomes regarding the impact of a

new vaccine.

Another relevant aspect through which populations’ aging and

vaccine impact forecasts may couple in ways that are hard to

predict a priori is the vaccine mechanisms of action, combined

with its protection profiles. A successful TB vaccine may confer

either prevention of disease (POD), or prevention of recurrence

(POR) through a variety of mechanisms, including halting fast

progression toward primary TB upon a recent, first infection

event, diminishing the endogenous reactivation rates upon latent

infection, diminishing the risk of reinfection and/or preventing

recurrence after recovery of a previous disease episode(16, 17).

Furthermore, the ability of a vaccine to confer protection through

each of these mechanisms may depend upon the previous exposure

of vaccine recipients to mycobacteria, which in the case of

Mycobacterium tuberculosis is ascertained by an interferon-gamma

release assay (IGRA)(18, 19). Since the fraction of individuals who

have been previously exposed to the pathogen varies across age,

and, in an aging population, that changes across time, exploring the

effects of vaccine protection profiles and mechanisms of action at

once is crucial to compare different vaccination strategies targeting

different age groups in China.

The goal of this study is to investigate the role of these

aspects on the vaccine impact foreseen from two vaccination
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FIGURE 1

(A) In-silico simulations for the introduction of an AON vaccine in a mathematical model of TB transmission. The model is run twice, one as a control

run and the second time with the introduction of the vaccine. In the control run (bottom) the natural history of the disease remains unaltered, and

every transition between states of the model is present. In the vaccine run, there are two di�erent branches that evolve in parallel. On branch 1, the

natural history of the disease remains unaltered, but a c fraction of the individuals that receive the vaccine is moved toward branch 2, in which the

natural history is modified according to the e�ect of the vaccine, thus, neglecting some transitions and conferring protection. This way, a fraction, c,

of the vaccinated individuals becomes protected. (B) Implementing this general approach for di�erent vaccine characteristics and protection profiles,

under di�erent descriptions of contact matrices evolution, we aim to study the e�ect of these aspects on the impact foreseen by our computational

model for a vaccine applied either in adolescents (15–19 years old), or in older individuals (60–64 years old).

campaigns targeting adolescents (15–19 y.o) and elder individuals

(60–64 y.o.) in China, starting in 2025. Capitalizing on previous

TB transmission models developed by the authors (14, 16), we

produced in-silico impact evaluations of a series of vaccines with

different protection profiles, acting through different mechanisms,

evaluated in different simulations where contact patterns evolve

according to different methods. In what concerns the distribution

of vaccine-mediated protection across vaccinated individuals, we

modeled vaccines as all-or-nothing (AON), as schematized in

Figure 1, as it is widely used in the modeling literature (20–

22). AON vaccines confer perfect protection to a fraction of the

vaccinated individuals but are ineffective for the remaining fraction

of vaccinated individuals. The share between those fractions is

related to the overall efficacy of the vaccine. To estimate the

impact, we make use of two runs of the mathematical model

(control and vaccine). Then, we analyze the results in terms of the

targeted population, the protection profile of the vaccine, and the

method used for updating the contact matrix. The structure and

the key dynamic processes that comprise the model are depicted in

Supplementary Figures S1, S2, and in the Supplementary methods.

2 Materials and methods

2.1 Modeling the e�ect of the vaccine

The efficacy estimates obtained for a given vaccine in a

clinical trial can be mapped onto mechanistic descriptions within

a transmission model in a number of different ways. Elucidating

what are the specific mechanisms at place that are most likely

compatible with trials’ results for a given vaccine is not a trivial

task, and the architecture of the model, as well as the characteristics

of the population enrolled and detailed data analysis of the results

are needed for extrapolating the efficacy levels observed in a

trial into transmission models describing TB dynamics in entire

populations(16, 17). In a disease such as TB, a vaccine conferring

POD or POR may base its protective effects on interfering with

different processes throughout the natural history of the disease,

preventing individuals’ progression to TB by halting specific routes

to disease. In the lack of direct evidence concerning the specific

dynamic mechanisms in place in a given vaccine, modelers often

implement vaccine descriptions where all themain routes to disease

putatively affected by the vaccine are equally impacted. Instead,

in this work, we aim to compare the impact of different vaccines

whose protection acts through different dynamical mechanisms.

Formally, we assume that a vaccine can reduce the risk of

progressing further from a given state toward disease, thus

conferring protection to vaccinated individuals at different stages

in the natural history of the disease. Capitalizing on our model, we

identify four different basic vaccine mechanisms that can act either

alone or combined:

• Ep: Protection against primary TB: The vaccine confers

protection against fast progression to disease upon a recent

first infection event. This mechanism is present in a POD

vaccine that prevents fast latency toward active disease (see

Supplementary material).

• Erl: Protection against endogenous reactivation of bacilli

in individuals with latent TB infection: Vaccine confers

protection against endogenous reactivation of bacilli in

individuals with latent TB infection (LTBI). This mechanism
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is present in a POD vaccine that prevents slow latency toward

active disease.

• Eq: Protection against TB upon reinfection: Vaccine confers

protection against exogenous reactivation caused by a

secondary infection event in subjects who had been previously

infected. This mechanism is present in a POD vaccine that

prevents progression toward active disease upon reinfection,

for individuals who had already been exposed to the pathogen

before (either LTBI or recovered individuals).

• Erelapse: Protection against TB relapse: This mechanism

is present in a POR vaccine that prevents endogenous

reactivation in individuals who had a past episode of active

TB.

• All: Every vaccine’s mechanism acts at the same time.

The interaction between vaccines conferring protection at any

of the previous mechanisms, and the natural history of the disease

is sketched in Supplementary Figure S3. In short, the fraction of the

vaccinated individuals who get protection from the vaccine will face

a modified version of the natural history according to the effect of

the vaccine, where some key transitions are halted.

2.2 Model-based impact evaluations of TB
vaccines

We estimate the impacts of vaccines using an adapted

version of the model in (14), which is a deterministic, age-

structured model based on ordinary differential equations, where

individuals belonging to different age strata are considered to

experiment different levels of epidemiological risk. This translates,

in general, into age-specific parameter values, as described in the

Supplementary material. The architecture that defines the disease

dynamics within each age group represents the natural history of

TB (see Supplementary Figure S1). The model also includes aging

dynamics, which is key in countries undergoing fast demographic

changes (see Supplementary Figure S2).

Regarding the impact evaluation, we use two different runs of

the model that ultimately lead to an estimate of the incidence rate

reduction due to the vaccine. In the first run, specific values of

all the epidemiological parameters are stochastically drawn from

suitable distributions. Using the specific set of parameters obtained,

themodel is calibrated and the spreading of the disease is forecasted

in a non-intervention scenario, referred here as the control run.

Then, the model is run again, using the same calibration, but

introducing the vaccine in 2025. This vaccine run does not follow

qualitatively the same Natural History as in the control run, as

the vaccine alters it by reducing the progression risk of protected

individuals in certain transitions that depend on the characteristics

of the vaccine (see Supplementary material). Finally, the impact of

the vaccine is estimated by comparing those two runs through the

calculation of the incidence rate reduction (IRR) at the end of 2050,

as in Equation 1

IRR(t = 2050)(%) =
icontrol run(t = 2050)− ivaccine run(2050)

icontrol run(t = 2050)
· 100

(1)

Repeating this procedure a number of N = 500 times, we

obtain a distribution of forecasted vaccine impacts, which allows

us to build suitable expected values and confidence intervals that

propagate uncertainty from model inputs to vaccine impacts.

As already mentioned, all vaccines are introduced into the

model according to an all-or-nothing scheme, which means they

only show efficacy in a fraction c of the vaccinated individuals,

which in this context represents the vaccine efficacy under a

scenario of perfect coverage. The remaining 1 − c fraction of

vaccinated individuals do not benefit from these effects and

preserve the same dynamics as the unvaccinated individuals.

Formally, this is modeled by displacing a fraction c of vaccinated

individuals from a control branch to a vaccine-protection branch,

where the dynamics is modified to reflect these changes.

The vaccines considered in this work feature different levels of

waning. As vaccinated individuals age from their age at vaccination

av to a > av, the vaccine efficacy is expected to decay, eventually

becoming inefficient w years after vaccination. To implement

vaccine waning in an all-or-nothing model, we introduced in the

model a series of return fluxes that move individuals in the age

group a > av back from the protected to the non-protected

branch of the model. The intensity of those fluxes is given by

Equation 2.

wi(a, av) = 1− e−ln(2)· 5(a−av)
w (2)

where a is the age group that suffers the waning, av is the age

group that is being vaccinated, and w captures the waning, in years.

This formula ensures that, after w years, the vaccinated individuals

will suffer a waning intensity of 50%. Moreover, for any a ≤ av,

the waning intensity is set to zero, constituting a viable approach

to implement vaccination campaigns targetting one specific age

stratum. Then, the waning flux is calculated following Equation 3.

Wf (a, av, t) = wi(a, av) · X(a, t) (3)

where X(a) is the population in the age group a, in the reservoir X

at time t, where X is every reservoir that vaccinated individuals may

lie into.

Besides the alterations in epidemiological risks experienced

by the individuals protected by the vaccine, another important

vaccine characteristic concerns the immunological status that

individuals may need to fulfill before vaccination for the vaccine

to confer protection to them. Depending on the immunological

principles of the vaccine considered, its protection may unfold

contingent on the previous exposure of the vaccinated subject

to the pathogen, and, as such, it is possible that new vaccines

may confer protection only to susceptible, immunologically

naive individuals, or to individuals who have been previously

infected with M.tuberculosis. To illustrate the effect of the

dependency between the recipient’s status and vaccine efficacy,

we reproduce vaccine impact simulations where the protective

effect of the vaccine, described through the displacement of a

fraction c of individuals toward the protected branch, only takes

place from different source reservoirs. This way, we explore

four possible scenarios where only a fraction c of individuals

in the following reservoirs get protection: (i) only susceptible

individuals (ii) only LTBI individuals (iii) only previously exposed
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individuals (including LTBI and recovered subjects), and (iv)

all individuals.

Finally, the vaccination is implemented in two steps. First, a

mass vaccination campaign, similar to the one proposed in (13)

takes place, vaccinating annually a third of the population in

the reservoirs affected by the vaccine, and for the age targeted

population (15–19 or 60–64). Then, after this campaign vanishes,

the vaccination continues routinely coupled to the aging.

2.3 Updating contact matrices with
evolving demography

Age-mixing contact matrices play a key role in epidemic

spreading (23–25), as the complete knowledge of the network

of contacts is usually unreachable or impossible to implement.

Thus, for modeling purposes, it is useful to study age-group

interactions, where contact matrices indicate how age-strata mix

between them. Usually, empirical contact matrices are obtained

through statistical surveys. In these studies, participants are asked

how many contacts they have during the day and with whom.

This allows us to obtain the (average) number of contacts that

an individual of a particular age i has with individuals of age

group j. The resulting matrix is not symmetric due to the different

number of individuals in each age group. However, it is precisely

the demographic structure that imposes constraints in the entries

of this matrix, as reciprocity of contacts should be fulfilled at any

time (i.e., the total number of contacts reported by age-group

i with age-group j should be equal in the opposite direction).

Therefore, an empirical contact matrix, that has been measured

on a specific population, should not be used directly without

adapting it to the demographic structure of a different population

under study.

This issue has important consequences in the field of disease

modeling. As contact matrices play a key role in disease forecast, it

is essential to assure that the matrices implemented are adapted to

the demographic structure of the population considered to avoid

biased estimations. For some short-cycle diseases like influenza,

the time scale of the epidemic is much shorter than the typical

times needed for a demographic structure to evolve (26). The

previous considerations are more troublesome for the case of

persistent diseases that need long-term simulations, for which

the hypothesis of constant demographic structures does not hold

anymore (14). Particularly, in the case of TB modeling, time scales

are typically long, as the presence of latent individuals may lead

to TB cases decades after primary infection (27). This ultimately

leads to the urge to adapt the contact matrices measured in a

specific demography in such a way that they evolve accordingly

to the demography of that setting. To this end, we capitalize

on the methods proposed by Arregui et al. (15), which are

briefly described below. We selected only methods labeled in the

original article as M1 (Pairwise corrections) and M3 (Intrinsic

connectivity) as the first one is typically used in the literature,

also for modeling TB e.g., (13), and is the simplest one for short-

lives diseases, whereas the second one (M3) allows projecting

contact matrices along with demography, which fits our needs in

TB forecasting.

2.3.1 Pairwise correction
The magnitude usually reported when measuring contact

patterns is the mean number of contacts that an individual in age

group i has with individuals in age group j during a measured

period of time. Calling Mi,j this quantity, we observe that, in order

to fulfill reciprocity, Mi,j should equal Mj,i, which is not the case

with directly measured data. An immediate correction is to average

those numbers, so that the excess of contacts measured in one

direction is transferred to the reciprocal. Then, the matrix entry in

a new demography is computed using Equation 4.

M′

i,j =
1

N′
i

1

2
(Mi,jN

′

i +Mj,iN
′

j ) (4)

where M′
i,j corresponds to the new demography under study.

An example of the evolution of the contact matrix used

in this study, under the pairwise correction is included in

Supplementary Figures S4A, B.

2.3.2 Intrinsic connectivity matrix
An alternative method that preserves the mean connectivity of

the contact network makes use of the density matrix or intrinsic

connectivity matrix. Using the original data the density matrix Ŵ is

extracted following Equation 5

Ŵi,j = Mi,j
N

Nj
. (5)

The Ŵ matrix corresponds, except for a global factor, to the contact

pattern in a “rectangular” demography (a population structure

where all age groups have the same density). Then, introducing a

new demography, the contact matrix is obtained using Equation 6.

M′

i,j =
Ŵi,jN

′
jN

′

∑
i,j Ŵi,jN

′
iN

′
j

. (6)

An example of the evolution of the contact matrix used in this

work when using the intrinsic connectivity method is included in

Supplementary Figures S4C, D.

3 Results

After we implemented our computational model of TB

transmission, we evaluated the impact of a TB vaccine of varying

characteristics, simulated using models where contact matrices are

updated using different methods, introduced in China in either

adolescent (15–19 years old), or elder individuals (60–64 years

old). In Figures 2, 3 we represent the forecast impact of each

vaccine using our model. As discussed in the Methods section,

all vaccines are modeled according to an all-or-nothing scheme,

conferring different types of protection (Ep, Eq, Erl , Erelapse, or all

at once, see Methods) to a fraction c of vaccinated individuals

in certain disease reservoirs (susceptible, latent and/or recovered

individuals, or all). The efficacy of the vaccine in all scenarios is

set to c = 56%, as a reference value compatible with applying

a highly protective vaccine with a 70% efficacy through a high-

coverage campaign reaching 80% of the target population. The
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value is obtained as the product of the previous quantities, as

in our model, AON vaccines cannot have partial efficacy, and a

fraction of 56% captures the same protected population that a

vaccine with 70% efficacy and 80% of coverage would protect. Then,

this reference value is similar to one among the most optimistic

scenarios explored in previous modeling studies undertaken in

China (13). The vaccination campaign in the simulation starts

in 2025, and we forecast the impact of the vaccine measuring

the IRR (see Methods) in 2050. Individuals of the targeted age

group, are vaccinated when they first enter the corresponding age

group. Furthermore, selected vaccines experience waning levels of

10 years, as described in more detail in the Methods section.

In Figure 2, we gather the IRRs achieved by the different

vaccines described above when applied to the older adult

population. In this case, we found that, when vaccines are able

to confer protection to immunologically naive individuals, either

alone (Susceptible only) or along with the rest of individuals in

the population, (whole population), vaccines featuring the largest

impact are those that are able to prevent fast progression to primary

TB upon recent infection [Ep vaccine featuring 24.9% IRR, 95%

CI (17.8–36.1) in panel A]. Instead, if vaccine protection only

unfolds on individuals who had been previously infected by the

time of vaccination (protection active to either latent or latent

plus recovered individuals only), the most impactful vaccines are

those that are able to protect individuals from developing active

TB upon endogenous reactivation of dormant bacilli [Erl vaccine

featuring 6.47% IRR, 95% CI(4.88–8.15) in panel C]. Furthermore,

it is important to notice that, in all vaccines tested leading to an

impact higher than 1% under at least one of the two methods

explored for describing contact matrices evolution, the impact was

systematically higher when updating the contact matrix according

to the intrinsic connectivity approach.

In turn, in Figure 3, we present the analogous results associated

with a vaccination campaign targeting the population between 15

and 19 years old. Although vaccines protecting against primary

TB are still more impactful as long as susceptible individuals are

protected [Ep vaccine featuring 11.11% IRR, 95% CI (8.10–13.98)]

in panel A, vs. other vaccines], and vaccines halting endogenous

reactivation of latent bacilli are more impactful if protection takes

place after infection, in this case, the impact associated with

vaccines in the latter case is comparatively lower than what is found

in elders [Erl vaccine in panel C yields 2.14 IRR, 95%CI (1.65–2.76),

when in elders yielded 6.47% IRR, 95% CI (4.88–8.15)]. In what

concerns the influence of contact matrices on forecast impacts,

interestingly, we observe that the highest impacts were associated

with the pairwise-corrections method, unlike what is observed in

the older adult age group.

Admittedly, comparing the impacts from both campaigns

targeting elders (Figure 2) and adolescents (Figure 3), we see that

the question of what is the optimal age group to target in an

immunization campaign for a new TB vaccine finds different

answers depending on the combination of vaccine characteristics,

protection profiles, and modeling assumptions. More specifically,

in cases where previous infection is required for vaccines to

elicit their protective effects, via protection against endogenous

reactivation (Erl) or against relapse (Erelapse), then targeting the

older age group always appears as a superior choice according

to our simulations [6.47% IRR, 95% CI (4.88–8.15) in most

impactful vaccine in elders vs. 2.14 IRR, 95% CI (1.65–2.76) in

adolescents]. However, as soon as protection against primary TB is

granted to susceptible individuals as one of the possible protective

mechanisms of the vaccines, the quantitative description of

contagion dynamics implemented within our model becomes more

crucial, and, consequently, model forecasts aremore sensitive to the

adoption of either one of the two modeling approaches explored

for describing contact matrices evolution: pairwise corrections vs.

intrinsic connectivity. As a result, only in some occasions when the

over-simplified pairwise correction method is adopted, the impacts

foreseen for an adolescent-focused campaign can overcome the

impacts found for an elder vaccination campaign (Bars marked in

red) for these vaccines. For instance, an Ep vaccine yields 11.11%

IRR (95% CI 8.10–13.98) under pairwise correction in adolescent,

surpassing the 8.54% IRR (95% CI 6.03–11.95) obtained in elders

for the same method, when vaccine protection unfolds before

infection, whereas for the rest of vaccines, elders score higher

impacts no matter what method is used.

In order to understand the influence of the vaccinemechanisms

on their respective impacts, it is sufficient to analyze the time

evolution of the distribution of TB cases across the different

routes to disease classically described in TB, aggregated across age

groups, as we represent in Figures 4A, B. These routes include

fast progression to primary TB upon a first, recent infection

event; TB after endogenous reactivation from LTBI; TB upon

exogenous reinfection and, last, TB recurrence after a previous

disease event (see Supplementary methods). Importantly, each

of the four vaccine mechanisms explored in this work tackles

specifically each one of these routes. As seen in Figures 4A, B,

primary TB upon recent infection is the prominent cause of TB

cases during the simulated period, which makes protection against

primary TB the most impactful vaccine mechanism, at least, as long

as the susceptible individuals [who are those under a higher risk

of developing primary TB upon infection (28)], could be protected

by the vaccine (see Figures 2A, D, 3A, D). Furthermore, we also

observe that endogenous reactivation of LTBI individuals is the

second type of event responsible for the highest share of TB cases,

which in turn explains why vaccines protecting LTBI individuals are

most impactful when they protect against endogenous reactivation

(see Figures 2B, C, 3B, C), and why vaccines targeting re-infection

or relapse are comparatively less impactful, even when applied

on older age groups where prevalence of infected and recovered

subjects is higher.

Furthermore, to understand the role of the modeling

assumptions concerning contacts when comparing impact

forecasts from analogous immunization campaigns, it is important

to highlight that their influence manifests more strongly when

comparing forecasts for vaccines targeting TB upon recent

infection (Ep vaccines) or reinfection (Eq vaccines), which is to say

when the vaccine targets transmission. In such cases, the adoption

of the most adequate method providing intrinsic connectivity

control appears systematically associated with larger impacts when

we analyze elder-focused campaigns, as well as lower impacts when

we focus on campaigns targetting adolescents. The main difference

between methods is that, when the intrinsic connectivity method

is used, the magnitude of contact between older age groups is
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FIGURE 2

Impact of di�erent vaccines applied to individuals between 60 and 64 years old. In all panels, tested vaccines act in di�erent parts of the natural

history of TB, halting progression to disease in one or more of the possible routes to disease, as described in the methods: Ep: protection against

primary TB, Eq protection against reinfection, Erl : protection against endogenous progression to TB after LTBI, Erelapse: prevention of recurrence. We

analyze independently the impact of vaccines whose protective e�ects unfold when applied to individuals belonging to di�erent compartments of

the natural history. (A) Susceptible subjects (e�cacy observed before infection). (B) Latently infected individuals (e�cacy observed after infection). (C)

Latently infected and recovered individuals. (D) Entire population. In each case, the impact of each vaccine is evaluated for a waning level of 10 years.

In all panels, bars represent median values for the IRR measured in 2050, associated with the introduction of the vaccine in 2025. Error bars capture

95% confidence intervals from a set of N = 500 model outcomes in each case. Bars marked in red capture those scenarios in which the impacts

foreseen for an adolescent-focused campaign can overcome the impacts found for the elder vaccination campaign.

higher than in the pairwise method (see Supplementary Figure S4).

The influence of this difference in the results can be further

contextualized by observing the evolution of the force of infection,

defined as the fraction of susceptible individuals in a given group

that gets infected per year, and which is computed using the

contact matrices. Figures 4C, D capture the evolution of the force

of infection that individuals in each of these two age strata are

subject to, according to each of the twomodels explored to describe

the evolution of contact matrices. As seen in Figures 4C, D, using

the pairwise model appears associated with an underestimation

of the force of infection suffered by individuals in the older age

group, and an overestimation of it among adolescents, with respect

to the adoption of the more rigorous correction method based on

preserving the intrinsic connectivity of contact matrices. In this

context, elders suffering a higher force of infection produce more

infected individuals among older age groups, which, in turn, leaves

more room for a vaccine to prevent more cases.

Finally, in order to contextualize the differences in impact

found between elder and adolescents-focused campaigns, in

Figure 4E, we present a simultaneous breakdown of TB cases

predicted by 2050, in each of the age groups, associated with each

of the routes to disease, according to each of the contact matrices

models. In this figure, we see how both modeling approaches for

contactmatrices concur in assigning a higher incidence for TB cases

related to LTBI reactivation, reinfection, or relapses, which can be

interpreted as the main cause why, in Figures 2, 3, we observe that

Erl, Eq, and Erelapse vaccines are systematically more impactful in

elder individuals than in adolescents. However, in Figure 4E, we

can also observe how the number of cases associated with primary

TB is either higher, or lower in adolescents than it is in the older

age group, depending on whether we adopt the pairwise correction

method, or the intrinsic connectivity method, respectively.

Importantly, none of these observations are affected by the

level of vaccine waning: while Figures 2, 3 capture impacts

associated with vaccines whose protection lasts ten years, largely

comparable results are obtained for less and longer lasting

vaccines, as summarized in the Supplementary material (see

Supplementary Figure S5, corresponding to waning=5 years, and

Supplementary Figure S6, corresponding to waning = 20 years).

4 Discussion

Mathematical disease-transmission models are a powerful tool

for estimating the impact of new TB vaccines, which, if done

properly, may be instrumental in comparing the potential of

different vaccine candidates and immunization campaigns. This

is true, especially in TB, where vaccine development must face

two simultaneous hindrances. First, vaccine efficacy is harder to

foresee before phases 2b/3 of the development pipeline than for

other diseases, given the lack of reliable correlates of immune

protection (29). Second, the architectures of the clinical trials of

vaccine efficacy that are being adopted to test novel TB vaccine

candidates are highly diverse (16, 17), and the protection profiles

of the tested vaccines may be equally diverse. Taken together, these

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1302688
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tovar et al. 10.3389/fpubh.2024.1302688

FIGURE 3

Impact of di�erent vaccines applied to adolescents, with ages between 15 and 19 years old. Analogous to Figure 2, in all panels, tested vaccines act

in di�erent parts of the natural history of TB, halting progression to disease in one or more of the possible routes to disease: Ep: protection against

primary TB, Eq protection against reinfection, Erl : protection against endogenous progression to TB after LTBI, Erelapse: prevention of recurrence. We

analyze independently the impact of vaccines whose protective e�ects unfold when applied to individuals belonging to di�erent compartments of

the natural history. (A) Susceptible subjects (e�cacy observed before infection). (B) Latently infected individuals (e�cacy observed after infection). (C)

Latently infected and recovered individuals. (D) Entire population. In each case, the impact of each vaccine is evaluated for a waning level of 10 years.

In all panels, bars represent median values for the IRR measured in 2050, associated with the introduction of the vaccine in 2025. Error bars capture

95% confidence intervals from a set of N = 500 model outcomes in each case. Bars marked in red capture those scenarios in which the impacts

foreseen for an adolescent-focused campaign can overcome the impacts found for the elder vaccination campaign.

issues claim the development of rigorous computational models

to produce impact comparisons for different vaccines tested in

trials of different characteristics and implemented through assorted

immunization campaigns. These constitute extremely non-trivial

tasks, which enhances the need to ensure that current TB models

can handle them while minimizing bias and uncertainty.

In accomplishing this goal, an aspect that demands special

attention is the description of the coupling between demographic

aging and the evolution of TB epidemiology in a given population.

This is especially true in a country such as China, where

two simultaneous aspects concur, namely: an intense process of

demographic aging -already ongoing, and expected to continue

in the next few decades-, concomitant with a high burden of TB

incidence and prevalence levels. While previous works pointed

to the observation that immunization campaigns targeting older

age groups (paradigmatically individuals above 60 years old) are

expected to cause a stronger reduction in global TB incidence

levels than campaigns targeting adolescents (16–20 years old) (13),

the robustness of these results under different modeling scenarios,

including different vaccine characteristics and modeling decisions

concerning the evolution of contact matrices among different age-

groups remained to be proven.

Capitalizing on a mathematical model previously developed

by the team (14, 16, 17), in this work we reproduce the general

observation that, in China, immunization campaigns targeting

older individuals, in the age group between 60 and 64 years old,

are associated with promising levels of reduction in the incidence

rates expected by 2050, with varying forecast impacts depending

on vaccine characteristics and modeling assumptions, especially

if the vaccine is able to protect already exposed individuals. This

observation can be interpreted in light of the demographic shift

expected in the country, where older age strata are expected to

accumulate a higher fraction of total TB cases in the years to come.

However, by using our model, we were able to address, for the

first time in this study, how this observation may depend, in turn,

on vaccine characteristics (the combination of its mechanisms of

action and protection profile), as well as on modeling assumptions

(the description of contact matrices over time).

On the one hand, when modeling TB vaccines, it is important

to acknowledge the multiplicity of possible mechanisms of action

a vaccine may confer protection through (16, 17). This aspect, in

turn, must be considered simultaneously with the fact that the

initial immunological profile of vaccinated individuals (i.e., their

IGRA status) may in turn influence the ability of the vaccine

to provide its protective effects (13). In this work, we describe

how these two aspects are coupled, generating strong interactions

between the vaccine mechanisms in place and the sub-population

reservoirs that may gain protective effects upon vaccination.

Specifically, we observed that vaccines protecting susceptible,

immunologically naive individuals are more impactful when their

mechanism of action is based upon the prevention of primary TB

after infection. This result can be understood by observing that

progression to primary TB upon recent infection represents not

just the main epidemiological risk for susceptible individuals, but

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1302688
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Tovar et al. 10.3389/fpubh.2024.1302688

FIGURE 4

(A, B) Evolution of the Percent of TB cases associated with rapid progression upon recent infection (primary TB), endogenous reactivation of LTBI, TB

upon reinfection, or TB relapse; each of them foreseen from the indicated method for describing contact matrices evolution (pairwise correction or

intrinsic connectivity). Primary TB upon recent infection, followed by endogenous reactivation of LTBI individuals are the two most common types of

events. Central lines are medians and the shadowed areas represent the 95% confidence intervals from N = 500 model realizations. (C, D) Evolution

of the force of infection associated with individuals in age groups 15–19 and 60–64 in the period 2000–2050, as foreseen by the model when using

the two frameworks for describing the time evolution of contact matrices. Adopting the simpler pairwise correction method results in a lower

estimate of the force of infection in the older age group, as well as an overestimation in the younger stratum. Central lines are medians and the

shadowed areas represent the 95% confidence intervals from N = 500 model realizations. (E) Break down of the di�erent contributions to the overall

TB incidence pool in 2050, distributed across the routes to disease protected by the vaccines under study. The number of cases in the routes

associated with already exposed individuals is systematically higher in elders than adolescents, no matter which correction for the contact matrices is

at play. Bars represent median values measured in 2050. Error bars capture 95% confidence intervals from N = 500 model realizations.

the most common route to disease in the whole population, as

sketched in Figures 4A, B. Importantly, our simulations indicate

that tackling primary TB is the most promising intervention, not

only when the immunization campaign targets adolescents, but

also when it targets older individuals, as long as vaccine protection

unfolds for susceptible individuals at least. Furthermore, when a

vaccine requires that vaccinated individuals have previously been

infected, the most impactful vaccine mechanism of action is based
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on preventing endogenous reactivation of LTBI. This indicates

that, for LTBI subjects, endogenous progression to TB represents

the highest epidemiological risk, which is shown in Figures 4A,

B, where endogenous reactivation in the second most common

route to disease. These couplings between vaccine mechanisms and

protection profiles should be carefully taken into account when

testing and comparing vaccine candidates with different profiles

and immunization strategies.

On the other hand, in a country such as China, it is key

to produce model-based descriptions of TB dynamics that are

robust under the scenario of fast demographic aging. Under these

circumstances, the adoption of plausible description frameworks to

describe the evolution of contact matrices is key. The reason for

this is that these matrices capture the relative frequency of contacts

that may lead to new infections among individuals of different ages,

and these are bound to evolve with time in an aging population.

While relatively naive descriptions of contact matrices based on

symmetry preservation through pairwise corrections are enough

when modeling infectious diseases during short periods of time,

TB demands more sophisticated approaches that preserve not only

the symmetry but also the overall connectivity of the entire contact

networks (15). The reason for this is that during the extended

time windows that TB modeling requires, demographic structures

are expected to vary significantly, and, with them, the frequencies

of social contacts among age strata, and the entire connectivity,

measured as the average number of contacts per individual, of the

system.

In this work, we showed that more sophisticated modeling

approaches based on imposing the preservation of the intrinsic

connectivity of contact networks (instead of simpler methods based

on pairwise corrections aiming only at preserving symmetry) are

linked to higher vaccine impacts when immunization campaigns

target transmission among elder individuals. In turn, for campaigns

targeting transmission among adolescents, it is the simpler

methods, based on pairwise corrections, the one yielding higher

impacts. In short, our simulations indicate that vaccines whose

protection mechanisms take place after infection (e.g., Erl, Eq
and Erelapse on L, L+R, or All population), are expected to elicit

higher population impacts if applied in elder individuals, as well

as vaccines protecting susceptible individuals against primary

TB, providing that an adequate modeling approach is used to

describe the evolution of their contact matrices, ensuring intrinsic

connectivity control.

We also need to mention that our approach is not exempt

from limitations that impact the results presented here. First, we

are studying only two age groups, adolescents and elders, as in

this particular setting, they seem to be the more promising age

groups to vaccinate and compare in a country like China, where the

population is aging at a fast pace, and the impact results obtained

here will be different if studied, for instance, in other adult groups.

Moreover, we are not considering a heterogeneous population in

which individuals are divided according to their HIV or diabetes

status, or by being smokers, which certainly may affect both the risk

of developing TB and the possible impact of the tested vaccines.

In this sense, the population under study is considered to follow

the same natural history of TB with the same model parameters.

This population is, however, subject to a force of infection which

is calibrated using the incidence and mortality TB data provided

by the WHO for the whole Chinese population. Implicitly, these

input data are affected by many factors, and as a consequence,

calibration reproduces, in each country, a different epidemiological

situation capturing, among many other different factors that vary

across countries, the differences associated to different BCG vaccine

coverage and effectiveness. Including more detailed population

profiling in TB transmission models accounting for differences

in baseline susceptibility to TB, as well as differences in vaccine

efficacy in different population sub-groups holds the promise to

produce less uncertain forecasts. However, counting with this type

of data is often challenging, which majes simpler approaches as the

one presented here, where these differences are neglected, a most

reasonable, and still very useful choice.

Our approach is also limited by factors that affect TB

transmission models. The outcomes of our model depend

on a series of epidemiological parameters and initial burden

estimates that are subject to strong sources of uncertainty, thus

propagating this uncertainty to the results. This means that future

improvements in measuring the input data are expected to impact

the quantitative outcomes of our mathematical model, in the

same way it would affect any other model that leans on them.

Always bearing in mind the strong uncertainties that the forecasts

inherit, our results highlight the importance of acknowledging the

complexity of TB transmission dynamics whenmodeling the effects

of an age-focused intervention such as the introduction of a new

vaccine on a specific age group.

In closing, our results emphasize the idea that immunization

campaigns for the introduction of new TB vaccines in different

countries can be, and must be, tailored using mathematical

models that integrate information on vaccines’ profiles, population

demography, and basal TB epidemiology.
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