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Background: The Centre for Disease Control and Prevention in Yangquan, 
China, has taken a series of preventive and control measures in response to the 
increasing trend of Kala-Azar. In response, we propose a new model to more 
scientifically evaluate the effectiveness of these interventions.

Methods: We obtained the incidence data of Kala-Azar from 2017 to 2021 
from the Centre for Disease Control and Prevention (CDC) in Yangquan. 
We  constructed Poisson segmented regression model, harmonic Poisson 
segmental regression model, and improved harmonic Poisson segmented 
regression model, and used the three models to explain the intervention effect, 
respectively. Finally, we  selected the optimal model by comparing the fitting 
effects of the three models.

Results: The primary analysis showed an underlying upward trend of Kala-Azar 
before intervention [incidence rate ratio (IRR): 1.045, 95% confidence interval 
(CI): 1.027–1.063, p  <  0.001]. In terms of long-term effects, the rise of Kala-Azar 
slowed down significantly after the intervention (IRR:0.960, 95%CI:0.927–0.995, 
p  =  0.026), and the risk of Kala-Azar increased by 0.3% for each additional month 
after intervention (β1  +  β3  =  0.003, IRR  =  1.003). The results of the model fitting 
effect showed that the improved harmonic Poisson segmental regression 
model had the best fitting effect, and the values of MSE, MAE, and RMSE were 
the lowest, which were 0.017, 0.101, and 0.130, respectively.

Conclusion: In the long term, the intervention measures taken by the Yangquan 
CDC can well curb the upward trend of Kala-Azar. The improved harmonic 
Poisson segmented regression model has higher fitting performance, which can 
provide a certain scientific reference for the evaluation of the intervention effect 
of seasonal infectious diseases.
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1 Background

Kala-Azar, also known as visceral leishmaniasis, is a chronic 
endemic infectious disease caused by the invasion of Leishmania 
species into the human body through the bite of a sandfly and its 
parasitism in human macrophages (1). China declared the basic 
eradication of Kala-Azar in 1958 (2), however, in recent years, the 
number of reported cases of Kala-Azar in China’s Shanxi Province has 
increased year by year, ranking first in China in the number of 
reported cases in 2019–2020, with the city of Yangquan having the 
highest number of sick people (3). In response, the Yangquan Centre 
for Disease Prevention and Control (CDC) carried out preventive and 
control measures in May 2020, mainly by means of screening patients, 
eradicating sandflies and culling sick dogs. A simple comparison of 
the difference in morbidity rates before and after this intervention is 
not yet sufficient to make a sound evaluation of the effectiveness of 
this measure, so further exploration of suitable statistical methods 
is essential.

In recent years, interrupted time series analysis (ITSA) has often 
been used to quantitatively evaluate the effectiveness of public health 
interventions (4), which is a quasi-experimental design to evaluate the 
effectiveness of an intervention at a well-defined point in time (5). In 
interrupted time series design, segmented regression analysis is a 
powerful statistical method for evaluating the effects of interventions, 
which can reflect both short-term and long-term effects of 
interventions, and is able to construct different models based on 
different data types, such as linear segmented regression models or 
Poisson segmented regression models (6). In reality, the onset of some 
diseases is often accompanied by significant seasonality, and this 
seasonality can make the time series unstable and generate 
autocorrelation (7), and this autocorrelation may make the standard 
errors of the parameter estimates of the segmented regression model 
small, thus overestimating the effect of the intervention, and at the 
same time, if the morbidity rates before and after the intervention are 
not uniformly distributed across the months, it may also make the 
study results significantly biased (4). In this regard, harmonic 
regression models constructed using the frequency domain approach 
in time series analysis have been shown to be able to cope with such 
problems (8). In 2017, Margaret et  al. used a Poisson harmonic 
regression model to fit and predict the seasonal cyclical component of 
the Ross River disease, brucellosis, and dengue sequences in Australia, 
and showed that this model could fit the characteristics of the data 
well, with better predictive performance (9). Hongjie Yu et al. used a 
linear regression model with harmonic terms to estimate the seasonal 
characteristics of influenza in 30 provinces in China from 2005 to 
2011, and the results showed that the model could fit the seasonal and 
cyclical fluctuations present in the influenza data well (10).

Harmonic regression model can only fit the data with regular 
periodic fluctuations well. The model becomes inadequate when 
there are irregular cyclical situations of disease change, such as peaks 
of incidence becoming steeper and troughs of incidence being 
prolonged (11). We  find that an improved harmonic regression 
model proposed by Ramanathan et al. can better fit seasonally steep 
peaks by introducing sine and cosine transformation functions as 
quadratic terms into the harmonic regression model (12). With this 
in mind, we constructed an improved Poisson harmonic regression 
model in the hope of fitting the time-series data of Kala-Azar more 
accurately, and thus scientifically evaluating the effectiveness of 
the interventions.

In this study, we  constructed an improved Poisson harmonic 
regression model for the first time and used it for data fitting and 
evaluation of interventions for Kala-Azar. We  first constructed a 
Poisson segmented regression model as a basic model, then 
constructed a Poisson harmonic segmented regression model and an 
improved Poisson harmonic segmented regression model to cope with 
the seasonal cyclical condition of the time series. Finally, through the 
comparison of the three models, the optimal model was selected to 
accurately evaluate the intervention effect of Kala-Azar, which can 
provide a certain scientific reference for the evaluation of the 
intervention effect of seasonal infectious diseases.

2 Materials and methods

2.1 Data sources

The data were obtained from the Yangquan CDC, spanning from 
1 January 2017 to 31 December 2021, and contained the number of 
confirmed local cases of Kala-Azar reported in Yangquan and related 
population data. The diagnosis of Kala-Azar was made with reference 
to the Diagnostic Criteria for Kala-Azar (WS 258–2006), and all cases 
were identified according to the time of onset of the disease (13), and 
the time-series indicator used was the incidence rate. The interval unit 
of the time series is month, a total of 60 months, and the intervention 
point is May 2020.

2.2 Analysis of Kala-Azar sequence 
characteristics and stationarity test

Seasonal-trend decomposition using Loess (STL) can be used to 
analyze the long-term trend, seasonal trend and random effect of 
Kala-Azar incidence in Yangquan from 2017 to 2021 as follows 
(Equation 1) (14):

 Xt Tt St It= + +  (1)

where Xt is the actual value of Kala-Azar incidence at time t and 
Tt, St and It are the long-term trends, seasonal trends and random 
effects, respectively. The augmented Dickey–Fuller test (ADF) test was 
used to evaluate the stationarity of the sequence.

2.3 Poisson segmented regression model

The general expression of the model is as follows:

 log logy n X X Xi i( ) = ( ) + + + + +β β β β ε0 1 1 2 2 3 3  (2)

Since the number of observed populations varies from year to year, 
log(ni) is introduced here as an offset to remove the effect of unequal 
number of observation units on the results, where ni is the number of 
observed populations per year. The dependent variable yi is the number 
of Kala-Azar cases per month, and X1, X2, and X3 denote time variables, 
intervention variables, and post-intervention time variables, respectively. 
β0 is the pre-intervention intercept, indicating the pre-intervention 
baseline level; β1 is the pre-intervention trend parameter, that is, the 
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slope of the pre-intervention regression line; β2 is the immediate change 
parameter, that is, the difference between the estimated values of the 
indicators in the two regression models before and after the intervention 
at the moment of the intervention, which indicates the change in the 
level of the indicator values caused by the intervention and is used for 
evaluating the short-term effect of the intervention; β3 is the amount of 
change in the trend parameter, which describes the difference between 
the pre and post-intervention slopes, and is used for evaluating the long-
term effect of the intervention; and indicates the random error. Since 
June–September of each year is the peak period of sandflies, Yangquan 
City carried out measures to eliminate sandfly during this period. In 
order to evaluate the effectiveness of this measure, this paper introduces 
the dummy variable X4, and the time point during the elimination 
period is set to 1, and the rest of the time point is set to 0. Therefore, the 
model (2) can be changed to:

 log logy n X X X Xi i( ) = ( ) + + + + + +β β β β β ε0 1 1 2 2 3 3 4 4  (3)

The parameter β4 indicates the amount of level change caused by 
elimination of sandfly.

2.4 Harmonic Poisson segmental 
regression model

The expression of the underlying model describing the cyclical 
fluctuations of the time series is (15):

 y tt = + +( ) +µ γ πω ϕ εcos 2  (4)

yt is the value at moment t, t = 1, 2, …, N, N is the effective length 
of the time series, μ is a constant, γ is the amplitude, ω is the frequency, 
φ is the phase angle, and ε denotes the random error. Assuming that 
the period of the sequence is known, the frequency ω, is a fixed 
number, that is, the reciprocal of the period. Thus, the model consists 
of three unknown parameters: the constant μ, the amplitude γ, and the 
phase angle φ. Model (4) can be transformed into:

 

( ) ( )
( )

cos 2 cos 2
sin 2

µ γ πω ϕ ε µ β πω
β πω ε

= + + + = + +
+

t C

S

y t t
t  

(5)

β γ ϕC = cos  and β γ ϕS = − sin  are the coefficients of the model’s 
sine and cosine function terms, respectively. The time series interval 
unit used in this study is month and the cycle length is 12, which 
shows that ω = 1/12. Therefore, model (5) can be rewritten as:

 y t tt C m S mm = + ( ) + ( ) +β β π β π ε0 2 12 2 12cos / sin /  (6)

ytm is the monthly reported incidence value for month t of year 
m; t values range from 1 to 12; m ranges from 1 to L, and L is the 
maximum number of years of observation. The model is a linear 
combination of the sine and cosine functions, which fit the 
sequence into a single, equally spaced variation of regular 
fluctuations. The peak time θ can be estimated using βc and βs by 
the δ method: θ β β π= ( ) +{ }12 2arctan / /S C k , When βc > 0 and 

βs > 0, k = 0; when βc < 0 and βs < 0, k = 2π; in the remaining cases 
k = π (12). We refer to model (6) on the basis of model (3) so as to 
construct the harmonic-based Poisson segmented regression model:

 

( ) ( )
( ) ( )

0 1 1 2 2 3 3 4 4log log
cos 2 / 12 sin 2 / 12

β β β β β
β π β π ε
= + + + + + +

+ +
tm m

C m S m

y n X X X X
t t  

(7)

2.5 Improved harmonic Poisson segmented 
regression model

We use two wave functions 2 1 2− ( ){ }cos /u u  and sin /u u( )
instead of the cosine and sine functions, respectively, so as to better fit 
the seasonally steep peaks. The model is constructed as follows:

 

( )2
0 wave1 2

sin /12 /cosβ β β ε  − = + + +        
m

tm m wave
m m

uy uu u  
(8)

u tmm = −( )2 12π θ / , θ is the time of the peak and can 
be calculated using the δ method described above, βwave1 and βwave2 are 
the coefficients of the two wave functions. The improved harmonic 
Poisson segmented regression model we constructed on this basis is 
as follows:

 

( ) ( )
( )

( )

0 1 1 2 2 3 3
2

4 4 1

2

log log

2 1 cos /

sin /

β β β β

β β

β ε

= + + + + +

 + − + 
  + 

tm m

wave m m

wave m m

y n X X X

X u u

u u
 

(9)

2.6 The construction process of the models

Figure 1 showed the construction framework of the above three 
models, including five parts: data processing preparation, stationarity 
test, model construction, autocorrelation test of residuals and 
model evaluation.

2.6.1 Data processing preparation
The variable assignments of the data were shown in 

Supplementary Table S1, in which X1 represents the time variable, 
which in this study is sequentially from 1 to 60; X2 represents the 
intervention variable, which is 0 before the intervention, and then 1 
after; X3 represents the post-intervention time variable, which is 0 
before the intervention, and then 0–19 sequentially; and X4 is a 
dummy variable, which is set to be 1 for the month of the elimination 
of the sandfly, and 0 for the rest of the months.

2.6.2 Stationarity test
ITSA required sequence stationarity, and ADF test was used to 

estimate the stationarity of the sequence.

2.6.3 Model construction
When the series is stationary, the Poisson segmented regression 

model is established by formula 3. When the sequence is 
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non-stationarity, harmonic Poisson segmental regression model and 
improved harmonic Poisson segmental regression model are 
established by formulas 7, 9 respectively.

2.6.4 Autocorrelation test of residuals
The Ljung-Box test was used to evaluate whether the residual was an 

autocorrelation sequence, and non-autocorrelation showed that the model 
was successfully constructed. In the Ljung-Box test, the null hypothesis is 
that “the residuals are non-autocorrelated.” The autocorrelation was 
double-checked by examining the autocorrelation function plots.

2.6.5 Model evaluation
Mean Squared Error (MSE), Mean Absolute Error (MAE) and 

Root Mean Squared Error (RMSE) were used to compare the fitting 
performance of each model.

2.7 Statistical analysis

Microsoft Excel 2021 was used to collate the data and SAS 9.4 was 
used to implement the construction of the three models described 
above. Anaconda software version 4.10.3 was used for stationarity and 
autocorrelation test. The incidence rate ratio (IRR) and 95% 
confidence interval (CI) were calculated. A p < 0.05 for two-tailed tests 
indicated statistical significance.

3 Results

3.1 Sequence characteristics and 
stationarity test

STL was used to study the time series of Kala-Azar in Yangquan 
from 2017 to 2021, and the results were shown in Figure  2. The 

long-term trend showed that the incidence of Kala-Azar in Yangquan 
had gradually increased since 2017 and reached its peak in mid-2020. 
Kala-Azar had a distinct seasonality, with the peak onset in May each 
year (Figures 2, 3). The stationarity test result showed that the Kala-
Azar sequence was non-stationary (the ADF test: t = −0.403, p = 0.910).

3.2 Model construction and intervention 
effect evaluation

Table 1 showed the results of the three models constructed by 
using formulas 3, 7, and 9 respectively. The primary analysis showed 
an underlying upward trend of Kala-Azar before intervention (Model 
A: IRR:1.045, 95%CI:1.026–1.064, p < 0.001; Model B: IRR:1.045, 
95%CI:1.027–1.064, p < 0.001; Model C: IRR:1.045, 95%CI: 1.027–
1.063, p < 0.001). On top of this underlying trend, we found that in 
terms of long-term effects, the rise of Kala-Azar slowed down 
significantly after the intervention (Model A: IRR:0.947, 95%CI:0.915–
0.981, p = 0.002; Model B: IRR:0.958, 95%CI:0.925–0.992, p = 0.016; 
Model C: IRR:0.960, 95%CI:0.927–0.995, p = 0.026), but the short-
term effect of the intervention was not statistically significant (Model 
A: IRR:1.290, 95%CI:0.789–2.107, p = 0.310; Model B: IRR:1.208, 
95%CI:0.741–1.970, p = 0.448; Model C: IRR:1.236, 95%CI:0.758–
2.016, p = 0.395). The Poisson segmented regression model indicated 
that the risk of developing Kala-Azar decreases by 1% for each 
additional month after intervention (β1 + β3 = −0.010, IRR = 0.990). 
The harmonic Poisson segmental regression model showed that the 
risk of Kala-Azar increased by 0.1% for each additional month after 
intervention (β1 + β3 = 0.001, IRR = 1.001). Although in the opposite 
direction to the results obtained from the Poisson segmented 
regression model, the trend of Kala-Azar was significantly slower after 
the intervention compared to the pre-intervention period. The 
improved harmonic Poisson segmented Regression Model suggested 

FIGURE 1

Flow chart of the three Poisson segment regression models.
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that the risk of Kala-Azar increased by 0.3% for each additional month 
after intervention (β1 + β3 = 0.003, IRR = 1.003), the results were also 
contrary to the results of the Poisson segmented regression model, and 
larger than the results of the harmonic Poisson segmented regression 
model, but it also showed that the upward trend in the incidence of 
Kala-Azar slowed down significantly after the intervention. The results 
of the three models indicated that the interventions were not 

statistically significant (Model A: IRR:1.110, 95%CI:0.786–1.569, 
p = 0.554; Model B: IRR:1.090, 95%CI:0.704–1.687, p = 0.699; Model 
C: IRR:1.066, 95%CI:0.723–1.572, p = 0.748). The four parameters 
used to adjust seasonal periodicity were statistically significant, 
(Model B: IRRsine:1.279, 95%CI:1.030–1.588, p = 0.026; IRRcosine:0.771, 
95%CI:0.623–0.953, p = 0.016. Model C: IRRwave1:6.309, 95%CI:2.584–
15.402, p < 0.001; IRRwave2:0.259, 95%CI:0.102–0.656, p = 0.004).

FIGURE 2

Seasonal decomposition of monthly Kala-Azar in Yangquan from 2017 to 2021. The unit is incidence per 100,000 population. (A–D) The original data, 
long-term trends, seasonal trends, and residuals, respectively.

FIGURE 3

The seasonal distribution of monthly Kala-Azar in Yangquan from 2017 to 2021.
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3.3 Comparison of model performance

Ljung-Box method and residual autocorrelation plots were used 
to test autocorrelation on the residual parts of the three models. The 
results of the Ljung-Box test indicated that autocorrelation still existed 
in the residuals of the Poisson segmented regression model (χ2 = 1.402, 
P < 0.001), whereas there is no autocorrelation found in the remaining 
two models, as shown in Table 2. The residual autocorrelation plots of 
the three models were shown in Supplementary Figure S1, which can 
be  more intuitively seen that the residual series of the Poisson 
segmented regression model still had seasonal characteristics.

In order to evaluate the fitting effect of the three models more 
objectively, the time series plots of the actual incidence rate and the 
fitted values of the three models were shown in Figure 4. MSE, MAE 
and RMSE were used to quantitatively compare the performance of 
the models (16). From Figure  4, it can be  seen that the Poisson 
segmented regression model has the worst fitting effect; the improved 
harmonic Poisson segmented regression model is more advantageous 
in fitting the peaks and more accurately fits the trend. Among the 
three models, the values of MSE, MAE, and RMSE of the improved 
harmonic Poisson segmented regression model are the lowest, which 
can indicate the optimal fitting performance of the improved 
harmonic Poisson segmented regression model, as shown in Table 3.

4 Discussion

As the reported incidence of Kala-Azar in Yangquan City, China, is 
increasing year by year and is prone to serious health service burden and 
economic losses, the Yangquan CDC has taken active preventive and 
control measures. Accurate and rational intervention effect evaluation 
models are important guides for infectious disease prevention, control 
and governmental decision-making (17). The reported incidence of 
Kala-Azar in Yangquan City from January 2017–December 2021 showed 
an increasing trend year by year, and there was a clear seasonal cyclical 
feature, with the peak in May each year. This may be due to the fact that 
May is an active period for sandfly each year, making it easier for Kala-
Azar to spread, which suggests that May is an appropriate window to 
carry out residual spraying to control vector densities each year.

This study used a segmented regression model based on an 
interrupted time series design to evaluate the effect of the intervention 
of Kala-Azar in Yangquan City. There is obvious seasonality in the 
Kala-Azar sequence, which will make the time series unstable, 
produce autocorrelation, and make the results of the study appear 
obvious bias (18). In order to solve the seasonal periodicity and 
autocorrelation of the Kala-Azar time series, the Harmonic Poisson 
Segmented Regression Model, and the Improved Harmonic Poisson 
Segmented Regression Model were established in this paper. The 
results of these two models showed that the short-term effect of the 
intervention was poor, which may be due to the lag of intervention, it 
was difficult to take effect in the short term; but in the long term, the 
intervention curbed the onset of Kala-Azar.

Compared to the Poisson segmented regression model and the 
harmonic Poisson segmented regression model, the improved 
harmonic Poisson segmented regression model can fit the Kala-Azar 
sequence better. It may be due to the fact that the model uses two wave 
functions to simulate the seasonal cycle portion of the Kala-Azar 

TABLE 1 Effect analysis of intervention measures for prevention and control of Kala-Azar by CDC in Yangquan.

Model A Model B Model C

β IRR (95% 
CI)

p-
value

β IRR (95% 
CI)

p-value β IRR (95% 
CI)

p-value

Trend pre-

intervention
β1

0.044

1.045 (1.026 to 

1.064)
<0.001

0.044

1.045 (1.027 to 

1.064)
<0.001

0.044

1.045 (1.027 to 

1.063)
<0.001

Immediate change β2
0.254

1.290 (0.789 to 

2.107)
0.310

0.189

1.208 (0.741 to 

1.970)
0.448

0.212

1.236 (0.758 to 

2.016)
0.395

Change in trend 

post-intervention
β3

−0.054

0.947 (0.915 to 

0.981)
0.002

−0.043

0.958 (0.925 to 

0.992)
0.016

−0.041

0.960 (0.927 to 

0.995)
0.026

Measures to 

eliminate sandfly
β4

0.105

1.110 (0.786 to 

1.569)
0.554

0.086

1.090 (0.704 to 

1.687)
0.699

0.064

1.066 (0.723 to 

1.572)
0.748

sine βS
0.246

1.279 (1.030 to 

1.588)
0.026

cosine βc
−0.260

0.771 (0.623 to 

0.953)
0.016

wave1 βwave1
1.842

6.309 (2.584 to 

15.402)
<0.001

wave1 βwave2
−1.352

0.259 (0.102 to 

0.656)
0.004

IRR, incidence rate ratio; CI, confidence interval; Sine, cosine, wave1 and wave2 was used to adjust seasonality. Model A: Poisson segmented regression model. Model B: Harmonic Poisson 
Segmental Regression Model. Model C: Improved Harmonic Poisson Segmented Regression Model. Bolded values indicate p-values less than 0.05.

TABLE 2 Ljung-Box tests for the three model residuals.

Model Ljung-Box

χ2 P

Poisson segment regression model 1.402 <0.001

Harmonic Poisson segment regression model 2.051 0.152

improved harmonic Poisson segment regression model 1.030 0.310
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sequence, which is better suited to seasonal steep peaks. This is also 
consistent with the findings of Ramanathan et al. (12).

To the best of our knowledge, we are the first one to explore the 
segmented regression model based on ITSA for analyzing the 
intervention effect of Kala-Azar in Yangquan, China. Its advantage is that 
the model can accurately evaluate the short-term and long-term effects 
of Kala-Azar intervention. Second, the harmonic Poisson segmented 
regression model and the improved harmonic Poisson segmented 
regression model established in this paper can more accurately fit the 
seasonal and periodic parts of the Kala-Azar sequence. At the same time, 
the two models can solve the autocorrelation in the sequence.

However, there are also some limitations. (1) The three models 
established in this study only evaluated the short-term and long-term 
effects of the intervention measures, but the intervention may have a 
certain lag, and the model could not determine the specific time when the 
intervention would have an effect. (2) This study only established 
segmented regression models, and the superiority of the improved 
harmonic Poisson segmented regression model and other models 
remained to be  verified. (3) There are many factors affecting the 
occurrence of infectious diseases, and this study only used historical 
incidence data, and other factors can be included in the model for further 
research. In the future, the influence factors of Kala-Azar will 
be incorporated into the model, and we will consider the delayed effects 
of the intervention to determine exactly when the intervention takes effect.

5 Conclusion

In the long term, the intervention measures taken by Yangquan 
CDC can curb the upward trend of Kala-Azar. The improved harmonic 
Poisson segmented regression model is more suitable for seasonal 
infectious diseases, which can provide a certain scientific reference basis 
for the evaluation of the intervention effect of infectious diseases.
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