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In this article, we present a mathematical model for human immunodeficiency

virus (HIV)/Acquired immune deficiency syndrome (AIDS), taking into account

the number of CD4+T cells and antiretroviral treatment. This model is developed

based on the susceptible, infected, treated, AIDS (SITA) framework, wherein

the infected and treated compartments are divided based on the number of

CD4+T cells. Additionally, we consider the possibility of treatment failure, which

can exacerbate the condition of the treated individual. Initially, we analyze a

simplified HIV/AIDS model without di�erentiation between the infected and

treated classes. Our findings reveal that the global stability of the HIV/AIDS-free

equilibrium point is contingent upon the basic reproduction number being less

than one. Furthermore, a bifurcation analysis demonstrates that our simplified

model consistently exhibits a transcritical bifurcation at a reproduction number

equal to one. In the completemodel, we elucidate how the control reproduction

number determines the stability of the HIV/AIDS-free equilibrium point. To align

our model with the empirical data, we estimate its parameters using prevalence

data from the top four countries a�ected by HIV/AIDS, namely, Eswatini,

Lesotho, Botswana, and South Africa. We employ numerical simulations and

conduct elasticity and sensitivity analyses to examine how ourmodel parameters

influence the control reproduction number and the dynamics of each model

compartment. Our findings reveal that each country displays distinct sensitivities

to the model parameters, implying the need for tailored strategies depending

on the target country. Autonomous simulations highlight the potential of case

detection and condom use in reducing HIV/AIDS prevalence. Furthermore, we

identify that the quality of condoms plays a crucial role: with higher quality

condoms, a smaller proportion of infected individuals need to use them for

the potential eradication of HIV/AIDS from the population. In our optimal

control simulations, we assess population behavior when control interventions

are treated as time-dependent variables. Our analysis demonstrates that a

combination of condom use and case detection, as time-dependent variables,

can significantly curtail the spread of HIV while maintaining an optimal cost

of intervention. Moreover, our cost-e�ectiveness analysis indicates that the

condom use intervention alone emerges as the most cost-e�ective strategy,

followed by a combination of case detection and condom use, and finally, case

detection as a standalone strategy.
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1 Introduction

Human immunodeficiency virus (HIV) is a virus that infects

CD4+ T lymphocytes, leading to a weakened immune system

in individuals. On the other hand, Acquired immune deficiency

syndrome (AIDS) refers to the symptoms that occur as a result

of a weakened immune system due to HIV infection (1). HIV can

be transmitted through bodily fluids such as blood, semen, genital

fluids, and breast milk. According to data from the WHO and the

United Nations Programme on HIV/AIDS (UNAIDS), in 2016,

there were 36.7 million people living with HIV (PLHIV)/AIDS

worldwide. The majority of people living with HIV are in low and

middle-income countries, such as Eswatini, where the prevalence

is 25.9% among the adult population, Lesotho with a prevalence

of 19.3%, South Africa with a prevalence of 17.8%, Botswana with

a prevalence of 16.4%, and Mozambique with a prevalence of

11.6% (2). According to the same source, the top 10 countries

with the highest HIV prevalence include 10 African nations, with

South Africa having the highest number of people living with HIV,

surpassing 7.6 million in 2020. Beyond Africa, the spread of HIV

is also a significant concern, particularly in Indonesia, where the

latest data report 519,158 individuals affected by HIV as of June

2022 (3). This places Indonesia as the third-highest country with

people living with HIV in Asia, following India and Thailand.

The HIV illness may be divided into four phases. People living

with HIV (PLHIV) and have entered stage one may experience

mild symptoms such as flu-like symptoms, diarrhea, and fever.

Those who have entered stage two may experience symptoms such

as Tuberculosis (TB), swollen lymph nodes, and skin disorders.

In stage three, individuals may experience symptoms in the

mucous membranes, such as Tuberculosis (TB) in the lymph

nodes. Finally, in stage four, individuals may experience systemic

meningoencephalitis. Stage four is commonly referred to as AIDS.

HIV attacks CD4+ T cells in the bodies of infected individuals.

CD4+ T cells play a crucial role in the immune system and perform

many functions in immune activation, coordination, modulation,

and regulation (4). AIDS is defined as an outcome among those

living with HIV if the CD4+ T cell count is< 200.

Antiretroviral therapy (ART) is available as a treatment to

reduce the risk of HIV transmission and lower the amount of

HIV in the blood. Highly active antiretroviral therapy (HAART)

has been successful in reducing morbidity and mortality among

individuals infected with HIV (5). According to the United Nations

Programme on HIV/AIDS (UNAIDS),1 there were 1.3 million

people newly infected with HIV in 2022. Among 39 million people

living with HIV in 2022, 630,000 people died of AIDS. According

to the global HIV and AIDS epidemic,2 only 86% of people with

HIV globally knew their HIV status in 2022, the rest of them do

not know that they were living with HIV. Therefore, antiretroviral

therapy has the potential to reduce the number of individuals

infected with HIV in sub-Saharan Africa and other countries.

1 AIDS by the Numbers (2023). Available online at: https://www.unaids.org/

en.

2 The Global HIV and AIDS Epidemic (2023). Available online at: https://

www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics/#::

text=HIV.

The mathematical models have been used widely to model

the spread of diseases, such as dengue (6), malaria (7, 8),

tuberculosis (9–11), HIV (12), COVID-19 (13–16), pneumonia

(17). In the context of the HIV/AIDS infectious disease spread,

the mathematical model can help researchers understand the

impact of interventions and can be used to predict the potential

outcome of scenarios in the field. An early mathematical model

for HIV/AIDS can be found in Rahman et al.’s study (18). In

2009, Mukandavire et al. (19) presents a mathematical model

for HIV/AIDS transmission dynamics, incorporating an explicit

incubation period. It demonstrates that effective public health

educational campaigns, when targeted at both sexually immature

and sexually mature individuals, can significantly slow down the

epidemic. The study also identifies the presence of backward

bifurcation in the mathematical model, highlighting the complexity

of disease dynamics and the potential impact of comprehensive

intervention strategies. The presence of the backward bifurcation

phenomenon in their model suggests that the extinction of HIV

may not solely depend on the condition of the reproduction

number being less than one. This is because another endemic

possibility may emerge even when the reproduction number is

already less than one. In lay terms, backward bifurcation in the

model means that even if the conditions initially seem favorable for

controlling and reducing HIV (for example, when the reproduction

number is less than one), there is still a risk of a resurgence

or a persistent presence of the infection. This phenomenon

introduces a level of complexity, suggesting that the effectiveness

of interventions and the possibility of HIV extinction are not

solely determined by one factor (such as a low reproduction

number). Instead, additional factors or conditions may influence

the dynamics of the infection,making it more challenging to predict

and control. Nyabadza and Mukandavire in (20) employ ordinary

differential equations to investigate the dynamics of HIV/AIDS,

particularly in the context of HIV testing and screening campaigns.

The key findings include that having a basic reproduction number

below one is necessary but not sufficient for disease control due

to backward bifurcation phenomena. Additionally, the study fits

the model to real data on HIV prevalence in South Africa, adding

empirical validation to the model’s insights that HIV counseling

and testing itself has very little impact in reducing the prevalence

of HIV unless the efficacy of the campaigns exceeds an evaluated

threshold in the absence of backward bifurcation. Recently, Zhai

et al. (21) develop a stochastic HIV/AIDS model that considers

individuals with protection awareness. Their research revealed

that HIV can become extinct when the Rs0 is <1. Furthermore,

the study highlights that enhancing the protection efficiency of

individuals with awareness and the implementation of continuous

antiretroviral therapy (ART) both contribute to reducing the

number of people living with HIV (PLHIV), offering potential

strategies for disease control. In Jamil et al.’s study (22), a fractal

fractional HIV/AIDS model is introduced, using fractional order

differential equations. The study utilizes the first and second

derivatives of the Lyapunov function to conduct a global analysis

of the model. The research suggests that measures to reduce the

effective contact rate between susceptible and infected individuals,

coupled with improved treatment for those who are already

infected, can enhance the effectiveness of interventions against
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HIV/AIDS. Recently, due to the COVID-19 pandemic, many

mathematical models have been introduced to understand the

impact of co-infection between HIV/AIDS with COVID-19. Xu et

al. (23) focus on developing a mathematical model for HIV-TB co-

infection dynamics and validate it using real incidence data from

different regions. The article also delves into the comparison of

numerical schemes to determine the most effective computational

approach for simulating the model. Pinto et al. (24) explore

models for HIV and TB coinfection dynamics, considering both

fractional and integer order models. Their analysis encompasses

treatment strategies for both diseases and includes considerations

for the vertical transmission of HIV. Ringa et al. (25) conduct

an analysis on sub-models (and co-infection model) related to

HIV and COVID-19 co-infection. They apply an optimal control

approach to control variables, finding that preventive measures can

substantially reduce the burden of co-infections with COVID-19,

and effective treatment of COVID-19 could, in turn, reduce co-

infections with opportunistic infections such as HIV/AIDS. Please

see Omami et al.’s study (26) for another model which incorporates

a coinvection between HIV, dengue, and COVID-19. Another

classical model was presented by Garba et al. (27), wherein they

employed a mathematical framework to simulate the spread of HIV

in Nigeria. Their model incorporates factors such as condom use

and asymptomatic cases. The researchers utilized incidence data

from Nigeria to calibrate the parameters of their model. Readers

may refer to (28–34) for more HIV/AIDS related models.

This research is an extension of the study conducted by

Rahman et al. (18) with modifications that include the addition

of an AIDS compartment as a variable, taking into consideration

the population engaged in unprotected sexual intercourse, and

the intervention of antiretroviral therapy. This research aims to

develop a comprehensive model for the spread of HIV, integrating

the dynamics of CD4+T cells and considering key interventions

such as condom use and treatment. By fitting model parameters

based on data from four top countries with high HIV incidence

rates, we seek to provide a nuanced understanding of how these

factors influence the trajectory of the epidemic. Additionally,

sensitivity analysis was conducted to assess the impact of various

model parameters on the number of cases in each country,

offering insights into the relative importance of different factors.

Furthermore, optimal control techniques are employed to forecast

potential optimal scenarios in the field, aiding in the design of

effective strategies for HIV prevention and management.

In this study, a mathematical model for the spread of

HIV/AIDS through unprotected sexual intercourse has been

constructed based on the classification of the number of CD4+ T

cells in the body, incorporating the intervention of antiretroviral

therapy. The number of CD4+ T cells is crucial in constructing

an HIV mathematical model because these cells play a central

role in the immune system, and their depletion is a hallmark

of HIV infection. CD4+ T cells are a type of white blood cell

that helps coordinate the immune response to infections. HIV

specifically targets and infects these cells, leading to a decline in

their numbers over time. Incorporating the CD4+ T cell count into

the mathematical model allows for a more realistic representation

of the dynamics of HIV infection and disease progression. Applying

some mathematical analysis tools, we conduct an analytical study

on our model, including an analysis of existence, the stability

analysis of equilibrium points, and the analysis of the basic

reproduction number R0. With this study, we can understand the

long-term behavior of HIV transmission as it changes over time.

The analysis of the basic reproduction number can quantify which

factors play a significant role in efforts to control the spread of

HIV. Following that, we conducted numerical simulations, which

involved analyzing the elasticity and sensitivity of R0, in addition

to performing autonomous and optimal control simulations using

the constructed model. The goal is to gain insights into the

impact of antiretroviral therapy on the transmission of HIV/AIDS

through unprotected sexual intercourse. This analysis is based on

the classification of the number of CD4+ T cells in the body.

By interpreting the outcomes from both the analytical study and

numerical simulations, we aim to better understand the dynamics

and effects of the treatment and condom use on the spread of

the virus.

The article is structured as follows: Section 2 presents the

construction and analysis of a simple case model where the number

of CD4+T cells is not considered in the model. This section

includes a global stability of equilibrium points and a sensitivity

analysis of the basic reproduction number. Section 3 delves into

the mathematical model analysis of the complete model, discussing

equilibrium points, control reproduction number, data fitting, and

model sensitivity analysis. Section 4 describes the modification of

the complete model into a control optimal model. This section

includes numerical experiments for different strategies, as well as

a cost-effectiveness analysis. Finally, Section 5 provides conclusion.

2 A mathematical model of HIV/AIDS
with antiretroviral treatment without
considering the number of CD4+T cell
number class

2.1 Model construction

In this section, we consider an antiretroviral treatment for

an HIV-infected individual. First, let us consider the total human

population (aged 15–49 years), denoted by N, to be be categorized

into four different compartments based on their health statuses,

namely, the susceptible individual (S), PLHIV with infection only

(I), PLHIV receiving treatment (T), and PLHIV with AIDS illness

(A). In this model, we assume that without any test, the HIV-

infected individual cannot be detected. Hence, they cannot get a

proper treatment. To construct the model, we use the transmission

diagram as shown in Figure 1.

The construction of the model is as follows. The recruitment

rate of N is always considered as a susceptible person from

a younger age class of <15 years, with a constant rate 3.

Infection only occurs due to successful contact between susceptible

individuals with infected individuals I and T with a probability

of βu and βt , respectively. The most effective way to prevent

sexual transmission of HIV is through abstinence, that is, avoiding

all vaginal, anal, and oral sex. In our model, we include the

use of a male condom or a female condom that can avoid the
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FIGURE 1

HIV transmission diagram with antiretroviral treatment.

transmission of HIV. The variables ǫ and κ are denoted as condom

efficacy and the proportion of people who use condoms, then the

transmission rate βu and βt can be reduced by a factor of 1 − ǫκ .

With this assumption, we have κ ∈ [0, 1] and ǫ ∈ [0, 1]. A

bigger value of κ represents a better quality of a condom, and

a bigger value of ǫ represents a condition where more people

use condoms during their sexual activity. With the mass action

infection process, then the infection force of infection is given by

(1− ǫκ)(βuI + βtT). In this model, we have a transition from I to

T due to a medical test for HIV detection, which is denoted by τ .

Furthermore, the transition from the HIV stage to AIDS is given by

γu and γt for I and T individuals, respectively. Due to antiretroviral

treatment, we assume that γt < γu. Each compartment has a

natural death rate denoted by µ, except for A compartment which

has an additional death rate due to AIDS, which is denoted by

η. Based on this assumption, the complete model of HIV/AIDS

transmission with the usage of condoms and the intervention of

antiretroviral treatment is given by the following system of ordinary

differential equations.

dS

dt
= 3 −

(

(1− ǫκ)(βuI + βtT)+ µ
)

S,

dI

dt
= (1− ǫκ)(βuI + βtT)S− (τ + γu + µ)I,

dT

dt
= τ I − (γt + µ)T,

dA

dt
= γuI + γtT − (µ + η)A,

(1)

completed with the following initial condition

S(0) > 0, I(0) ≥ 0,T(0) ≥ 0,A(0) ≥ 0.

2.2 Preliminary analysis

In this section, we describe two theorems to guarantee the

positiveness of the solution and also the positive invariant region

of the system (1).

Theorem 1. All solutions of the HIV/AIDS model in Equation (1)

with a non-negative initial condition in R
4
+ remain positive for all

time t > 0.

Proof: From the first equation on the (1), we have

dS

dt
= 3 −

(

(1− ǫκ)(βuI + βtT)+ µ
)

S

> −
(

(1− ǫκ)(βuI + βtT)+ µ
)

S.

The solution of S(t) is given by

S(t) > S(0) exp

[

−

(∫ t

0
(1− ǫκ)(βuI(φ)+ βtT(φ))+ µt

)]

.

Since S(0) > 0, then S(t) is always positive for all t > 0. The

remaining variables I(t),T(t), and A(t) can be shown in a similar

way. Hence the solution set {S, I,T,A} is always non-negative for

all time t > 0.

Theorem 2. The region

D =

{

(S, I,T,A) ∈ R
4
+ : 0 < S+ I + T + A ≤ max

(

3

µ
,N(0)

)}

is positively invariant and attracting with respect to the system (1)

with a non-negative initial condition in R
4
+.

Proof: Adding all equations in the system (1), we have

dN

dt
= 3 − µN − ηA ≤ 3 − µN.

Solving this differential equation with respect to N(t), we have

N(t) ≤ N(0) exp(−µt)+
3

µ
(1− exp(−µt)).

Therefore, we can see that N(t) → 3
µ
for t → ∞. If N(0) > 3

µ
,

thenN(t) will monotonically decrease and tends to 3
µ
. IfN(0) < 3

µ
,

thenN(t) will monotonically increase and tends to 3
µ
. On the other

hand, if N(0) = 3
µ
, then N(t) will remain constant for all time t,

where N(t) = 3
µ
. Hence, according to Theorem 1 and previous

calculation, we have 0 < S+ I + T + A ≤ max
{

3
µ
,N(0)

}

.

Based on Theorems 1 and 2, it is sufficient to consider the

dynamics of the system (1) in the region D where the existence,

uniqueness, and positiveness of the solution hold.

2.3 The HIV/AIDS-free equilibrium point
and the basic reproduction number of the
model (1)

In this section, we analyze the existence and stability of the

HIV/AIDS-free equilibrium points, and how they relate to the

basic reproduction number of the system (1). The HIV/AIDS-free

equilibrium point of the system (1) is given by

E1 = (S0, I0,T0,A0) =

(

3

µ
, 0, 0, 0

)

.

Before we calculate the local and global stability criteria of the

HIV/AIDS-free equilibrium points, we first calculate the basic

reproduction number of the system (1). First, we decompose the
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Jacobian matrix of an infected subsystem of the system (1) which

is evaluated in E0 in a transition 6 and transmission T matrix

as follows:

T =





(1− ǫκ) βu3

µ

(1− ǫκ) βt3

µ

0 0



 ,

6 =

[

−τ − γu − µ 0

τ −γt − µ

]

.

Since the elements of the second row of T are all zero, then defining

E = [1 0]t , the next-generation matrix is given by

K = −EtT6−1E =

[

3 (βu (γt + µ) + βtτ) (1− ǫκ)

µ (τ + γu + µ) (γt + µ)

]

.

The basic reproduction number of the system (1) is taken by the

spectral radius of K, which is given by

R0 =
3 (βu (γt + µ) + βtτ) (1− ǫκ)

µ (τ + γu + µ) (γt + µ)
.

The basic reproduction number in many epidemiological

models play an important role in determining the local and

global stability of the equilibrium points of their model. The basic

reproduction number in our model represents the total number

of secondary cases of HIV caused by one primary case of HIV

in a completely virgin population during its infection period. The

following theorem gives the local stability criteria of E0.

Theorem 3. The HIV/AIDS-free equilibrium point E1 is locally

asymptotically stable ifR0 < 1 and unstable ifR0 > 1.

Proof: The Jacobian matrix of the system (1) evaluated in E0 is

given by

J(ǫ0) =











−µ − (1−ǫκ)βu3
µ

− (1−ǫκ)βt3
µ

0

0 (1−ǫκ)βu3
µ

− µ − τ − γu
(1−ǫκ)βt3

µ
0

0 τ −µ − γt 0

0 γu γt −µ − η











,

which has two explicit eigenvalues, i.e, λ1 = −µ and λ2 = −(µ +

η), while the other two eigenvalues are taken by the solution of the

following polynomial

f (λ) = µλ2 + (2µ + τ + γu + γt)(1−R1)λ +

µ(τ + γu + µ)(γt + µ)(1−R0) = 0,

whereR1 =
3βu(1−ǫκ)

µ(2µ+τ+γu+γt)
andR0 =

3(βu(γt+µ)+βtτ)(1−ǫκ)
µ(τ+γu+µ)(γt+µ)

. Since

R1 < R0, then the other two eigenvalues will have a negative real

part if R0 < 1. Therefore, the HIV/AIDS-free equilibrium E0 is

locally asymptotically stable ifR0 < 1.

The following Theorem gives the global stability criteria of E0.

Theorem 4. The HIV/AIDS-free equilibrium E1 of the system (1)

is globally stable ifR0 < 1.

Proof: Using a same approach as authors in (35), let us define

dX

dt
= F(X,Z),

dZ

dt
= G(X,Z),G(X, 0) = 0,

whereX = S ∈ R+ is the compartment of non-infected individuals,

and Z = (I,T,A) ∈ R
3
+ is the infected compartments. Let X∗ =

(3
µ
, 0).

From direct calculation, we have

F(X, 0) = [3 − µS],

G(X,Z) = AZ − Ĝ(X,Z),

where

A = DZG(X
∗, 0) =







(1−ǫκ)βu
µ

− τ − γu − µ
(1−ǫκ)βt

µ
0

τ −γt − µ 0

γu γt −µ − η






,

Ĝ(X,Z) =







Ĝ1(X,Z)

Ĝ2(X,Z)

Ĝ3(X,Z)






=

[

(1−ǫκ)(βuI+βtT)

(

3
µ
−S

)

0
0

]

.

Since I and T are always positive, then it is clear that Ĝ(X,Z) ≥ 0.

It is also clear that X∗ = (3/µ) is globally stable for F(X, 0). Hence,

E0 is globally asymptotically stable.

2.4 HIV/AIDS endemic equilibrium point of
the system (1)

The HIV/AIDS endemic equilibrium point of system (1) is

given by

E2 = (S∗, I∗,T∗,A∗),

where

S∗ =
(γt + µ) (τ + γu + µ)

(βu (γt + µ) + βtτ) (1− ǫκ)
,

=
3

R0µ
,

I∗ =
3(1− ǫκ)(βu(µ + γt)+ βtτ )− µ(µ + γt)(µ + τ + γu)

((1− ǫκ)(βu(µ + γt)+ βtτ )(µ + τ + γu)

=

(

1−
1

R0

)

3

µ + τ + γu
,

T∗ =
τ

µ + γt

3(1− ǫκ)(βu(µ + γt)+ βtτ )− µ(µ + γt)(µ + τ + γu)

((1− ǫκ)(βu(µ + γt)+ βtτ )(µ + τ + γu)

=

(

1−
1

R0

)

3τ

(µ + γt)(µ + τ + γu)
,

A∗ =
3(1− ǫκ)(βu(µ + γt)+ βtτ )− µ(µ + γt)(µ + τ + γu)

((1− ǫκ)(βu(µ + γt)+ βtτ )(µ + τ + γu)

(µγu + γt(τ + γu)

(µ + γt)(η + µ))

=

(

1−
1

R0

)

3(µγu + γt (τ + γu))

(µ + γt)(µ + τ + γu)(η + µ)
.

From the expression of E2, we have the following theorem.

Theorem 5. The HIV/AIDS endemic equilibrium E2 of the

system (1) exist in R
4
+ ifR0 > 1.
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In the following theorem, we show the non-existence of

backward-bifurcation phenomena of the system (1).

Theorem 6. The system (1) always exhibits a forward bifurcation

phenomenon atR0 = 1.

Proof: To analyze the bifurcation phenomena of system (1), we

use the well-known Castillo-Song bifurcation theorem (35). Please

see (36–38) for more examples of the implementation of this

theorem in another epidemiological model. First, let us define

S = x1, I = x2,T = x3, and A = x4 and gi for i = 1, ..., 4

represent dS
dt
, dI
dt
, dT
dt
, and dA

dt
, respectively. Next, we choose βt as the

bifurcation parameter. SolvingR0 = 1 with respect to βt , we have

β∗
t =

µ (τ + γu + µ) (γt + µ)

3 (1− ǫκ) τ
−

βu (γt + µ)

τ
.

Next, we calculate the Jacobian matrix of the system (1) and
evaluate it at β∗

t and E0, we have

A =











−µ − (1−ǫκ)βu3

µ

(3(1−ǫκ)βu−µ2−µτ−µγu)(µ+γt )

µτ
0

0 (1−ǫκ)βu3

µ
− µ − τ − γu −

(3(1−ǫκ)βu−µ2−µτ−µγu)(µ+γt )

µτ
0

0 τ −µ − γt 0
0 γu γt −η − µ











The eigenvalues ofA are

λ1 = 0, λ2 = −µ, λ3 = −(µ + η), and λ4 =

3(1−κǫ)βu−µ(2µ+τ+γt+γu)
µ

.

We can see clearly that we have a simple zero eigenvalue, and λ2 and

λ3 are negative. We have λ4 < 0 if and only if 3(1−κǫ)βu
µ(2µ+τ+γt+γu)

< 1.

Since

R0 = 1 =
3(βu(γt+µ)+βtτ)(1−ǫκ)

µ(τ+γu+µ)(γt+µ)
>

c3βu
µ(µ+τ+γu)

>

3(1−κǫ)βu
µ(2µ+τ+γt+γu)

,

then we also have λ4 < 0. Hence, we can proceed to the next

step to analyze the bifurcation type of our model. The bifurcation

type of our model can be determined with the following formula:

a =

4
∑

k,i,j=1

vkwiwj
∂2gk

dxidxj
(0, 0), b =

4
∑

k,i=1

vkwi
∂2gk

dxidβt
(0, 0),

where v and w is the left and right eigenvectors of A with respect

to the zero eigenvalue, respectively. The left eigenvalue of A with

respect to the eigenvalue 0 is given by

v1 = 0, v2 = 1 > 0, v3 =
(

3(1− κǫ)βu − µ(µ + τ + γu)
)

τµ
< 0, with v4 = 0.

On the other hand, the right eigenvector of A with respect to the

eigenvalue 0 is given by

w1 = −
(γt + µ)(τ + γu + µ)

µτ
,w2 =

γt + µ

τ
,w3 = 1, and

w4 =
µγu + τγt + γtγu

(η + µ)
.

Hence, we have

a =

4
∑

k,i,j=1

vkwiwj
∂2gk

dxidxj
(0, 0)

= −
2 (τ + γu + µ) (βtτ + βu (γt + µ)) (γt + µ) (1− ǫκ)

τ 23
,

b =

4
∑

k,i=1

vkwi
∂2gk

dxidβt
(0, 0)

= (1− ǫκ).

Since a < 0 and b > 0, the system (1) always exhibits a forward

bifurcation atR0 = 1.

The following corollary is a direct implication from Theorem 6.

Corollary 1. The HIV/AIDS endemic equilibrium E2 of the

system (1) is locally stable forR0 > 1 but close to one.

In epidemiology, bifurcation refers to a qualitative change in

the behavior of a dynamical system as a parameter is varied.

Forward bifurcation specifically occurs when a stable endemic

equilibrium coexists with an unstable disease-free equilibrium at

parameter values where the basic reproduction number (R0) is

larger than one. On the other hand, in cases where the reproduction

number falls below one, a stable disease-free equilibrium exists

without the existence of the endemic equilibrium. Consequently,

the condition where the reproduction number equals one marks

the bifurcation point. In the context of the HIV/AIDS model that

we developed in Equation (1), forward bifurcation has significant

implications. It highlights the importance of not only reducing

transmission rates but also addressing factors that contribute to the

maintenance of stable disease-free equilibrium, such as the efficacy

of condom use and treatment. By considering the implications

of forward bifurcation, epidemiologists and policymakers can

develop more nuanced and effective approaches to combating the

HIV/AIDS epidemic.

2.5 E�ect of R0 to endemic size E2

Here in this section, we will perform the elasticity index of the

basic reproduction number R0 and the endemic equilibrium size

of the HIV/AIDS model in Equation (1) and also the parameter

sensitivity to R0. We use parameter values for Lesotho (See table

in Appendix 2), except for τ and κ , which is given as follows:

βu = 1.4888× 10−6,βt = 1.14888× 10−7,µ = 1
57 ,

γu = 0.6, γt = 0.3, τ = 0.1, ǫ = 0.925, κ = 0.1, and

3 = 736680
57 . (2)

With this set of parameters, we have R0 = 1.43, which is larger

than one. Hence, the HIV/AIDS endemic equilibrium E2 exists and

is given by

E2 = (S, I,T,A) = (514872, 5423, 1707, 15709)

is locally stable. This confirms the results of Theorems 5 and 6.
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Next, we calculate the elasticity index of R0 and the endemic

equilibrium size. To perform this simulation, we use the following

formula (39):

E
p
Q =

∂Q

∂p
×

p

Q
,

where p is the model parameter, and Q is the quantity of the model

output, such asR0 or endemic equilibrium size E2. Using the above

formula, we have

E
βu

R0
=

βu(µ + γt)

βu(µ + γt)+ τβt
.

Substituting parameter values in Equation (2) yield E
βu

R0
= +0.969,

which means that increasing βu by 1% will increaseR0 by 0.969%.

Therefore, if we increase βu from 1.4888 × 10−7 to 1.503 × 10−7

(increased by 1%), then R0 increases from 1.43 to 1.44, which is

an increase of 0.969%. With the same approach, we can calculate

the elasticity of each parameter in the system (1) (except 3 that we

ignored since the number of recruitment rates cannot be changed

in the field) with respect to R0 and E2. The results can be seen in

Figure 2.

From Figure 2, we can see that βu has a significant impact

on R0 and E0, more dominant than βt . Hence, infection from

untreated individuals plays a significant role in determining the

spread of HIV/AIDS. Increasing βu and βt will increase R0 and

all infected compartments in E0, but reduce S in E0. Furthermore,

we can see that the progression to the A compartment, which is

presented by parameters γu and γt , will reduceR0. We can also see

that γu is more significant in affectingR0 or all compartments in E0
compared to γt . Another important result is that the case detection

rate τ is promising in reducingR0 and all infected compartments.

Since we can see that the use of condoms to reduce the infection

rates βu and βt shows a promising potential to control HIV/AIDS,

it is necessary to see the combination of ǫ and κ to reduce R0. By

substituting all parameter values in Equation (2), except ǫ and κ ,

intoR0, we haveR0(ǫ, κ) = 1.591(1− ǫκ). Drawing this function

in the ǫ − κ plane, we have the results in Figure 3. It can be seen

that if the efficacy of the condom or the proportion of people who

use condoms is <0.37, then the basic reproduction number will

always be larger than one (Area 1). Hence, the endemic situation

will always appear in the population. On the other hand, if the two

above mentioned parameters are >0.37 (Area 2), then there is a

chance to eradicate HIV from the population (Area 2b).

3 A mathematical model of HIV/AIDS
considering CD4+T cell number

3.1 Model construction

In this section, we modify our previous model in the system (1)

by accommodating the number of CD4+T cells in the human body.

To construct the model, we use the following assumptions:

1. We classify each of the I and T compartments in the system (1)

into three compartments, which present the class of infected and

treated individuals based on the number of CD4+T cells. We

denote I1, I2, and I3 as infected individuals who have not yet been

detected and have different average numbers of CD4+T cells in

their blood. Please see the descriptions of Ii and Ti for i = 1, 2, 3

in Table 1.

2. We assume that since HIV infection itself is not very harmful,

there is no additional death rate attributable directly to HIV

individuals (compartments Ii and Ti). However, additional

deaths occur only among individuals with AIDS (compartment

A), and this occurs at a constant rate represented by the

parameter η.

3. The case detection test can determine the level of CD4+T cells

in the human body. Hence, we have a transition rate τ from Ii to

Ti for i = 1, 2, 3 due to successful case detection.

4. Each treated compartment will get antiretroviral treatment

which will delay the progression of HIV to AIDS. We assume

that successful treatment will increase the number of CD4+T

cells. With a duration of treatment is ρ, we have the probability

of treatment being unsuccessful given by s, q, and r for

individuals in T1,T2, and T3, respectively.

5. The infection rate of individuals in Ii is given by βu while for

individuals in Ti is given by βt . As an effect of treatment, here

we assume βt < βu.

Based on this model description and the transmission diagram
in Figure 4, the mathematical model of HIV/AIDS considering the
level of CD4+T cells, antiretroviral treatment, and case detection is
given by the following system of differential equations.

dS

dt
= 3 −

(

(1− ǫκ)
[

βu(I1 + I2 + I3)+ βt(T1 + T2 + T3)
]

+ µ
)

S,

dI1

dt
= (1− ǫκ)

[

βu(I1 + I2 + I3)+ βt(T1 + T2 + T3)
]

S−

(τ1 + δ1 + µ)I1,

dI2

dt
= δ1I1 − (τ2 + δ2 + µ)I2,

dI3

dt
= δ2I2 − (τ3 + γu + µ)I3,

dT1

dt
= τ1I1 + (1− q)ρT2 − (sρ + µ)T1,

dT2

dt
= τ2I2 + sρT1 + (1− r)ρT3 − ((1− q)ρ + qρ + µ)T2,

dT3

dt
= τ3I3 + qρT2 − ((1− r)ρ + rγt + µ)T3,

dA

dt
= rγtT3 + γuI3 − (µ + η)A,

(3)

completed with a non-negative initial condition S(0) > 0, I1(0) >

0, I2(0) > 0, I3(0) > 0, T1(0) > 0, T2(0) > 0, T3(0) > 0,

and A(0) > 0.

3.2 Preliminary analysis

With a similar approach, as we have given for Theorems 1 and

2, the positivity and boundedness criteria of the system (3) is given

in the following theorems.

Theorem 7. All solutions of the HIV/AIDS model in Equation (3)

with a non-negative initial condition in R
8
+ remain positive for all

time t > 0.
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FIGURE 2

The elasticity of R0, S
∗, I∗, T∗, and A∗ with respect to (A) βu (blue), βt (cyan), γu (green), and γt (yellow), and with respect to (B) τ (blue), κ (cyan), and ǫ

(yellow).

Theorem 8. The region

D =
{

(S, I1, I2, I3,T1,T2,T3,A) ∈ R
8
+ : 0 < S+ I1 + I2 + I3 + T1+

T2 + T3 + A ≤ max
(

3
µ
,N(0)

)}

is positively invariant and attracting with respect to the system (1)

with a non-negative initial condition in R
8
+.

3.3 The HIV/AIDS-free equilibrium and the
control reproduction number

The HIV/AIDS-free equilibrium of the system (3) is given by

E1 = (S0, I01 , I
0
2 , I

0
3 ,T

0
1 ,T

0
2 ,T

0
3 ,A

0) = (
3

µ
, 0, 0, 0, 0, 0, 0, 0).

Using the next-generation method (40), we determine the
expression of the basic reproduction number of the system (3).
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Similar to the previous section, we first determine the transition
(6) and transmission (T) matrices of the infected subcompartment
of the system (3), which is given by

T =















3(1−ǫκ)βu
µ

3(1−ǫκ)βu
µ

3(1−ǫκ)βu
µ

3(1−ǫκ)βt
µ

3(1−ǫκ)βt
µ

3(1−ǫκ)βt
µ

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















,

FIGURE 3

Dependency of R0 on the condom e�cacy and the proportion of

people who use it.

and

6 =



















−a1 0 0 0 0 0

δ1 −a2 0 0 0 0

0 δ2 −a3 0 0 0

τ1 0 0 −a4
(

1− q
)

ρ 0

0 τ2 0 ρs −a5 (1− r) ρ

0 0 τ3 0 qρ −a6



















,

where a1 = τ1 + δ1 + µ, a2 = τ2 + δ2 + µ,, a3 = τ3 + γu + µ,

a4 = ρs+µ, a5 =
(

1− q
)

ρ+qρ+µ, and a6 = (1− r) ρ+rγt+µ.

Since we have only the first row of T is non-zero, while the others

are zero, we define

E =



















1

0

0

0

0

0



















,

and calculate the control reproduction number using the formula

of K = −EtT6−1E. Hence, the control reproduction number of

the system (3) is given by

R0 = ρ(K) =
b1

a1
+

b1δ1

a1a2
+

b1δ1δ2

a1a2a3
+ b2K1 + b2K2 + b2K3,

TABLE 1 Description of variables of the HIV/AIDS model in the system (3).

Variable Description

S Number of susceptible individuals

I1/I2/I3 Number of people living with HIV who have number of CD4+T

cells in the range of > 500/200− 499/ < 200 cells/mm3

T1/T2/T3 Number of people living with HIV and get treated who have

number of CD4+T cells in the range of> 500/200− 499/ < 200

cells/mm3

A Number of people living with HIV with AIDS illness

FIGURE 4

Transmission diagram of the HIV/AIDS model in system (3).
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where

b1 =
3 (1− ǫκ) βu

µ
,

b2 =
3 (1− ǫκ) βt

µ
,

K1 =

(

− (r − 1)
(

(a2a3 + δ1δ2) q− δ1δ2
)

ρ2 + a6δ1a3
(

q− 1
)

ρ − a2a3a5a6
)

τ1

a1
((

(a6s+ a4 (r − 1)) q− a6s
)

ρ2 + a4a5a6
)

a2a3
,

K2 =
τ2 ((−δ1δ2 (r − 1) a4 + a6sa2a3) ρ + a3a4a6δ1)

a1
((

q (r − 1) a4 + a6s
(

q− 1
))

ρ2 + a4a5a6
)

a2a3
, and

K3 =

(

s
(

(a2a3 + δ1δ2) q− δ1δ2
)

ρ2 + qρa3a4δ1 + a4a5δ1δ2
)

τ3

a1
((

(a6s+ a4 (r − 1)) q− a6s
)

ρ2 + a4a5a6
)

a2a3
.

Following (41) , the local stability criteria of E1 is given in the

following theorem.

Theorem 9. The HIV/AIDS-free equilibrium of the system (3)

given by E1 is locally asymptotically stable if R0 < 1 and unstable

if R0 > 1.

3.4 Data fitting

Here in this section, we fit the model (3) to the data of HIV

prevalence (age 15–49 years) from Eswatini, Lesotho, Botswana,

and South Africa, which represent the top four countries with the

highest prevalence of HIV in the world in 2023. The prevalence

data that is shown in Appendix 1 can be download from (42). Some

parameters on the model in Equation (3) were estimated using the

data-fitting process, while the other parameters were taken from

the references. Here is the explanation of how we choose the value

of these parameters.

1. The total populationN, drawn from individuals aged between 15

and 64 years in each country, is sourced from The World Bank

data in (43). According to this data, the populations of Eswatini,

Lesotho, Botswana, and South Africa are 736,680, 1,425,560,

1,676,630, and 39,264,160, respectively.

2. The natural death rate is denoted by µ. Using data from the

World Bank (44), we have µEswatini = 1
57 year−1,µLesotho =

1
53 year−1,µBotswana = 1

61 year−1, and µSouth Africa = 1
62 year−1.

3. Recruitment rate is denoted by (3). We assume that the total

natural death is approximately equal to the total newborn, hence

we have 3 = µN.

4. Condom efficacy is denoted by (ǫ). Based on several references

(45), the efficacy of the condom usage is between 90 and 95%.

Hence, we assume that ǫ = 92.5%.

5. The progression rate due to the decreases in the number of

CD4+ T Cells (δ1, δ2). Based on (18), we choose δ1 = 0.33

and δ2 = 0.34.

6. Based on (27), we use γu = 0.6. Since γt < γu due to

treatment that has been followed by T individuals, then we

assumed γt = 0.3.

7. Since q, r, and s are proportions, we assume that ρ = 1.64, r =

0.5, q = 0.653, and s = 0.653.

8. Due to the treatment undertaken by individuals in T, then we

assume that βt < βu.

9. We assume that individuals in T3 are easier to be asked to follow

the treatment process for HIV rather than individuals in T1 and

T2. Hence, we assume τ3 > τ2 > τ1 > 0.

10. Since κ is the proportion of people who use condoms during

sexual activity, we assume κ ∈ [0, 1].

Our aim is to estimate βu,βt , τ1, τ2, τ3, and ǫ which minimize

the following error function

Error =

32
∑

i=1

(

I1 + I2 + I3 + T1 + T2 + T3 + A

N
× 100− Pi

)2

,

where Pi is the HIV prevalence data at time step−i andN is the total

population in 1990 for Eswatini, Lesotho, Botswana, and South

Africa as described before. The initial conditions of Ii(0), Ti(0),

and A(0), for i = 1, 2, 3 are also estimated here, with S(0) =

N −
∑3

i=1(Ii(0) + Ti(0) + A(0)). The particle swarm optimization

(PSO) is used to find the minimum of error function. By using the

PSO algorithm as given in (46), with the number of particles given

is 500, the maximum iteration is 1,000, and c1 = c2 = 1, we obtain

the estimation of the parameters and the initial conditions as shown

in Appendix 2. Figure 5 displays the weekly prevalence calculations

from the estimated results compared to the HIV prevalence data

for Eswatini, Lesotho, Botswana, and South Africa. The model

simulation in Figure 5 shows a better agreement with the actual

data. The basic reproduction numbers for each country are given

as follows: 1.095, 1.682, 1.732, and 1.65 for Eswatini, Lesotho,

Botswana, and South Africa, respectively. A 95% confidence

interval for the fitting results using bootstrap resampling residual

approach is also given in Figure 5. The lower and upper bounds

of the confidence interval are computed by sorting 1,000 bootstrap

samples and taking the 2.5 and 97.5% percentiles.

3.5 Sensitivity analysis of the model and
the control reproduction number

The sensitivity methods can be used on infectious disease

models to determine which variable or parameter is sensitive to

a specific condition. Identifying the key critical parameters is an

effective way to study such models more widely and accurately.

Recently, we have used the sensitivity methods to identify the

critical parameters for some infectious disease models. Suppose

that an infectious disease model has m compartments xi for i =

1, 2, ...,m and n parameters kj for j = 1, 2, ..., n, then, the local

sensitivities can be calculated using three different techniques: non-

normalizations, half-normalizations, and full-normalizations. First,

the equation of non-normalization sensitivities is given by

S
xi
kj
=

∂xi

∂kj
,

where S
xi
kj

is measured as a sensitivity coefficient of each xi

with respect to each parameter kj. Then, the formula of half-

normalization sensitivities is also defined below:

S
xi
kj
=

( 1

xi

)(∂xi

∂kj

)

.

Finally, the equation of full-normalization sensitivities is defined by

S
xi
kj
=

(kj

xi

)(∂xi

∂kj

)

.
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FIGURE 5

A comparison of HIV prevalence based on actual data and the model obtained from the estimated parameters for (A) Eswatini; (B) Lesotho; (C)

Botswana; and (D) South Africa.

We have used such estimated parameters and initial variables in

computational simulations using MATLAB. The results given in

this work provide an important step forward to understand the

model dynamics more widely. This helps us to identify critical

model parameters and how each model state is affected by the

model parameters.

3.5.1 Model sensitivity analysis in Eswatini
In this computational simulation, results from Figure 6 are

computed by using incidence data from Eswatini with the model

initial populations S(0) = 854, 011, I1(0) = 9, 529, I2(0) =

11, I3(0) = 7, 970,T1(0) = 63,T2(0) = 3, 214,T3(0) = 8, 920,

and A(0) = 1, 404, and the estimated model parameters are µ =

0.013, δ1 = 0.33, δ2 = 0.34,3 = 11861.26, γu = 0.1, γt =

0.018, ρ12 = 0.1462, ρ21 = 0.57, ρ23 = 0.1462, ρ32 = 0.82,βu =

0.9529,βt = 0.001, τ = 0.7970, κ = 0.0063, and ǫ = 0.3214

When we use the non-normalization technique, it can be seen

that the model states S and T1 are very sensitive to µ,βt ,βu, κ , and

ρ12, while all model states are less sensitive to the model parameters

δ2,3, ρ32, and ǫ; see panels (A, B). Furthermore, using the half-

normalization method shows that almost all model states are very

sensitive to the model parameters µ,βt ,βu, and τ , whereas they

are less sensitive to the other model parameters; see panels (C, D).

Interestingly, applying the full-normalization method shows that

almost all model variables are sensitive to βu and τ , while the other

variables have different sensitivities to the model parameters, this is

clearly seen in panels (E, F).

3.5.2 Model sensitivity analysis in Lesotho
The results from Figure 7 are computed by using incidence

data from Lesotho with the model initial populations S(0) =

1, 799, 000, I1(0) = 3, 676, I2(0) = 5, 018, I3(0) = 37, 272,T1(0) =

3, 420,T2(0) = 1, 701,T3(0) = 1, 982, and A(0) = 1, 163,

and the estimated model parameters are µ = 0.013, δ1 =

0.33, δ2 = 0.34,3 = 1, 799, 000/72, γu = 0.1, γt = 0.018, ρ12 =
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FIGURE 6

Local sensitivity analysis with non-normalization (A, B), half-normalization (C, D), and full-normalization (E, F) techniques using the best-fit

parameter for Eswatini.

0.1462, ρ21 = 0.57, ρ23 = 0.1462, ρ32 = 0.82,βu = 0.8999,βt =

0.0001, τ = 0.7909, κ = 0.0131, and ǫ = 0.2710

By using the non-normalization technique, it shows that

the model states S and T1 are very sensitive to µ,βt ,βu

and τ , while the other model states are less sensitive to

the model parameters; see panels (A, B). When we use the

half-normalization method, it shows that almost all model states

are very sensitive to the model parameters µ,βt ,βu, and τ ,

whereas they are less sensitive to the other model parameters;

see panel (C). Furthermore, by applying the full-normalization

method shows that almost all model variables are sensitive to

βu and τ , while we can also observe that there are different

levels of sensitivities between model variables and parameters; see

panel (D).
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FIGURE 7

Local sensitivity analysis with non-normalization (A, B), half-normalization (C), and full-normalization (D) techniques using the best-fit parameter for

Lesotho.

3.5.3 Model sensitivity analysis in Botswana
Using the model initial states and estimated model parameters

in computational simulations, results from Figure 8 are computed

by using incidence data from Botswana with the model initial

populations S(0) = 1, 341, 000, I1(0) = 17, 426, I2(0) =

3, 379, I3(0) = 39, 459,T1(0) = 31, 384,T2(0) = 7,T3(0) =

14, 015, and A(0) = 1, 243, and the estimated model parameters are

µ = 0.013, δ1 = 0.33, δ2 = 0.34,3 = 1341000/72, γu = 0.1, γt =

0.018, ρ12 = 0.1462, ρ21 = 0.57, ρ23 = 0.1462, ρ32 = 0.82,βu =

0.8991,βt = 0.0001, τ = 0.8689, κ = 0.8974, and ǫ = 0.0067.

The results of the non-normalization technique shows that

the model states S and T1 are very sensitive to µ,βt ,βu, τ , and

ǫ, while there are different levels of sensitivities between other

model states and parameters; see panels (A, B). Using the half-

normalization method shows that almost all model states are

very sensitive to the model parameters µ and βt , whereas there

are sensitivities to the other model parameters; see panel (C).

Furthermore, applying the full-normalization method shows that

almost all model variables are sensitive to βu and τ , while we can

also see that there are different levels of sensitivities between model

variables and parameters; see Figure panel (D).

3.5.4 Model sensitivity analysis in South Africa
Computational results shown in Figure 9 are computed by

using incidence data from South Africa with the model initial

populations S(0) = 39, 880, 000, I1(0) = 127, 900, I2(0) =

145, 386, I3(0) = 101, 214,T1(0) = 104,T2(0) = 197, 709,T3(0) =

99, 926, and A(0) = 5, 033, and the estimated model parameters

are µ = 0.013, δ1 = 0.33, δ2 = 0.34,3 = 39, 880, 000/72, γu =

0.1, γt = 0.018, ρ12 = 0.1462, ρ21 = 0.57, ρ23 = 0.1462, ρ32 =

0.82,βu = 0.8999,βt = 0.0001, τ = 0.7945, κ = 0.6706,

and ǫ = 0.0001.

When we use the non-normalization technique, it can be seen

that the model states S and T1 are very sensitive to µ,βt ,βu.κ ,

and ǫ, while the other states are less sensitive to the other

model parameters; see panels (A, B). Furthermore, using the half-

normalization method shows that almost all model states are very

sensitive to the model parameters µ,βt ,βu, and ǫ, whereas they

are less sensitive to the other model parameters; see panel (C).

Interestingly, applying the full-normalization method shows that

almost all model variables are sensitive to βu and τ , while the other

variables have different sensitivities to the model parameters, this is

clearly seen in panel (D).
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FIGURE 8

Local sensitivity analysis with non-normalization (A, B), half-normalization (C), and full-normalization (D) techniques using the best-fit parameter for

Botswana.

3.6 Autonomous simulation

In this simulation, we conduct the analysis using estimated

parameters for Eswatini. We divide our simulation into three

scenarios to understand the impact of the infection rate, the quality

of prevention (condom use), and the effectiveness of massive

detection. We employ bifurcation parameters and autonomous

simulations at several sample points on the bifurcation diagram.

3.6.1 E�ect of infection rate βu

To conduct the simulation, we set βu as the bifurcation

parameter, while the other parameters are the best-fit parameter for

Eswatini (see Section 3.5.1). The numerical results are presented in

Figure 10. It is clear to see that a larger value of βu will increase R0

and I1 in endemic equilibrium. Based on this dataset, we determine

that R0 = 1 when βu = 1.23 × 10−6. At a sample point P2
(βu = 0.4×10−6,R0 = 0.687), we observe that the HIV/AIDS-free

equilibrium point is stable, with the following values:

S = 736, 680, I1 = 0, I2 = 0, I3 = 0,T1 = 0,T2 = 0,T3 = 0,A = 0.

On the other hand, at P1 (βu = 3× 10−6, we have R0 = 1.66), we

observe that the HIV/AIDS-endemic equilibrium is stable, with the

following values:

S = 443342, I1 = 5135, I2 = 1361, I3 = 142,T1 = 15196,

T2 = 23158,T3 = 25493, and A = 16307.

In panel (A) of Figure 10, it is evident that for βu < 1.23 ×

10−6, R0 < 1, indicating the stability of the HIV/AIDS-

free equilibrium. As βu increases, R0 also increases (as seen

in the cyan curve). Upon reaching the branch point (BP), the

HIV/AIDS-free equilibrium becomes unstable, leading to the stable

HIV/AIDS-endemic equilibrium, which grows in significance as

βu continues to increase. Panel (B) illustrates how trajectories

from different initial conditions converge toward the same stable

equilibrium point, namely, the HIV/AIDS-free equilibrium or the

HIV/AIDS-endemic equilibrium. Figure 11 shows the dynamic of

the system (3) with respect to various values of βu. It can be seen

that larger βu will increase the number of infected individuals Ii,Ti,

and A.

3.6.2 The e�ect of proportion of the condom use
(κ)

This section is dedicated to examining the impact of the

proportion of people who use condoms during sexual contact (κ)
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FIGURE 9

Local sensitivity analysis with non-normalization (A, B), half-normalization (C), and full-normalization (D) techniques using the best-fit parameter for

South Africa.

FIGURE 10

The bifurcation diagram of the system (3) with respect to βu is presented in (A). In this diagram, “BP" denotes the branch point occurring at R0 = 1.

The cyan, red, and blue curves represent R0, the endemic equilibrium, and the HIV/AIDS-free equilibrium, respectively. Solid and dotted curves

indicate stable and unstable equilibria, respectively. (B) Depicts the trajectories of total infected, total treated, and susceptible individuals tending to

HIV/AIDS free-equilibrium point for βu at P1 and to HIV/AIDS endemic equilibrium for βu at P2.
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FIGURE 11

The impact of βu on the dynamics of susceptible (up left), total infected (up right), total treated (below left), and AIDS (below right). The blue curve

represents the dynamic for a low transmission rate βu (1.488× 10−7), while the red curve represents the dynamic for a high transmission rate βu

(1.488× 10−6).

on reducing the HIV/AIDS infection rate. For this simulation,

we use the same parameter values as in Section 3.6.1, with

the exception of κ , which is varying. The numerical results are

presented in Figure 12. With this data set, we determine thatR0 =

1 at ǫ = 0.691. As indicated by the cyan curve in panel (A), a higher

quality of condoms (larger ǫ) leads to a smaller R0. At sample

point P1, with ǫ = 0.2, we have R0 = 2.262, resulting in a stable

HIV/AIDS-endemic equilibrium at

S = 325, 640, I1 = 7, 195, I2 = 1, 908, I3 = 199,T1 = 21, 293,

T2 = 32, 450,T3 = 35, 722, and A = 22851.

On the other hand, at sample point P2, when ǫ = 0.9, we have

R0 = 0.464 which gives us a stable HIV/AIDS-free equilibrium

point at

S = 736, 680, I1 = 0, I2 = 0, I3 = 0,T1 = 0,T2 = 0,

T3 = 0, and A = 0.

Panel (B) shows the trajectories of all solutions from different

initial conditions tending toward their stable endemic equilibrium

and disease-free equilibrium. Figure 13 shows the dynamic of the

system (3) with respect to various values of κ . It can be seen that

larger value of κ will reduce the number of infected individuals

Ii,Ti, and A.

3.6.3 The e�ect of massive case detection from I1

to T1 (τ1)
This section is dedicated to exploring the impact of the rate of

case detection (τ1) on the acceleration of treatment for individuals.

In this simulation, we employ data for Eswatini, with the exception

of τ1, which serves as a freely adjustable bifurcation parameter. The

numerical findings are presented in Figure 14. Within this dataset,

we reveal the refined result that R0 = 1 when τ1 = 10.93. As

described by the cyan curve in panel (A), a more intensive case

detection (characterized by a larger τ1) corresponds to a smaller

R0. At sample point P1, τ = 7 gives R0 = 1.04 and gives us the

following endemic equilibrium.

= 708, 205, I1 = 68, I2 = 18, I3 = 2,T1 = 1, 662,T2 = 2, 343,

T3 = 2, 546, and A = 1, 597.

On the other hand, at sample point P2, when τ = 15, we have

R0 = 0.98, which gives us a stable HIV/AIDS-free equilibrium

point at

S = 736, 680, I1 = 0, I2 = 0, I3 = 0,T1 = 0,

T2 = 0,T3 = 0, and A = 0.

Panel (B) shows the trajectory of all solutions from different initial

conditions tends toward either how stable endemic equilibrium

or disease-free equilibrium. Figure 15 shows the dynamic of the

system (3) with respect to various values of τ1. It can be seen that

a larger value of τ will reduce the number of infected individuals

Ii,Ti, and A.
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FIGURE 12

The bifurcation diagram of the system (3) with respect to κ is presented in (A). In this diagram, “BP” denotes the branch point occurring at R0 = 1.

The cyan, red, and blue curves represent R0, the endemic equilibrium, and the HIV/AIDS-free equilibrium, respectively. Solid and dotted curves

indicate stable and unstable equilibria, respectively. (B) Depicts the trajectories of total infected, total treated, and susceptible individuals tending to

HIV/AIDS-endemic equilibrium point for κ at P1 and to HIV/AIDS-free equilibrium for κ at P2.

FIGURE 13

The impact of κ to the dynamics of susceptible (up left), total infected (up right), total treated (below left), and AIDS (below right). The red curve

represents the dynamic when no individuals use condom, while the blue curve represents the dynamic when all people use condoms during sexual

contact.

3.7 Minimum proportion on the use of
condoms to eliminate HIV/AIDS

In this section, we conduct numerical experiments to

understand how the proportion of people using condoms

impacts the spread of HIV/AIDS. We use four different datasets

representing four countries: Eswatini, Lesotho, Botswana, and

South Africa. All parameters are consistent with those in

Appendix 2, except for condom quality (ǫ). We calculate the

minimum population proportion that needs to use condoms with
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FIGURE 14

The bifurcation diagram of the system (3) with respect to τ1 is presented in (A). In this diagram, “BP” denotes the branch point occurring at R0 = 1.

The cyan, red, and blue curves represent R0, the endemic equilibrium, and the HIV/AIDS-free equilibrium, respectively. Solid and dotted curves

indicate stable and unstable equilibria, respectively. (B) Depicts the trajectories of total infected, total treated, and susceptible individuals tending to

HIV/AIDS-endemic equilibrium point for τ1 at P1 and to HIV/AIDS-free equilibrium for τ at P2.

FIGURE 15

The impact of τ1 on the dynamics of susceptible (up left), total infected (up right), total treated (below left), and AIDS (below right). The red curve

represents when no early case detection was implemented, while the blue curve represents when it was implemented.

a specific condom quality (between 70 and 100%) to achieve

R0 < 1. The results are depicted in Figure 16. It is clear

that better condom quality requires a smaller proportion of

the population to reduce R0 to less than one. Based on the

analysis results, an efficacy of 70% for condoms indicates that

Eswatini could eliminate HIV/AIDS if a minimum of 91.39%

of the infected population consistently uses condoms during

sexual activities. Simultaneously, with the same efficacy, it is

evident that Lesotho would need to mandate 100% condom

usage to achieve the same goal, while Botswana cannot solely

Frontiers in PublicHealth 18 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1324858
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Aldila et al. 10.3389/fpubh.2024.1324858

rely on condom use to eliminate HIV/AIDS. If condom efficacy

improves, for instance, reaching 90%, the proportion of the

infected population required to use condoms during sexual

activities decreases. It would be 71% for Eswatini and up to 81%

for Botswana.

4 Extension of the HIV/AIDS model as
an optimal control problem

4.1 Optimal control model

In this section, we expand our model from the system (3)

to an optimal control problem by introducing time-dependent

variables u1(t) to represent the proportion of condom use (κ)

and the case detection rate (τ1, τ2, τ3), which is now denoted by

u2(t), u3(t), u4(t), respectively. Consequently, our model now reads

as follows:

dS

dt
= 3 −

(

(1− ǫu1(t))
[

βu(I1 + I2 + I3)+

βt(T1 + T2 + T3)
]

+ µ
)

S,

dI1

dt
= (1− ǫu1(t))

[

βu(I1 + I2 + I3)+

βt(T1 + T2 + T3)
]

S− (u2(t)+ δ1 + µ)I1,

dI2

dt
= δ1I1 − (u3(t)+ δ2 + µ)I2,

dI3

dt
= δ2I2 − (u4(t)+ γu + µ)I3,

dT1

dt
= u2(t)I1 + (1− q)ρT2 − (sρ + µ)T1,

dT2

dt
= u3(t)I2 + sρT1 + (1− r)ρT3 − ((1− q)ρ + qρ + µ)T2,

dT3

dt
= u4(t)I3 + qρT2 − ((1− r)ρ + rγt + µ)T3, and

dA

dt
= rγtT3 + γuI3 − (µ + η)A,

(4)

The objective of this optimal control approach is to minimize

the number of untreated infected individuals I1, I2, and I3, as well

as A, by optimizing the intervention of the proportion of condom

use (u1) and the case detection rate (u2, u3, and u4). Therefore, the

cost function reads as follows:

J(u1, u2) =
∫ tf
0

(

ω1u
2
1 + ω2u

2
2 + ω3u

2
3 + ω4u

2
4+

ϕ1I1 + ϕ2I2 + ϕ3I3 + ϕ4A) dt, (5)

where ωi for i = 1, 2, 3, and 4 and ϕj for j = 1, 2, 3, and 4 are the

positive weight parameter for each component on J.

4.2 Characterization of the problem

We define the Hamiltonian of our problem as follows:

H = ω1u
2
1 + ω2u

2
2 + ω3u

2
3 + ω4u

2
4 + ϕ1I1 + ϕ2I2 + ϕ3I3 + ϕ4A

+ λ1
(

3 −
(

(1− ǫu1(t))
[

βu(I1 + I2 + I3)+ βt(T1 + T2 + T3)
]

+µ) S)

+ λ2
(

(1− ǫu1(t))
[

βu(I1 + I2 + I3)+ βt(T1 + T2 + T3)
]

S

−(u2(t)+ δ1 + µ)I1
)

+ λ3
(

δ1I1 − (u3(t)+ δ2 + µ)I2
)

+ λ4
(

δ2I2 − (u4(t)+ γu + µ)

I3)

+ λ5
(

u2(t)I1 + (1− q)ρT2 − (sρ + µ)T1

)

+ λ6
(

u3(t)I2 + sρT1 + (1− r)ρT3 − ((1− q)ρ + qρ + µ)T2

)

+ λ7
(

u4(t)I3 + qρT2 − ((1− r)ρ + rγt + µ)T3

)

+ λ8
(

rγtT3 + γuI3 − (µ + η)A
)

.

First, by taking the partial derivative of H with respect to each

variable, the adjoint system of our problem is given as follows:

dλ1

dt
= −

∂H

∂S

= (1− ǫu1)
(

βu(I1 + I2 + I3)+ βt(T1 + T2 + T3)
)

(λ1 − λ2)+ µλ1,

dλ2

dt
= −

∂H

∂I1
= −ϕ1 + (1− ǫu1)βuS(λ1 − λ2)+ δ1(λ2 − λ3)+

u2(λ2 − λ5)+ µλ2,

dλ3

dt
= −

∂H

∂I2
= −ϕ2 + (1− ǫu1)βuS(λ1 − λ2)+ u3(λ3 − λ6)+

δ2(λ3 − λ4)+ µλ3,

dλ4

dt
= −

∂H

∂I3
= −ϕ3 + (1− ǫu1)βuS(λ1 − λ2)+ u4(λ4 − λ7)+

γu(λ4 − λ8)+ µλ4, (6)

dλ5

dt
= −

∂H

∂T1

= (1− ǫu1)βtS(λ1 − λ2)+ sρ(λ5 − λ6)+ µλ5,

dλ6

dt
= −

∂H

∂T2

= (1− ǫu1)βtS(λ1 − λ2)+ (1− q)ρ(λ6 − λ5)+

qρ(λ6 − λ7)+ µλ6,

dλ7

dt
= −

∂H

∂T3

= (1− ǫu1)βtS(λ1 − λ2)+ (1− r)ρ(λ7 − λ6)+

rγt(λ7 − λ8)+ µλ7,

dλ8

dt
= −

∂H

∂A
= −ϕ4 + (µ + η)λ8,

completed with the transversality condition λi(tf ) = 0 for i =

1, 2, . . . 8. The optimality condition is taken from
∂H

∂ui
= 0 for
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FIGURE 16

A comparison of the minimum population percentage in each country required for condom usage, contingent upon the quality of the condom.

i = 1, 2, 3, and 4. Hence, taking this into account with the lower
and upper bounds for ui, we have the optimal control variables that
should satisfy as follows:

u∗1 = min

{

max

{

umin
1 ,

ǫS(λ2 − λ1)(βu(I1 + I2 + I3)+ βt(T1 + T2 + T3))

2ω1

}

, umax
1

}

,

(7a)

u∗2 = min

{

max

{

umin
2 ,

I1(λ2 − λ5)

2ω2

}

, umax
2

}

, (7b)

u∗3 = min

{

max

{

umin
3 ,

I2(λ3 − λ6)

2ω3

}

, umax
3

}

, and (7c)

u∗4 = min

{

max

{

umin
4 ,

I3(λ4 − λ7)

2ω4

}

, umax
4

}

. (7d)

To summarize our problem, we want to minimize the cost

function given in Equation (5) subject to the state system in

Equation (4) completed with its initial condition, the adjoint system

in Equation (6) completed with its transversality condition, and the

optimality condition in Equation (7). We use a forward-backward

iterative method to solve the problem. We begin by giving an intial

guess for the control variables for all t and using it to solve the

state system in Equation (4) forward in time. Then, we solve the

adjoint system in Equation (6) backward in time with the given

transversality condition. Hence, with these results, we can update

the optimal control value using the formula in Equation (7). We

goback to the first step until the convergence criteria are achieved,

which in our case is |Jiteration-(i+1) − Jiteration-(i)| < 10−5.

4.3 Numerical experiments

The simulation in this section was conducted using parameter

values corresponding to the best-fit values for Eswatini. Please refer

to Appendix 2 for details. Furthermore, we have set the value for

the weight parameter on the cost function as follows:

ω1 = 105,ω2 = ω3 = ω4 = 5× 105,ϕ1 = ϕ2 = ϕ3 = ϕ4 = 10,

and the initial condition given by

[S(0), I1(0), I2(0), I3(0),T1(0),T2(0),T3(0),A(0)] =

[3.62, 0.1, 0.02, 0.002, 0.358, 0.559, 0.625, 0.4]× 105.

In the following, we set three scenarios for the implementation

of controls.

• Scenario 1: The implementation of condom use (u1) only,

while case detection (u2) set to be zero. Hence u1 6= 0 and

u2 = u3 = u4 = 0.

• Scenario 2: The implementation of case detection (u2, u3, u4)

only, while condomuse (u1) set to be zero. Hence u1 = 0, u2 6=

0, u3 6= 0, and u4 6= 0.

• Scenario 3: The combination of condom use (u1) and case

detection (u2, u3, and u4). Hence u1 6= 0, u2 6= 0, u3 6= 0,

and u4 6= 0.

Scenario 1
The first numerical experiment involves the use of condoms as

the sole strategy to prevent the spread of HIV/AIDS. The results

are presented in Figure 17 where the dynamics of model output are

given in panels (A–D) while the dynamics of control are shown in

panels (E–H). It is clear to see that intervention in condom usage

should be given almost maximal effort from the beginning of the

simulation. Since condom usage can prevent new infections, we

can observe an increase in the number of susceptible individuals

[panel (A)] and significant decreases in the total number of PLHIV

without treatment (total of Ii) and PLHIV with AIDS illness (A).

Since the intervention of case detection was not used, we can see

that the number of undetected case decreases and tends to zero

[see panel (C)]. The total number of infections averted using this

strategy is 7.59× 106 at an optimal cost of 2.06× 1011.
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FIGURE 17

The dynamic of model output for (A) susceptible, (B) total PLHIV untreated I, (C) total PLHIV receiving treatment T, (D) total PLHIV with AIDS ilness A,

and (E–H) for control variables under the scenario when condom use used as a single intervention.
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FIGURE 18

The dynamic of model output for (A) susceptible, (B) total PLHIV untreated I, (C) total PLHIV receiving treatment T, (D) total PLHIV with AIDS illness A,

and (E–H) for control variables under the scenario when case detection used as a single intervention.
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FIGURE 19

The dynamic of model output for (A) Susceptible, (B) total PLHIV untreated I, (C) total PLHIV receiving treatment T, (D) total PLHIV with AIDS ilness A,

and (E–H) for control variables under the scenario when condom use and case detection implemented together.
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Scenario 2
Figure 18 illustrates the situation when the government relied

solely on the implementation of case detection as a single

intervention (u2, u3, u4 only). The dynamics of control are depicted

in panels (F–H). The intervention is applied with high intensity at

the beginning of the simulation and then decreasing to an almost

constant for a short period and decreases again when the final time

approaches. With this strategy in place, we can observe a decrease

in the number of PLHIV without and with treatment [panels (B,

C)], resulting in a reduced number of individuals with AIDS [panel

(D)]. The total number of infected individuals averted using this

strategy is 3.74× 104 at an optimal cost of 2.52× 1016.

Scenario 3
The last simulation was conducted to assess the impact of

combining condom usage and case detection in reducing the spread

of HIV/AIDS in Eswatini. The results are presented in Figure 19,

with the dynamics of u1 and u2 shown in panels (E–H), respectively.

We observe that the intervention involving condom use should be

initiated at a high rate at the beginning of the simulation while the

case detection followed the dynamic of infected individuals. As a

result, we witness an initial increase in the number of susceptible

individuals [panel (A)] and a significant decrease in the PLHIV

without treatment and PLHIV with AIDS illness [panels (B, D),

respectively]. On the other hand, since the number of infected

PLHIV without treatment is already reduced due to condom use,

then the number of treated PLHIV is not significantly different

in the case of no control scenario. Finally, the combination of

condom use and case detection leads to a significant reduction in

the number of PLHIV. The total number of infections averted using

this strategy is 7.55× 106 at an optimal cost of 9.81× 1014.

Cost-e�ectiveness analysis

In this section, we will calculate the most effective strategy

between strategies 1,2, and 3 based on its average cost-effectiveness

ratio (ACER) values. Several assumptions need to be elucidated in

the cost-effectiveness calculations in this section. In computing the

total cost (TC), it is assumed that the total expenses incurred as

a consequence of heightened control interventions constitute the

overall cost. On the other hand, total infections averted (TIA) are

derived from the total number of individuals successfully prevented

from infection as a consequence of control interventions. For

further clarity, refer to Equations (8) and (9) below.

ACER =
Total cost for intervention (TC)

Total number of infections averted (TIA)
, (8)

where

TC =

∫ tf

0

[

ω1u1(I
‡
1 + I

‡
2 + I

‡
3 + T

‡
1 + T

‡
2 + T

‡
3 )+ ω2u2I

‡
1+

ω3I
‡
2 + ω4I

‡
3

]

dt and

TIA =

∫ tf

0

[

3
∑

i=1

(

I†i − I
‡
i

)

+

3
∑

i=1

(

T†
i − T

‡
i

)

]

dt,

(9)

TABLE 2 Simulation result for cost-e�ectiveness analysis.

Scenario TC TIA ACER

1 (u1 6= 0, u2 = 0) 2.06× 1011 7.59× 106 2.71× 104

2 (u1 = 0, u2 6= 0) 2.52× 1016 3.74× 104 6.74× 1011

3 (u1 6= 0, u2 6= 0) 9.81× 1014 7.55× 106 1.29× 108

where symbol † and ‡ represent simulation results, without and

with control, respectively. A smaller value of ACER represents the

most effective strategy. The results of TC, TIA, and ACER are given

in Table 2.

Based on the calculations above, we can conclude that strategy

1, which focuses solely on condom use as the single intervention,

is the most effective strategy. It is followed by strategy 3, which

combines condom use and case detection. Strategy 2, which

relies solely on case detection as the single intervention, is the

least effective strategy. Figure 20 shows the impact of all possible

scenarios on HIV prevalence in Eswatini. We can observe that

the HIV prevalence between scenario 1 (condom use only) and

scenario 3 (condom use and case detection) is only slightly

different. This affirms that case detection is less effective in reducing

HIV prevalence when the implementation of condom use is already

taking place at maximum effort.

5 Conclusion

In this study, we developed a mathematical model to assess the

effectiveness and cost-effectiveness of various strategies aimed at

controlling the spread of HIV/AIDS. We considered the impact of

case detection, treatment, and condom use in our model. One key

aspect of ourmodel is its acknowledgment of the fact that treatment

outcomes may not always be successful, making it a more realistic

representation of the disease’s dynamics. We begin our analysis for

a special case model, where we do not consider the number of

CD4+T cells. Our mathematical investigation on the expression of

the equilibrium points and the reproduction number reveals the

potential of case detection to reduce the reproduction number of

the virus.

Our comprehensive analysis is extended to the complete model,

where we assessed the stability of the HIV/AIDS-free equilibrium

point. We found that this equilibrium is stable when the control

reproduction number is less than one, indicating the feasibility of

disease containment.

To validate our model, we estimate our parameter values

using data from four different countries: Eswatini, Lesotho,

Botswana, and South Africa. Parameter estimation was performed

using incidence data from these regions, and we found that the

reproduction of each country is larger than one, which indicates

the endemicity of HIV/AIDS in those countries. Furthermore,

sensitivity analysis sheds light on the impact of condom use and

case detection on HIV spread dynamics. It allowed us to identify

the most influential factors in disease control.

Finally, our study delved into optimal control strategies,

considering the dynamics of infected individuals when all

control variables are time-dependent. From a cost-effectiveness
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FIGURE 20

A comparison between control scenarios on the HIV prevalence in Eswatini.

perspective, we found that employing condom use as a sole

intervention is the most effective strategy in terms of the average

cost for each averted infected individual. It is worth noting that

condom use not only serves as a cost-effective approach but is also

a crucial tool in preventing the transmission of HIV/AIDS. While

the simulation results for case detection in this research indicate its

lesser effectiveness in reducing the number of HIV prevalence, it

still holds importance. Case detection, despite its limitations, plays

a crucial role in assisting the government in mitigating the broad

social impact of HIV in the population. In light of the complexities

surrounding HIV/AIDS, a comprehensive strategy that combines

both condom use and case detection could offer a more robust

approach to tackling the multifaceted challenges posed by the HIV

epidemic. In conclusion, our research provides valuable insights

into the control of HIV/AIDS, offering a comprehensive assessment

of strategies and emphasizing the importance of case detection as a

highly efficient and cost-effective means of disease containment.

Beyond its potential in reducing HIV spreads, there are several

issues about the implementation of condom use and case detection.

In societies where discussions about sex and sexual health are

taboo or stigmatized, condom use campaigns may face challenges

in gaining acceptance. Cultural norms and religious beliefs can

influence attitudes toward condom use. Accessibility to condoms

may be limited in certain cultural contexts due to factors such

as affordability, availability, and distribution channels. Addressing

these barriers is crucial for the success of condom use campaigns.

On the other hand, HIV-related stigma and discrimination

can impede case detection efforts. Fear of being ostracized or

discriminated against may discourage individuals from seeking

HIV testing and treatment. Privacy concerns are paramount in HIV

testing and case detection. Trust in healthcare systems is essential

for successful case detection. In some communities, historical

distrust or negative experiences with healthcare providers may

affect the willingness to engage with HIV testing and treatment

services. In summary, the effectiveness of condom use campaigns

and case detection for HIV depends on their alignment with

social and cultural contexts. Interventions need to be culturally

sensitive, addressing barriers related to stigma, discrimination,

and accessibility to effectively prevent the spread of HIV and

promote early detection and treatment. In diverse social and

cultural settings, collaborating with local communities, leaders,

and organizations can enhance the relevance and acceptance of

these interventions.

Although the research results in this article show in-depth

insights into the potential use of condoms and early detection

in reducing HIV prevalence in case studies across four countries,

there are still some aspects that can be further developed to

achieve more satisfying outcomes. One of these aspects is the

fact that condom use is not only for suppressing or preventing

the spread of HIV but also for other sexually transmitted

infections (STIs) such as syphilis, chlamydia, herpes, and human

papillomavirus (HPV). Therefore, condom use as an intervention

can be applied in models that consider co-infection between two

or more STIs. Only few researchers have discussed coinfection

models involving HIV and other STIs, as seen in (47–51).

The use of condoms as an intervention that can prevent

both diseases simultaneously would be intriguing to explore in

future research.

Frontiers in PublicHealth 25 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1324858
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Aldila et al. 10.3389/fpubh.2024.1324858

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Author contributions

DA: Conceptualization, Formal analysis, Investigation,

Methodology, Supervision, Validation, Visualization, Writing –

original draft, Writing – review & editing. RD: Formal analysis,

Investigation, Writing – original draft. SK: Methodology, Software,

Validation, Visualization, Writing – review & editing. JW: Data

curation, Investigation, Software, Validation, Visualization,

Writing – review & editing. PK: Formal analysis, Funding

acquisition, Investigation, Supervision, Validation, Writing –

review & editing. MS: Investigation, Software, Visualization,

Writing – review & editing.

Funding

The author(s) declare financial support was received

for the research, authorship, and/or publication of

this article. This research was funded by Universitas

Indonesia through the PUTI-Q1 research grant scheme

(ID:NKB-485/UN2.RST/HKP.05.00/2023).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fpubh.2024.

1324858/full#supplementary-material

References

1. Kementrian Kesehatan (Kemkes). Ayo Cari Tahu Apa Itu HIV. (2022).
Available online at: https://yankes.kemkes.go.id/view_artikel/754/ayo-cari-tahu-apa-
itu-hiv (accessed July 20, 2023).

2. World Population Review.HIV Rates by Country 2024. (2024). Available online at:
https://worldpopulationreview.com/country-rankings/hiv-rates-by-country (accessed
July 20, 2023).

3. Universitas Negeri Surabaya (UNESA).Hari AIDS Sedunia 2022. (2022). Available
online at: https://www.unesa.ac.id/hari-aids-sedunia-2022-angka-penderita-tinggi-
begini-catatan-dosen-unesa (accessed July 20, 2023).

4. Raphael I, Joern RR, Forsthuber TG. Memory CD4+ T cells in immunity and
autoimmune diseases. Cells. (2020) 9:531. doi: 10.3390/cells9030531

5. Oyovwevotu SO.Mathematical modelling for assessing the impact of intervention
strategies on HIV/AIDS high risk group population dynamics. Heliyon. (2021)
7:e07991. doi: 10.1016/j.heliyon.2021.e07991

6. Li Y, Liu L. The Impact of Wolbachia on Dengue Transmission Dynamics in an
SEI-SIS model. Nonlinear Analysis: Real World Applications. Elsevier BV. (2021).
103363 p.

7. Oke SI, Ojo MM, Adeniyi MO, Matadi MB. Mathematical modeling of
malaria disease with control strategy. Commun Math Biol Neurosci. (2020) 2020:43.
doi: 10.28919/cmbn/4513

8. Handari BD, Aldila D, Tamalia E, Khoshnaw SHA, Shahzad M. Assessing
the impact of medical treatment and fumigation on the superinfection of
malaria: a study of sensitivity analysis. Commun Biomath Sci. (2023) 6:51–73.
doi: 10.5614/cbms.2023.6.1.5

9. Das K, Murthy B, Samad SA, Biswas MHA. Mathematical transmission
analysis of SEIR tuberculosis disease model. Sens Int. (2021) 2:100120.
doi: 10.1016/j.sintl.2021.100120

10. Aldila D, Latifa SL, Dumbela PA. Dynamical analysis of mathematical model
for Bovine Tuberculosis among human and cattle population. Commun Biomath Sci.
(2019) 2:55–64. doi: 10.5614/cbms.2019.2.1.6

11. Aldila D, Chavez JP, Wijaya KP, Ganegoda NC, Simorangkir GM, Tasman
H, et al. A tuberculosis epidemic model as a proxy for the assessment of the
novel M72/AS01E vaccine. Commun Nonlinear Sci Numer Simul. (2023) 20:107162.
doi: 10.1016/j.cnsns.2023.107162

12. Maimunah, D A. Mathematical model for HIV spreads control program with art
treatment. J Phys. (2018) 974:012035. doi: 10.1088/1742-6596/974/1/012035

13. Paul JN, Mbalawata IS, Mirau SS, Masandawa L. Mathematical modeling of
vaccination as a control measure of stress to fight COVID-19 infections. Chaos Solit
Fract. (2023) 166:30. doi: 10.1016/j.chaos.2022.112920

14. Balya MA, Dewi BO, Lestari FI, Ratu G, Rosuliyana H, Windyhani
T, et al. Investigating the impact of social awareness and rapid test on
A COVID-19 transmission model. Commun Biomath Sci. (2021) 4:46–64.
doi: 10.5614/cbms.2021.4.1.5

15. Bentout S, Chekroun A, Kuniya T. Parameter estimation and prediction for
coronavirus disease outbreak 2019 (COVID-19) in Algeria.AIMS Public Health. (2020)
7:306–18. doi: 10.3934/publichealth.2020026

16. Bentout S, Tridane A, Djilali S. Age-structured modeling of COVID-19
epidemic in the USA, UAE and Algeria. Alexandria Eng J. (2021) 60:401–11.
doi: 10.1016/j.aej.2020.08.053

17. Aldila D, Nadya AF, Herdicho FF, Ndii MZ, Chukwu CW. Optimal control of
pneumonia transmission model with seasonal factor: learning from Jakarta incidence
data. Heliyon. (2023) 9:e18096. doi: 10.1016/j.heliyon.2023.e18096

18. Rahman SA, Vaidya NK, Zou X. Impact of early treatment programs on HIV
epidemics: an immunity-based mathematical model. Math Biosci. (2016) 280:38–49.
doi: 10.1016/j.mbs.2016.07.009

19. Mukandavire Z, Garira W, Tchuenche JM. Modelling effects of public health
educational campaigns onHIV/AIDS transmission dynamics.ApplMathModel. (2009)
33:2084–95. doi: 10.1016/j.apm.2008.05.017

20. Nyabadza F, Mukandavire Z. Modelling HIV/AIDS in the presence of
an HIV testing and screening campaign. J Theor Biol. (2011) 280:167–79.
doi: 10.1016/j.jtbi.2011.04.021

21. Zhai X, Li W, Wei F, Mao X. Dynamics of an HIV/AIDS
transmission model with protection awareness and fluctuations.
Chaos Solit Fract. (2023) 169:113224. doi: 10.1016/j.chaos.2023.11
3224

22. Jamil S, Farman M, Akgul A. Qualitative and quantitative analysis
of a fractal fractional HIV/AIDS model. Alexand Eng J. (2023) 76:167–77.
doi: 10.1016/j.aej.2023.06.021

Frontiers in PublicHealth 26 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1324858
https://www.frontiersin.org/articles/10.3389/fpubh.2024.1324858/full#supplementary-material
https://yankes.kemkes.go.id/view_artikel/754/ayo-cari-tahu-apa-itu-hiv
https://yankes.kemkes.go.id/view_artikel/754/ayo-cari-tahu-apa-itu-hiv
https://worldpopulationreview.com/country-rankings/hiv-rates-by-country
https://www.unesa.ac.id/hari-aids-sedunia-2022-angka-penderita-tinggi-begini-catatan-dosen-unesa
https://www.unesa.ac.id/hari-aids-sedunia-2022-angka-penderita-tinggi-begini-catatan-dosen-unesa
https://doi.org/10.3390/cells9030531
https://doi.org/10.1016/j.heliyon.2021.e07991
https://doi.org/10.28919/cmbn/4513
https://doi.org/10.5614/cbms.2023.6.1.5
https://doi.org/10.1016/j.sintl.2021.100120
https://doi.org/10.5614/cbms.2019.2.1.6
https://doi.org/10.1016/j.cnsns.2023.107162
https://doi.org/10.1088/1742-6596/974/1/012035
https://doi.org/10.1016/j.chaos.2022.112920
https://doi.org/10.5614/cbms.2021.4.1.5
https://doi.org/10.3934/publichealth.2020026
https://doi.org/10.1016/j.aej.2020.08.053
https://doi.org/10.1016/j.heliyon.2023.e18096
https://doi.org/10.1016/j.mbs.2016.07.009
https://doi.org/10.1016/j.apm.2008.05.017
https://doi.org/10.1016/j.jtbi.2011.04.021
https://doi.org/10.1016/j.chaos.2023.113224
https://doi.org/10.1016/j.aej.2023.06.021
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Aldila et al. 10.3389/fpubh.2024.1324858

23. Xu C, Liu Z, Pang Y, Akgul A, Baleanu D. Dynamics of HIV-TB coinfection
model using classical and Caputo piecewise operator: a dynamic approach with real
data from South-East Asia, European and American regions. Chaos Solit Fract. (2022)
165:112879. doi: 10.1016/j.chaos.2022.112879

24. Pinto CMA, Carvalho ARM. New findings on the dynamics of
HIV and TB coinfection models. Appl Math Comput. (2014) 242:36–46.
doi: 10.1016/j.amc.2014.05.061

25. Ringa N, Diagne ML, Rwezaura H, Omame A, Tchoumi SY, Tchuenche JM, et
al. and COVID-19 co-infection: a mathematical model and optimal control. Inf Med
Unlocked. (2022) 31:100978. doi: 10.1016/j.imu.2022.100978

26. Omame A, Raezah AA, Diala UH, Onuoha C. The optimal strategies to be
adopted in controlling the co-circulation of COVID-19, dengue and HIV: insight from
a mathematical model. Axioms. (2023) 12:773. doi: 10.3390/axioms12080773

27. Garba S, Gumel A. Mathematical recipe for HIV elimination in Nigeria. J Niger
Math Soc. (2010) 29:51–112.

28. Greenhalgh D, Hay G. Mathematical modelling of the spread of
HIV/AIDS amongst injecting drug users. Math Med Biol. (1997) 14:11–38.
doi: 10.1093/imammb/14.1.11

29. Gumel AB, McCluskey CC, Van Den Driessche P. Mathematical study of
a staged-progression HIV model with imperfect vaccine. Bull Math Biol. (2006)
68:2105–28. doi: 10.1007/s11538-006-9095-7

30. Punyacharoensin N, Edmunds WJ, De Angelis D, White RG. Mathematical
models for the study of HIV spread and control amongst men who have sex with men.
Eur J Epidemiol. (2011) 26:695–709. doi: 10.1007/s10654-011-9614-1

31. Ofosuhene OA, Prince PO, Noor AI, Aline C. Analysing the impact of migration
on HIV/AIDS cases using epidemiological modelling to guide policy makers. Infect
Math Model. (2022) 7:252–61. doi: 10.1016/j.idm.2022.01.002

32. Fatmawati, Khan MA, Odinsyah HP. Fractional model of HIV
transmission with awareness effect. Chaos Solit Fract. (2020) 138:109967.
doi: 10.1016/j.chaos.2020.109967

33. Yusuf A, Mustapha UT, Sulaiman TA, Hincal E, Bayram M. Modeling the
effect of horizontal and vertical transmissions of HIV infection with Caputo fractional
derivative. Chaos Solit Fract. (2021) 145:110794. doi: 10.1016/j.chaos.2021.110794

34. Tabassum MF, Saeed M, Akgul A, Farman M, Chaudhry NA.
Treatment of HIV/AIDS epidemic model with vertical transmission by using
evolutionary Padé-approximation. Chaos Solit Fract. (2020) 2020:1099686.
doi: 10.1016/j.chaos.2020.109686

35. Castillo-Chavez C, Feng Z, Huang W. On the computation of R0 and its
role on global stability. Math Approach Emerg Reemerg Infect Dis. (2002) 1:229–50.
doi: 10.1007/978-1-4757-3667-0_13

36. Aldila D, Angelina M. Optimal control problem and backward
bifurcation on malaria transmission with vector bias. Heliyon. (2021) 7:e06824.
doi: 10.1016/j.heliyon.2021.e06824

37. Aldila D. Optimal control for dengue eradication program under the
media awareness effect. Int J Nonlinear Sci Numer Simul. (2023) 24:95–122.
doi: 10.1515/ijnsns-2020-0142

38. Aldila D, Puspadani CA, Rusin R. Mathematical analysis of the impact of
community ignorance on the population dynamics of dengue. Front Appl Math Stat.
(2023) 9:1094971. doi: 10.3389/fams.2023.1094971

39. Chitnis N, Hyman JM, Cushing JM. Determining important parameters in the
spread of malaria through the sensitivity analysis of a mathematical model. Bull Math
Biol. (2008) 70:1272. doi: 10.1007/s11538-008-9299-0

40. Diekmann O, Heesterbeek J, Roberts MG. The construction of next-generation
matrices for compartmental epidemic models. J R Soc Interface. (2010) 7:873–85.
doi: 10.1098/rsif.2009.0386

41. Van den Driessche P, Watmough J. Reproduction numbers and sub-threshold
endemic equilibria for compartmental models of disease transmission. Math Biosci.
(2002) 180:29–48. doi: 10.1016/S0025-5564(02)00108-6

42. The World Bank. Prevalence of HIV. (2023). Available online at: https://data.
worldbank.org/indicator/SH.DYN.AIDS.ZS (accessed July 20, 2023).

43. The World Bank. Population Ages 15-64, Total. (2022). Available online at:
https://data.worldbank.org/indicator/SP.POP.1564.TO (accessed January 13, 2024).

44. TheWorld Bank. Life Expectancy at Birth, Total (Years). (2022). Available online
at: https://data.worldbank.org/indicator/SP.DYN.LE00.IN (accessed January 13, 2024).

45. Pinkerton SD, Abramson PR. Effectiveness of condoms in preventing HIV
transmission. Soc Sci Med. (1997) 44:1303–12. doi: 10.1016/S0277-9536(96)00258-4

46. Puspita JW, Fakhruddin M, Fahlena H, Rohim F, Sutimin. On the reproduction
ratio of dengue incidence in Semarang, Indonesia 2015-2018. Commun Biomath Sci.
(2019) 2:118–26. doi: 10.5614/cbms.2019.2.2.5

47. Mahiane SG, Nguema EP, Pretorius C, Auvert B. Mathematical models for
coinfection by two sexually transmitted agents: the human immunodeficiency virus
and herpes simplex virus type 2 case. J R Stat Soc Ser C. (2010) 59:547–72.
doi: 10.1111/j.1467-9876.2010.00719.x

48. NwankwoA, Okuonghae D.Mathematical analysis of the transmission dynamics
of HIV syphilis co-infection in the presence of treatment for syphilis. Bull Math Biol.
(2018) 80:437–92. doi: 10.1007/s11538-017-0384-0

49. David JF, Lima VD, Zhu J, Brauer F. A co-interaction model of
HIV and syphilis infection among gay, bisexual and other men who have
sex with men. Infect Dis Model. (2020) 5:855–70. doi: 10.1016/j.idm.2020.
10.008

50. Teklu SW, Terefe BB. COVID-19 and syphilis co-dynamic analysis
using mathematical modeling approach. Front Appl Math Stat (2023) 8:1–13.
doi: 10.3389/fams.2022.1101029

51. Wang C, Gao S, Li X, Martcheva M. Modeling syphilis and HIV
coinfection: a case study in the USA. Bull Math Biol. (2023) 85:20–32.
doi: 10.1007/s11538-023-01123-w

Frontiers in PublicHealth 27 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1324858
https://doi.org/10.1016/j.chaos.2022.112879
https://doi.org/10.1016/j.amc.2014.05.061
https://doi.org/10.1016/j.imu.2022.100978
https://doi.org/10.3390/axioms12080773
https://doi.org/10.1093/imammb/14.1.11
https://doi.org/10.1007/s11538-006-9095-7
https://doi.org/10.1007/s10654-011-9614-1
https://doi.org/10.1016/j.idm.2022.01.002
https://doi.org/10.1016/j.chaos.2020.109967
https://doi.org/10.1016/j.chaos.2021.110794
https://doi.org/10.1016/j.chaos.2020.109686
https://doi.org/10.1007/978-1-4757-3667-0_13
https://doi.org/10.1016/j.heliyon.2021.e06824
https://doi.org/10.1515/ijnsns-2020-0142
https://doi.org/10.3389/fams.2023.1094971
https://doi.org/10.1007/s11538-008-9299-0
https://doi.org/10.1098/rsif.2009.0386
https://doi.org/10.1016/S0025-5564(02)00108-6
https://data.worldbank.org/indicator/SH.DYN.AIDS.ZS
https://data.worldbank.org/indicator/SH.DYN.AIDS.ZS
https://data.worldbank.org/indicator/SP.POP.1564.TO
https://data.worldbank.org/indicator/SP.DYN.LE00.IN
https://doi.org/10.1016/S0277-9536(96)00258-4
https://doi.org/10.5614/cbms.2019.2.2.5
https://doi.org/10.1111/j.1467-9876.2010.00719.x
https://doi.org/10.1007/s11538-017-0384-0
https://doi.org/10.1016/j.idm.2020.10.008
https://doi.org/10.3389/fams.2022.1101029
https://doi.org/10.1007/s11538-023-01123-w
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org

	Understanding HIV/AIDS dynamics: insights from CD4+T cells, antiretroviral treatment, and country-specific analysis
	1 Introduction
	2 A mathematical model of HIV/AIDS with antiretroviral treatment without considering the number of CD4+T cell number class
	2.1 Model construction
	2.2 Preliminary analysis
	2.3 The HIV/AIDS-free equilibrium point and the basic reproduction number of the model (1)
	2.4 HIV/AIDS endemic equilibrium point of the system (1)
	2.5 Effect of R0 to endemic size E2

	3 A mathematical model of HIV/AIDS considering CD4+T cell number
	3.1 Model construction
	3.2 Preliminary analysis
	3.3 The HIV/AIDS-free equilibrium and the control reproduction number
	3.4 Data fitting 
	3.5 Sensitivity analysis of the model and the control reproduction number
	3.5.1 Model sensitivity analysis in Eswatini
	3.5.2 Model sensitivity analysis in Lesotho
	3.5.3 Model sensitivity analysis in Botswana
	3.5.4 Model sensitivity analysis in South Africa

	3.6 Autonomous simulation
	3.6.1 Effect of infection rate βu
	3.6.2 The effect of proportion of the condom use (κ)
	3.6.3 The effect of massive case detection from I1 to T1 (τ1) 

	3.7 Minimum proportion on the use of condoms to eliminate HIV/AIDS

	4 Extension of the HIV/AIDS model as an optimal control problem
	4.1 Optimal control model
	4.2 Characterization of the problem
	4.3 Numerical experiments
	Scenario 1
	Scenario 2
	Scenario 3

	Cost-effectiveness analysis

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


