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Purpose: Exposure to radiation is a health concern within and beyond the Earth’s

atmosphere for aircrew and astronauts in their respective austere environments.

The biological e�ects of radiation exposure from a multiomics standpoint

are relatively unexplored and stand to shed light on tailored monitoring and

treatment for those in these career fields. To establish a reference variable for

genetic damage, biological age seems to be closely associated with the e�ect of

radiation. Following a genetic-based study, this study explores the epigenetic

landscape of radiation exposure along with its associative e�ects on aging

processes.

Methods: We imported the results of the genetics-based study that was a

secondary analysis of five publicly available datasets (noted asData1). The overlap

of these genes with new data involving methylation data from two datasets

(noted as Data2) following similar secondary analysis procedures is the basis of

this study. We performed the standard statistical analysis on these datasets along

with supervised and unsupervised learning to create preranked gene lists used

for functional analysis in Ingenuity Pathway Analysis (IPA).

Results: There were 664 genes of interest fromData1 and 577 genes fromData2.

There were 40 statistically significant methylation probes within 500 base pairs

of the gene’s transcription start site and 10 probes within 100 base pairs, which

are discussed in depth. IPA yielded 21 significant pathways involvingmetabolism,

cellular development, cell death, and diseases. Compared to gold standards for

gestational age, we observed relatively low error and standard deviation using

newly identified biomarkers.

Conclusion: We have identified 17 methylated genes that exhibited particular

interest and potential in future studies. This study suggests that there are

common trends in oxidative stress, cell development, and metabolism that

indicate an association between aging processes and the e�ects of ionizing

radiation exposure.
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1 Introduction

Biological aging is an inevitable process characterized by the

progressive decline of cellular and physiological functions, leading

to increased vulnerability to age-related diseases and mortality.

This complex phenomenon results from dynamic interactions

between genetic, epigenetic, and environmental factors. In recent

years, there has been an interest in deciphering the molecular

mechanisms that underlie accelerated aging induced by exposure

to ionizing radiation (1–3) Ionizing radiation, encompassing X-

rays and gamma rays, carries sufficient energy to ionize atoms

and molecules, generating highly reactive free radicals and causing

cellular damage. The biological repercussions of ionizing radiation

are extensively studied due to its pervasive use in medical

diagnostics and radiation therapy, as well as the potential risk of

exposure during nuclear accidents or space exploration. As such,

a central mechanism through which ionizing radiation expedites

biological aging is by inducing DNA damage (4). Radiation-

induced double-strand breaks (DSBs) and oxidative DNA damage

trigger intricate repair processes, leading to the accrual of genetic

mutations and genomic instability. These genetic alterations are

closely associated with cellular senescence, a hallmark of aging, and

are implicated in the elevated risk of cancer and other age-related

disorders (5). A review article thoroughly explores the dependent

association between radiation damage and biological aging theory,

leveraging modern technology to revisit this significantly complex

topic (6).

Understanding the influence of ionizing radiation on biological

aging necessitates consideration of the hallmarks of aging, an

ensemble of interconnected cellular and molecular processes that

collectively contribute to aging (7). These hallmarks include

genomic instability, telomere attrition, epigenetic alterations,

proteostasis loss, cellular senescence, mitochondrial dysfunction,

and altered intercellular communication. Epigenetic modifications

have recently gained substantial attention for their pivotal roles

in orchestrating these hallmarks (8). Estimating biological age,

in contrast to chronological age, constitutes a crucial strategy

for evaluating the consequences of ionizing radiation on aging

processes. Biological age offers a more precise representation

of an individual’s physiological state and susceptibility to

age-related diseases. Gold standard methods for estimating

biological age rely on DNA methylation-based clocks, such as

the Horvath and Hannum clocks, which leverage epigenetic

modifications as reliable aging biomarkers (9, 10). These clocks

have been validated across diverse tissues and cell types,

demonstrating their ability to predict health outcomes and

mortality rates.

Computational biology has become an indispensable tool

for unraveling the relationship between ionizing radiation,

epigenetic modifications, and biological aging. The secondary

analysis of existing multiomics datasets has proven to be a

valid approach for investigating the epigenetic effects of radiation

on aging (11, 12). These datasets typically encompass genetic,

epigenetic, and transcriptomic profiles of individuals exposed to

radiation, providing a rich resource for in-depth exploration. The

secondary analysis has allowed researchers to harness existing

resources and uncover novel insights by applying advanced

data science and bioinformatics techniques (13). It can facilitate

the identification of radiation-responsive biomarkers, epigenetic

modifications, and gene expression changes associated with

accelerated aging (14). Moreover, it can enable the construction

of gene regulatory networks, shedding light on the regulatory

mechanisms that underlie these effects. No matter the purpose

or goals, researchers can access several valuable resources for

data acquisition. Large-scale collaborative initiatives, such as The

Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus

(GEO), offer comprehensive multiomics datasets, encompassing

DNA methylation, gene expression, and clinical information for

diverse cohorts (15, 16). These resources empower researchers to

explore the epigenetic and genetic landscape of radiation-exposed

individuals and their aging phenotypes.

Epigenetic alterations, including DNA methylation changes,

histone modifications, and non-coding RNA expression, have

emerged as central players in mediating the effects of ionizing

radiation on biological aging. Radiation-induced epigenetic

modifications can directly influence the expression of genes

involved in DNA repair, cellular senescence, and oxidative stress

responses (17–19). These epigenetic changes may contribute to

the aging phenotype observed in radiation-exposed individuals.

Moreover, radiation-induced epigenetic modifications have

been implicated in the regulation of telomere length, another

hallmark of aging (20). Telomeres, protective caps at the ends of

chromosomes, shorten with each cell division, and their length is

a crucial determinant of cellular senescence. Radiation-induced

changes in DNA methylation and histone modifications can

influence telomere maintenance, potentially accelerating the aging

process.

The epigenetic association between ionizing radiation and

biological aging represents an opportunity to revisit with modern

computational methods and multiomic techniques. By harnessing

the power of existing datasets and advanced analytical tools,

researchers can uncover the intricate mechanisms that drive

radiation-induced aging, providing valuable insights for both

biomedical engineering and personalized medicine. This research

not only contributes to our fundamental understanding of aging

processes but also holds the promise of identifying potential

therapeutic interventions tomitigate the adverse effects of radiation

exposure on human health. In this study, we use the findings

from a genomic-only study on a radiation-age association to

explore the epigenetic landscape of the effects of ionizing radiation.

We specifically examine high-dose (2Gy) exposure to identify

differentiating probes and understand the underlying methylation

and gene expression changes. This potentially identifies genes of

interest to target as control mechanisms in studying radiosensitivity

or biological age.

2 Materials and methods

2.1 Data characteristics

The epigenetic aspect serves as a continuation of a multiomic

exploration into the biological effects of radiation exposure. The

genetics foundation that we carry over is noted as Data1, which

is shown in red in Figure 1. Specifically, Data1-1 (n = 91) include

dose analysis with sex and age as clinical factors while Data1-2 (n
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= 75) includes sex as a secondary clinical factor (21). GSE21240,

GSE23515 (22), and GSE20173 (23) (collectively referred to as

Data1-1) included a total of 163 originally collected samples (of

which 91 are utilized in this analysis). The samples were obtained

with a chronological age ranging from 21 to 64 years, who

were exposed to various levels of ionizing radiation, including

0 Gy (controls), 0.1Gy, 0.5Gy, and 2Gy. GSE21240 was a study

of peripheral blood mononuclear cells (PBMCs) collected from

6 individuals, following 2 different blood preservation methods,

performing RNA extraction immediately or 3 h after an ex vivo

exposure to 0.5 Gy of Cesium-137 gamma rays for one minute. In

total, 48 samples were analyzed GSE23515 studied peripheral blood

cells from 24 different donors (95 samples in total, as one sample

was lost) exposed ex vivo to 0 Gy (controls), 0.1 Gy, 0.5 Gy, and 2

Gy at a dose rate of 0.82Gy/min fromCesium-137 gamma radiation

to study radioactive responses between sex and smoking behavior.

GSE20173 analyzed the miRNA expression profile of peripheral

blood lymphocytes incubated for 4 and 24 h in normal gravity (1g)

and in modeled microgravity after irradiation with 0.2 and 2 Gy

of gamma rays (5 participants across 4 conditions). In GSE44201

study, we then performed time-dependent analysis on another

dataset that focused on genetic effects of radiation sometime after

exposure (noted as Data1-2; n = 75) (24). The original study was an

analysis of human peripheral blood, collected 5 healthy donors, that

was exposed to varying levels of gamma-ray radiation and evaluated

up to 48 h after exposure. For the overlap with our data studies,

we only focused on time since exposed to 2 Gy. We also identify

the significant gene changes with respect to sex and age. This

genetics-only analysis of Data1-1/2 was used to set a foundation

and identified an intersection with significantly methylated genes

in this portion.

At its core, this study aimed to explore epigenetic changes in

samples exposed to radiation levels that overlap with our previous

study, andwe primarily exploredGene ExpressionOmnibus (GEO)

and NASA’s GeneLab repositories for datasets. Figure 1 shows

a breakdown of potential studies for secondary analysis (light

grey) and how we utilize chosen sets (shown in yellow, green,

blue, and purple boxes for respective purposes). In Figure 1A, we

focused on identifying datasets with methylation data and initially

found 13,656 samples. Narrowing down on clinical factors and

holding variables constant, we removed those with varying tissues

(brain, skin, lung, etc.), underlying health concerns that may bias

expression values (cancer), and those that did not overlap with

the radiation levels of the previous study (the only common dose

level became 2Gy). We ended with two studies that belonged

to a parent dataset, meaning that two strains aimed toward the

same goal: GSE112812 (Strain 1; n = 48) and GSE112873 (Strain

2; n=48) falling under GSE112877 (25). This study analyzed

delayed genetic and epigenetic radiation effects that may trigger

radiation-induced carcinogenesis. The researchers explored cloned

descendants of fetal fibroblasts irradiated to a single dose of 2

Gy of X-ray and observed copy number variation (CNV) and

methylation changes in genes. The combined dataset is referred

to as Data2 (n=96) in which we downloaded the raw data of

both strains separately so that they could be processed to remove

the batch effect of strains. The demographics of these datasets

are summarized in Table 1. Again, our focus is on the samples

exposed to 0 or 2 Gy to associate with age with interest in

clinical factors such as sex. The gestational age of Data2 was

determined using R’s methylClock v1.2.1 package with further

elaboration provided later for conducting our estimation analysis

(26).

2.2 Recreating epigenetic workflows

With regards to Figure 1B, this subsection covers the low-level

analysis (yellow box) and particulars of analysis (green box). These

two, in addition to the outline of high-level analysis (blue box

only) represent a recreation of methodology created particularly

for epigenetic understanding (27). It is worth noting that, for

data in GeneLab, fastq was the most common data form used

to generate coverage files. While we did not use human data

from this repository, mice data seemed promising. To explore

it, methylation data were processed using nf-core/methylseq

v2.3.0 (doi: 10.5281/zenodo.1343417) of the nf-core collection

of workflows (28). The pipelines were executed using Nextflow

v22.10.4 (29) with the below bash command. Unfortunately, several

reports failed quality assurance as well as a very small number

of probes relative to datasets found on GEO. Additionally, there

was a lack of overlapping annotated probes to combine data

from different repositories. of the nf-core collection of workflows

(28). The pipelines were executed using Nextflow v22.10.4 (29)

with the below bash command. Unfortunately, several reports

failed quality assurance as well as a very small number of probes

relative to datasets found on GEO. Additionally, there was a lack

of overlapping annotated probes to combine data from different

repositories.

For Data2 processing and normalization, we used R v4.2

library minfi v1.42 to turn raw idat files into usable count data

(30). Recreating processing checks and techniques, we plot and

evaluate a histogram ofM-values, beta values, and log2 transformed

gene expression with a distribution curve overlayed. This is to

check reasonable density plots for each before moving forward

to plotting the dataset’s standard deviation and MA plots. MA

plots are a visualization of log fold change (y − x) vs. average

intensity ((x + y)/2) of two populations x and y. For our data,

we used respective irradiated samples as x and non-irradiated as

y. MA plots help observe the assumption that the majority of gene

expression or methylation is insignificantly changing and should

be along the zero line and can be an indication of what one can

expect later in the analysis, such as how many probes are indeed

at a higher fold change. Finally, for low-level analysis, we split

the CNV into quantiles of low, medium, and high expression.

We take the corresponding probe in methylation data to plot the

histogram/density plot of the average beta value along with the

distance to the transcription start site (TSS). Probes of interest

are those typically within 500 bp of TSS in the promoter region.

Correlation mapping involves analyzing the correlation between

gene expression probes and methylation. Since we do not expect

CNV to be fruitful as it is used for mutations, we calculate the

correlation matrix between the methylation probes of Data2 and

the corresponding gene expression probes of Data1. Here, an

assumption is that significant findings are methylation probes that

are heavily anti-correlated with their respective gene expression
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FIGURE 1

Research Flow Chart. (A) Shows down selection of potential datasets with methylation data on cells exposed to ionizing radiation. We have listed

datasets from previous studies that are used in conjunction with gene expression. (B) Shows the research flow of this study. We have used

methylation to understand the layered epigenetic landscape of radiation exposure from low-level analysis, particulars of analyses, and high-level

analysis. Gene expression data (noted as Data1-1 and Data1-2) are used to identify genes of interest in which we take the intersection with

methylation data to explore aging processes, significantly methylated genes, and disease markers.

probes. Bringing together these recent observations, we find that

observations of extreme interest are those that have high, inverse

relationship in correlation, within 500 bp of the TSS, along with

significant p-values/log FC between irradiated and non-irradiated

populations.

2.3 Statistical analysis

Finally, the high-level analysis emerges, which quickly becomes

complex and is further elaborated upon in Figure 1B. The

methylated data, represented by the blue box, is integrated with the
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TABLE 1 Demographics of the five datasets we use to analyze the association between radiation exposure and aging processes.

Gene Exp. (Data1) Methyl & CNV

Dataa1-1 Data1-2 Data2

GSE20173 GSE21240 GSE23515 GSE44201 GSE112812 GSE112873 Total

Sex Male - 40 48 15 - - 103

Female - 8 47 15 - - 70

Chronological

age (yrs)

Minimum - 21 21 20 - - -

Maximum - 64 45 53 - - -

Biological age

(wks)

Minimum - - - - 12.09 12.41 -

Maximum - - - - 42.77 41.47 -

Radiation Dose

(Gy)

Control (DT = 0) 10 24 24 15 13 22 108

High Rad

(DT = 2)

10 0 23 15 35 26 109

Time since

exposure (hrs)

6 - - - 10 - - 10

24 - - - 10 - - 10

48 - - - 10 - - 10

Total 20 48 95 30 48 48 289

genetics-only radiation analysis (red) to become the purple portion

of the flow chart and is the bulk of our results and discussion

section.

To begin, we find the overlap of the genes of interest fromData1

with those in Data2 with regards to radiation-only analysis, age-

only analysis, rad-age interaction, and sex-only analysis. We aim

to determine the significant genes categorized under each analysis

type. Additionally, we seek to provide a holistic comparison across

all categories. Since we are exploring the epigenetic landscape

of radiation effects on aging, we specifically analyze a PCA plot

of radiation groups with gene expression and methylation data

to observe the overlap or differentiation between control and

high radiation-exposed groups. Along with just the number of

overlapping genes, we use the Circos v0.4.10 library in R to create

a circular plot for an initial understanding of expression levels,

clustering, and trends when analyzing expression and methylation

(31). We perform Student t-tests on Data2 to create volcano plots

to best visualize p-value and log2 fold change significance. We then

look at the overlap between significantly changing M-values and

gene expression values to evaluate potential control mechanisms.

We create another circos plot and heatmap to visualize values and

trends.

2.4 Functional and clinical relevance

We used k-means clustering and identified 5 groups of interest

(also shown on the circos plot and discussed later). We then create

preranked gene lists for enrichment analysis divided into these 5

groups. Data are then analyzed using IPA (QIAGEN Inc., https://

digitalinsights.qiagen.com/IPA) (32). We used both p-values and

log2 fold change between radiation groups to run Individual

Pathway Analysis (IPA) to flag significantly changing and linked

biological pathways and diseases associated with our findings.

As previously mentioned, we use methyClock v1.2.1 to evaluate

identified markers with aging (26). Since Data2 are cloned fetal

cells, we implement methylated gestational age (GA) estimation

techniques found in this library listed as Bohlin, Epic, Knight,

Mayne, Lee CPC, Lee reference RPC, and Lee RPC. Using all

available probes of Data2, we get the estimated GA from these

techniques to serve as our reference or "truth" value. Notably, we

recognize that these are the estimations and, truth is relative. This

is a limiting assumption as we develop a rad-age association. We

then use our identified, significant rad-age methylated probes to

predict sample GA and analyze the error rates compared to these

established techniques.We plot the errors in weeks using rootmean

squared (RMS) error and discuss variation.

3 Results

3.1 Understanding the epigenetic
landscape

Our analysis begins with understanding the epigenetic

landscape of the data we are using. With specifics outlined in

the methodology section, we present results covered in the “low-

level analysis” and “particulars of analysis” portions represented by

yellow and green boxes, respectively, of Figure 1 where we recreate

epigenetic workflows to be implemented for our purposes (27).

Overall, this is to gain a detailed understanding of the data and how

it pertains to the problem at hand.
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We use the R minfi library to process the raw idat files from

GEO. We used the preprocessFunnorm function on the red-green

channel set object to generate functionally normalized ratio set

data. Funnorm extends the idea of quantile normalization from

the same library, and we use getBeta, getM, and getCN functions

to extract beta-values, M-values, and copy number variant data,

respectively. Similar to the study we replicated, we show a

histogram and density plot of the data to check for expected shape

and intensity shown in Supplementary Figure S1. Since we are

focusing on epigenetic and genetic relations, we do not use the CNV

data for downstream analysis. We show standard deviation blots of

beta-values and gene expression along with MA plots for M-values

and gene expression in Supplementary Figure S2 where we see

expected results of the majority of probes having insignificant fold

change. Finally, in Supplementary Figure S3, we again mirror our

reference on exploring beta values for different quantiles of copy

number variations and the corresponding distance from the gene’s

transcription start site (TSS). Our primary observation centers

around the significant decrease in hypermethylated genes with the

near constant scatter of expected distance from the TSS.

3.2 Statistical and high-level analysis

Understandably, most of our findings deal with the high-level

analysis of epigenetic data indicated by the blue and purple sections

of Figure 1. We started by importing all t-test results from Data1-1

and Data1-2 (collectively referred to as Data1) where we extracted

genes that were significantly different between populations of sex,

age, radiation exposure (only 0 Gy vs. 2 Gy), and the interaction

test between the same radiation exposure levels with age (referred

to using the R notation of rad ∗ age or in plots with the underscore

in place of the asterisk). We examined the overlap between this

compiled list of 664 significant genes of interest from Data1 and

those present in Data2. This alternate form of a Venn diagram

using the R package UpSetR is shown in Figure 2A where vertically

connected dots represent the overlap in the label category. This

shows the breakdown of overlap by the t-test while a summarized

gene list is shown in Figure 2B where we see 577 of the 664

genes are also in Data2. As mentioned, since CNV data are not

necessarily relevant toward understanding the epigenetic landscape

or control mechanisms we continue with the overlap between gene

expression levels of Data1 with corresponding methylated levels in

Data2 to compare trends. This analysis leads to Figure 2C where

we see unsupervised clustering via principal component analysis

(PCA) of irradiated groups of gene expression and methylation

data, revealing a broad overlap between the two groups. A list of

all genes and their overlapping groups (used to created Figure 2A)

are presented in Supplementary Table 1.

We conducted Student’s t-test on all Data1 probes which

included those found in Data2 to potentially identify overlapping

genetic/epigenetic markers to eventually control. Figure 3A shows

a familiar plot structure by showing a beta histogram for different

quantiles of gene expression and the corresponding distance

from the gene’s transcription start site. With less probes of

interest, we are able to see a bit more resolution trying to see

trends. Of note with beta values, we identify an increase in gene

expression corresponded to a lower percentage of methylated genes

as somewhat indicated with the hypermethylated hump pulling

left as we go across the plots. Meanwhile, the scatterplots of

methylation probe TSS distance seemed to increase in variability

with increased gene expression. Figure 3B represents those results

with volcano plots of the Data1 gene expression and Data2

methylation data independently evaluated. There were no genes

of significant fold change, so we picked an artificial threshold

for plotting. Of the methylation probes that had a p-value<0.05

and log2FC(radiation)>2, 40 probes were within 500 base pairs

of the gene’s transcription start site and 10 within 100 base pairs.

While we performed the analysis on both gene expression and

methylation data for completion, we again proceed with evaluating

methylated genes. Figures 3C, D show the methylation results,

plotted with corresponding gene expression values from Data1.

Figure 3C is a fold change heatmap showing the aforementioned

10 methylation probes matched to the closest gene symbol along

with the gene expression log2FC. Next to the colored fold-

change values is a list detailing the distance to the TSS for that

methylated gene. Figure 3D shows those same 10 probes in a

circos plot with the methylation values on the outer ring and

corresponding gene expression (regardless of significance) on the

inner ring. Here, it is easier to see the relationship between

gene and epigenetic changes. Raw t-test findings (to include the

change and p-values that were plotted here) are presented in

Supplementary Table 2.

Next, we focused on overlaying methylation levels with gene

expression without digging into the genes themselves. While the

previous paragraph/figure explores all significant probes of Data2

corresponding to their gene expression, this section starts with the

significant gene list of Data1 (664 genes of interest mentioned)

and explores the available methylation values. We used k-means

clustering of methylation values to identify five groups of similar

expressions. Figure 4A shows a circos plot of these clusters along

with corresponding gene expression. The outer ring, representing

the methylation values that are ordered by clusters, we see one

group of hypomethylation, one group of hypermethylation, one

of seemingly unmethylated, and two where there is some type

of changing inverse relationship. The inner ring, as mentioned,

is the gene expression of the corresponding probe to the plotted

methylation values. While there might seem some correlation,

it is not ordered and much harder to tell with the naked eye.

While we dig into specifics more, this is merely a visualization

step to see that there is indeed some trend to be explored. Since

we are interested in the understanding landscape of radiation

effects, Table 2 is a summary of these five clusters when looking

at irradiated vs. non-irradiated samples. Due to the changing

relationship, the probes of clusters 1 and 2 are pulled for correlation

plotting. Specifically looking for positive or negative correlation

between methylated genes and expression, Figure 4B shows the top

1% ofmost absolute correlated values. For example, upon reviewing

this plot, as will be discussed in the next section, the methylation

of DDX3Y (far right column) demonstrates a significant positive-

correlation (blue) with the expression of 15 genes, such as

HBD, BRPF3, ZNF177, KCM1B, RGS9, FAM132A, RSC1A1, SLPI,

KIAA0586, ETV7, FEM1A,MXRA7, TIMD4, CAND1, andDFNB31

while anti-correlated (red) with the expression of 20 genes, such

as SEL1L1, GGT8P, AK4, SCAMP4, BCL2L1, SASH1, SLC10A7,
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FIGURE 2

Data1 and Data2 overlap. (A) Is the overlap of significant genes shared between Data1 and Data2 for listed subcategories. We identified significantly

changing genes with respect to sex, age only, radiation only, and the interaction between radiation and age. These 664 genes from various clinical

factors are the ones shown in the red circle of (B). (B) shows the overlap between Data1 significant genes with the statistically significant probes of

Data2 with respect to methylation and CNV. (C) are PCA plots of gene expressions of Data1 and M-values of Data2 with ellipsoids around group of

interest such as irradiated (2Gy) and non-irradiated (0Gy). Since we focus on linking methylation to expression, we continue this study with the

methylation data of Data2 and the gene expression data of Data1 (instead of the CNV data of Data2).

POLDIP2, GARS, ORM1, KIAA2018, GPER, LAMA5, VAMP4,

NAALADL1, TSPYL2, MCTP2, PPAP2B, GAL3ST4, and SOX4.

The raw correlation values can be found in Supplementary

Table 3.

3.3 Functional and clinical relevance

Overlapping statistical findings with functional analysis, we

create preranked lists based on p-values and log2FC(radiation)

from the five k-means clusters of the original genes (611 found

within these data of the 664 genes of interest). These preranked

lists were analyzed using Ingenuity Pathway Analysis (IPA) for

identifying significant pathways and diseases. Figure 4C shows

a Venn diagram of output pathways with those intersecting 21

among all groups specified. Of particular note are the senescence,

myelination signaling, neuroinflammation, and IL-33 signaling

pathways overlapping in all groups, which clearly ties to aging

processes. Seeing such pathways that would be tied to old

age in fetal cells supplements a rad-age association with the

epigenetic background. Looking specifically at cluster groups

1 and 2 (inverse relationship of M-values), we see pathways

involved in the metabolism (PFKFB4 signaling and fatty acid α-

oxidation), cellular development (Hippo signaling and putrescine

biosynthesis/degradation), cell death (MYC mediated apoptosis

and induction of apoptosis by HIV1), and disease (THOP1 in

Frontiers in PublicHealth 07 frontiersin.org

https://doi.org/10.3389/fpubh.2024.1333222
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Ruprecht et al. 10.3389/fpubh.2024.1333222

FIGURE 3

Methylation analysis supplementing genetic findings. (A) is a plot of the processed Data2 sites of interest from Data (previous figure). We separate

Data2 into three quantiles of gene expression to view average beta trends (top) as well as distance of the methylation probes to the corresponding

gene’s transcription start site (bottom). Of note is the general similar shape in average beta distribution and there iss increased variance in TSS

distance with increased gene expression. (B) are volcano plots of p-value vs. log2FC of radiation only analysis between methylation (left) values and

gene expression (right). These are only the probes that correspond to genes of interest from the original 664 list. The methylation values here are

those with p<0.05, –log2FC(radiation)–>2. Additionally, 40 of these probes also had a –TSS distance– < 500bp and 10 probes with a distance

(Continued)
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FIGURE 3 (Continued)

< 100bp. Looking specifically at these 10 probes are the focus of (C, D). (C) shows a heatmap of the 10 methylation probes with the corresponding

gene expression colored to log2FC(radiation) of the respective dataset. Added onto the right of the heatmap is the basepair distance to the TSS from

the annotation file for the methylation probe. (D) is methylation (out ring) and gene expression (inner ring) of genes from the heatmap. Specifically,

the study highlights the varying methylation rates while somewhat consistent gene expression.

FIGURE 4

K-means clustering, correlation, and pathway overlap. This figure represents a more holistic analysis of the 664 genes of interest in relation to

methylation values. First, (A) is a circos plot of methylation values (outer ring) and corresponding gene expression (inner ring). We performed

k-means clustering to identify five distinct groups, which are represented by this plot that is split into labeled sections on the outside. We created

preranked lists of all groups based on the p-values and log2FC(radiation) to feed into Ingenuity Pathway Analysis (IPA) for functional analysis. Looking

at all probes regardless of the group, we calculated a correlation matrix between methylation probes (columns) and gene expression (rows). To better

visualize significant changes in groups 1 and 2 due to changing methylation trends (which may or may not align with the changes from irradiation),

we extracted the top 1% of correlation values to plot in (B). We see complex biology at play with changes in a methylated gene both positively and

negatively correlated to the changing expression in other genes, and vice versa. (C) represents the overlapping pathways from IPA between each

clustered group. Next to the Venn diagram are the 21 pathways common among all groups. We see a trend in immune response, cell death,

age-associated diseases, and cancers through these pathways as well as in the extended list provided in the Supplementary material referenced in

the manuscript.

Alzheimer’s disease, Huntington’s disease, and colorectal cancer

metastasis) to name a few. These intersecting pathways, and others

of significant value to a rad-age association, are discussed more in

the next section. The labeled k-means groups for each probe is listed

in Supplementary Table 4 while all IPA results for these groups

(molecules, pathways, overlapping groups, etc.) are presented in

Supplementary Table 5 and 6.

Tying back to the radioactive effects on biological aging, we

implemented standard gestational age (GA) estimators in R as

our reference value so we could explore the predictability of our
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TABLE 2 Sample split by k-means cluster group on hyper- or hypo-methylated probes.

Cluster
group

Irradiated Non-irradiated

Hypomethylated Hypermethylated Hypomethylated Hypermethylated

1 28 33 22 9

2 35 26 9 22

3 0 61 0 31

4 0 61 0 31

5 61 0 31 0

FIGURE 5

Rad-age predictability error of gestational age. We implemented gold standards of biological age estimators, such as gestational age (GA) for fetal

cells given in weeks. The GA is held as truth or error = µ̂ = 0. We then created generalized linear models to evaluate the GA predictability of the 664

genes of interest. The error of these linear models was calculated as the root mean squared (RMS) error in reference to the estimated GA. Since truth

is relative or we may doubt the accuracy of estimation techniques, we are more interested in the relative error of our models as opposed to the

estimated age itself. The spread of error is plotted for each GA technique. It is noteworthy that none of the 664 genes of interest from our rad-age

association overlap with a gene used by the gold standards of GA estimation. Additionally, tight groupings (low variance) of error are observed

between our linear models and most of the GA techniques.

statistically significant methylation probes. Using a 60/40 split

between training and testing data, we fit a generalized linear model

to the data and calculated the RMS error to each of the GA

references. The GA of each sample in itself was not of interest to

us because truth is relative and there is currently no way to tell how

close to truth they are. Instead, we are interested in how close these

methylated genes were to the standards. Figure 5 shows boxplots

of error with models listed along the x-axis and RMS error to the

standards along the y-axis (33). An interesting note is that none

of these statistically significant probes when comparing radiation
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were used to implement the gold standards. We were truly using

new potential markers to estimate age. Additionally, it is interesting

to see tight groupings (little variation in error) on non-Lee models

and there is a low relative error in these models. The train/test

split of samples can be found in Supplementary Table 7 while

the statistically significant probe list was previously mentioned in

Supplementary Table 8.

4 Discussion

Our first thing of note is the difference in the quantile

separation of beta values and TSS plots in Supplementary Figure S3

and Figure 3A compared to the findings of Singhal et al. (27). In our

data, we have relatively unchanged histogram shape with increasing

gene expression in dealing with radiation exposure with spikes in

both hypo-and hyper-methylated regions. However, Singhal et al.

had primarily hypomethylated genes in medium and high gene

expression with almost a noise-like histogram of beta values among

low expressed genes. This seems to be our first characterization

of expectations when dealing with the epigenetic landscape of

those exposed to ionizing radiation. With regards to significant,

low absolute distance from the TSS of v, given our focus on gene

expression instead ofmutation rates, we look at the regions of [-500,

500] and [-100, 100]. In the highly expressed genes, 35.8% (1895 of

5289) and 13.3% (704 of 5,289) of the methylation probes were in

these regions. There were 33.8% and 12.1% (out of 5223 probes) in

these regions among medium gene expression. And lastly, 35.7%

and 12.3% (out of 4,810 probes) in these regions respectively

amongst low gene expression. Additionally, since we brought up

a potential shift in hypermethylation, we looked at the frequency

of beta value counts in that region of the histogram. High gene

expression saw a peak count of 147 at 93% methylation, medium

gene expression peaks at 124 counts each of 92–93% methylation,

and low gene expression peaks at 95 counts each of 92-93%

methylation. This can help research in recognizing this epigenetic

landscape with a trend of increased hypermethylation of genes with

increased gene expression when exposed to ionizing radiation while

maintaining a ratio of distances to the gene’s transcription start site.

Looking at the 10 genes highlighted from Figures 3B, C, the

first to draw attention is Gene Protein Subunit Alpha 12 (GNA12)

which is predicted to enable the GTPase activity and involved in

regulating TOR signaling. This is arguably the more significant

finding because the GTPase activity with another gene has been

shown to promote radioresistence in cells, and TOR signaling

is directly linked to aging processes (34–37). The Solute Carrier

Family 4 Member 1 (SLC4A1) gene encodes a protein part of the

anion exchanger in the red blood cell plasma member where it is

involved in CO2 transport from tissues to lungs. This becomes an

interesting finding in the perspective of radiation being a known

causal factor of cancers in high proliferating cells (such as in blood

forming organs) as well as CO2 (38, 39). FERMDomain Containing

4A (FRMD4A) encodes a protein that regulates epithelial cell

polarity. While associated with nicotine dependence, this has more

relevance with a rad-age association because of its connection with

Alzheimer’s disease (40). RNA Binding Motif Protein 47 (RBM47)

enables RNA binding activity and is predicted to act upstream of

cytidine to uridine editing as well as upstream of hematopoietic

progenitor cell differentiation. Since C-to-U editing often involves

the hydrolytic breakdown of amino acids for energy following

excess protein intake, this is yet another gene found to be tied to

energy in some regard (41). Additionally, a repeat of some sense

is seeing reference again to blood cells. With observed changes

from radiation exposure on a gene involved in hematopoietic cell

differentiation, tied to one of the hallmarks of aging is stem cell

exhaustion, RBM47 is creating a loose corroboration to a rad-age

association (42). Gamma-Glutamyl transferase 6 (GGT6) belongs

to the GGT family that is a membrane-bound extracellular enzyme

that is key to glutathione homeostasis as it provides synthesis

substrates. This is indirectly significant with regards to a rad-age

association because glutathione is a powerful antioxidant produced

by the liver to deal with free radicals, peroxides, and heavy

metals (43). Following connections with the liver, Hexokinase

Domain Containing 1 (HKDC1) encodes a protein involved in

glucose metabolism. Reduced expression may be associated with

gestational diabetes while high expression may be associated with

poor prognosis in hepatocellular carcinoma (44). C3orf35 is an

alias and previous HGNC symbol for the APRG1 tumor suppressor

candidate which is an RNA gene with little known properties

or associations beyond a study in 2005 that it may suppress

tumor growth in breast cancer (45). The protein from Sprouty

RTK Signaling Antagonist 2 (SPRY2) is involved in the non-

cell autonomous inhibitory effect on fibroblast growth factor two

signaling. It is noteworthy that a mutation in this gene has been

found to inhibitMAPK pathway which is involved in tumorigenesis

(46). Uroplakin 1A (UPK1A) codes a cell-surface protein that may

play a role in normal bladder epithelial physiology and possible

tumor suppression (47). Tripartite Motif (TRIM), containing 7,

encodes a protein that may participate in glycogen synthesis as

well as both tumor-promoting and tumor-suppressing functions

in innate immunity (48). Finally, while we present all results for

viewer’s understanding and interpretation, we noted that it was

interesting to see the methylation of DDX3Y both positively and

negatively correlated with the expression of many distinct genes.

The protein from this gene is considered to be involved in ATP

binding, hydrolysis, and RNA binding (49–51). Mutations in this

gene result in male infertility being on the Y chromosome. While

there is connection to aging processes, the continued trend of

energy molecules is an exciting find with this dataset and approach.

Shifting to IPA results while continuing the discussion of

significant genes, we see five genes that are recurringly found

in the most significant pathways of cluster groups 1 and 2.

BCL2L1 codes a protein in the BCL-2 family that acts as an

anti- or pro-apoptotic regulator located at the outer mitochondrial

membrane. More significantly to our cause, it regulates the outer

mitochondrial membrane channel (VDAC) potential and thus

controls the production of reactive oxygen species (52). Again,

continuing a theme of energy, ATPase sarcoplasmic/endoplasmic

reticulum CA2+ Transporting 3 (ATP2A3) encodes one of the

SERCA CA2+ ATPases located in muscle cells. This enzyme

catalyzes the hydrolysis of ATP and is involved in calcium

sequestration associated with muscular contraction and loosely

tied to radioresistence and aging separately (53, 54). G protein

subunit beta 1 (GNB1) codes a beta subunit, which regulates

alpha subunits of nucleotide-binding proteins that integrate signals

between receptors and effector proteins. One such case is when
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beta and gamma chains are required for the GTPase activity which

we saw relevant with GNA12 (one of the 10 methylation probes

within 100bp of its gene’s TSS). SMAD family member 2 (SMAD2)

encodes a protein that mediates the signal of the transforming

growth factor (TGF)-beta, thereby regulating processes, such as cell

proliferation, apoptosis, and differentiation, as well as associated

with cardiovascular diseases - all of which give confidence in linking

effects of radiation and aging (55–57). Aldehyde Dehydrogenase

1 family member B1 (ALDH1B1) is the second enzyme of the

major oxidate pathway of alcohol metabolism. The review of the

literature connects downregulation of ALDH1B1 to numerous

cancers including colorectal, pancreatic, liver, prostate, lung, brain,

and breast cancers to name a few (58–64). While ALDH1B1 may

indirectly or loosely support a rad-age association, given its ties to

cancer progression and radioresistence, this enzyme also perks our

interest once more on being yet another metabolic constituent.

Understandably with this dataset, cellular and embryonic

development pathways are highlighted as significant. We cannot

know if that’s due to the radiation effects on the epigenome

or because of the cell types used in this study. While briefly

mentioning the pathways, we can revisit knowing significant

genes/molecules that play a role. Energy and metabolism was an

interesting trend compared to others in that it is not directly called

out in response to radiation and aging. It could be underneath

mitochondrial dysfunction and deregulated nutrient-sensing for

hallmarks of aging but not considered obvious. Fatty acid oxidation

comes close and was highlighted in groups 2, 3, 4, and 5 primarily

due to the significance of ALDH1B1 that was just discussed.

From groups 1, 3, 4, and 5 is PFKFB4 signaling which is

another significant pathway involved in metabolism. Although the

gene itself was not in our gene list, we wanted to highlight its

function. The protein encoded by this gene is highly expressed

in cancer cells and is induced by hypoxia (65). It forces the cell

to increase the amount of energy (i.e., ATP) production beyond

its typical constraints (66). Overlapping with cancer pathology is

the Hippo signaling pathway from groups 2 and 3 (also sharing

T-Cell exhaustion signaling) which modulates the proliferation,

differentiation, and survival of cells (67). Another pathway without

the gene itself is MYC mediated apoptosis from groups 1 and

4 (along with a necroptosis and pyroptosis signaling pathway).

While the gene itself plays a role in cell growth, proliferation,

differentiation, and apoptosis, the pathway focuses on inducing

apoptosis within a cell when survival factors are missing (68). As

may be expected, a number of cancer pathways were flagged as

significant from our rad-age associated gene list. Colorectal and

gastrointestinal cancers were recurring while breast, ovarian, lung,

prostate, and bladder cancers were also found frommultiple cluster

analyses.

5 Conclusion

In this study, we utilized genetic findings by exploring

previously identified genes of interest to investigate the epigenetic

landscape of ionizing radiation and its relationship to aging

processes. Our primary source of results stem from conducting

the secondary analysis on two publicly available datasets of fetal

fibroblasts exposed to 2 Gy of radiation. The Student t-test was

performed to create preranked gene lists based on the p-values and

log2FC(radiation) for functional analysis in IPA where significant

pathways and diseases were identified. Upon close examination of

k-means clustering groups, the correlation between methylation

and gene expression, and molecules that emphasized pathway

results, we discussed 17 methylated genes that showed particular

interest and potential in future studies:GNA12, SLC4A1, FRMD4A,

RBM47, GGT6, HKDC1, APRG1, SPRY2, UPK1A, TRIM7, DDX3Y,

BCL2L1, ATP2A3, GNB1, SMAD2, ALDH1B1, and PFKFB4. Many

other findings (such as 40 methylation probes within 500 base

pairs of their gene’s transcription start site) in addition to raw

pathway analysis are provided in the Supplementary material for

the reader’s use. We found common trends in oxidative stress,

cell development/growth/death, immune response, and (in an

unforeseen manner) metabolism/energy without direct links to

mitochondrial dysfunction.
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