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Background: It has been reported that the disease-initiated and disease-
mediated effects of aerosol pollutants can be related to concentration, site of 
deposition, duration of exposure, as well as the specific chemical composition 
of pollutants.

Objectives: To investigate the microelemental composition of dust aggregates 
in primary schools of Vilnius and determine trace elements related to acute 
upper respiratory infections among 6-to 11-year-old children.

Methods: Microelemental analysis of aerosol pollution was performed using 
dust samples collected in the classrooms of 11 primary schools in Vilnius from 
2016 to 2020. Sites included areas of its natural accumulation behind the 
radiator heaters and from the surface of high cupboards. The concentrations 
of heavy metals (Pb, W, Sb, Sn, Zr, Zn, Cu, Ni, Mn, Cr, V, and As) in dust samples 
were analyzed using a SPECTRO XEPOS spectrometer. The annual incidence 
rates of respiratory diseases in children of each school were calculated based 
on data from medical records.

Results: The mean annual incidence of physician-diagnosed acute upper 
respiratory infections (J00-J06 according to ICD-10A) among younger school-
age children was between 25.1 and 71.3% per school. A significant correlation 
was found between vanadium concentration and the number of episodes of 
acute upper respiratory infections during each study year from 2016 to 2020. 
The lowest was r  =  0.67 (p  =  0.024), and the highest was r  =  0.82 (p  =  0.002). The 
concentration of vanadium in the samples of dust aggregates varied from 12.7 
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to 52.1 parts per million (ppm). No significant correlations between the other 
trace elements and the incidence of upper respiratory infections were found, 
which could be caused by a small number of study schools and relatively low 
concentrations of other heavy metals found in the samples of indoor dust 
aggregates.

Conclusion: A significant and replicable correlation was found between the 
concentration of vanadium in the samples of natural dust aggregates collected 
in primary schools and the incidence of acute upper respiratory infections 
in children. Monitoring the concentration of heavy metals in the indoor 
environment can be an important instrument for the prevention and control of 
respiratory morbidity in children.

KEYWORDS

dust aggregates, microelemental composition, vanadium, respiratory infections, 
primary school, children

1 Introduction

Children are facing an increased number of health issues due to 
the deterioration of air quality (1, 2). They are particularly vulnerable 
to air pollution, especially during periods of faster growth and 
development (3–5). Greater permeability of respiratory epithelium 
and immature defense mechanisms can also play an important role. 
The primary school is a relatively new environment for children in 
terms of environmental pollution (6). Children spend more time at 
school (up to 4–8 h usually in the same classroom) than anywhere else 
except their own home. School is a new environment for these 
children in terms of environmental pollution. Prior research has 
focused mainly on the mass concentration of particulate matter PM2.5 
(particles equal to or less than 2.5 μm) and PM10 (particles equal to or 
less than 10 μm) (7–12). However, we recently found an important role 
of the accumulation mode (0.3–1.0 μm) of aerosol particles in asthma 
morbidity among younger (6–11 years) school-age children (13). It 
was earlier reported that the effects of inhaled aerosols depend on the 
size of the particles, concentration, duration of exposure, place of 
precipitation in the respiratory tract as well as their specific chemical 
composition (14). Heavy metals can impair important biochemical 
processes posing a threat to human health, plant growth, and animal 
life (15, 16). They can also cause toxicity in certain organs of the 
human body, such as nephrotoxicity, neurotoxicity, hepatotoxicity, 
skin toxicity and cardiovascular toxicity. This can have adverse effects 
of the physical growth of children and a deleterious impact on 
bronchial epithelial cells, among other harmful results (17). Aerosol 
particles can coagulate and deposit in the form of dust; thus, it is most 
convenient to study the microelemental composition of the aerosols 
by collecting dust samples where they naturally accumulate. Such 
places in the classrooms not usually subjected to wet cleaning are the 
surfaces of high cupboards and places behind the radiator heaters 
where aerosol particles are deposited due to thermophoretic 
forces (18).

The aims of our study were to analyze the microelemental 
composition of dust and their concentration in the samples of natural 
dust aggregates taken from Vilnius primary schools and to determine 
which trace elements can be related to the incidence of acute upper 
respiratory infections in younger school-age children.

2 Materials and methods

2.1 Description of studied schools

This study was carried out in Vilnius, Lithuania (54o41′17′′N, 
25o15′8′′E). Primary school children (children in the age range of 
6–11 years, grades 1–4) were enrolled. Invitations were sent to 107 
Vilnius schools to participate in the study; 25 responded and agreed 
to participate. Every other school was randomly selected for inclusion 
in the study. One school did not have primary classes and was rejected. 
Finally, 11 schools were selected to participate in the study (Figure 1). 
A unique number was assigned for each school to protect the privacy 
of study participants. Schools numbered 1, 5, 7, and 10 were located 
in the downtown area, schools numbered 2, 3, 4, 6, and 8 were located 
in the peripheral part of the city, and those numbered 9 and 11 were 
located in the suburbs.

2.2 Collecting dust samples in schools

Filtering aerosol samples for trace element analysis in 
classrooms is known to be difficult, because collecting a significant 
sample mass can be a lengthy process. Therefore, we decided to 
replace the aerosol samples with dust samples, which usually 
accumulated in places inaccessible during cleaning in the 
classrooms. The adequacy of these samples is fairly obvious and 
saves considerable time. In this case, we obtained concentrations of 
microelements averaged over time via dust accumulation. Dust 
sampling in classrooms was taken from sites where dust 
accumulated: the surfaces of high cupboards (where aerosol 
particles are deposited due to coagulation) and behind central 
radiator heaters where aerosol particles are deposited due to 
thermophoretic forces. These natural dust aggregates have a purely 
aerosol origin and were collected mainly against the corners of the 
rear walls of radiator heaters. Other sources of dust such as particles 
brought into the classroom from the street with shoes were not 
included. The dust was collected using a vacuum cleaner on an 
analytical filter FPP type (Petryanov’s filters) in plastic boxes with 
a volume of 60 mL while tightly filled with dust.
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2.3 Measurements of heavy metal 
concentrations in samples

Dust samples were crushed in a porcelain mortar and dried at 
40°C until there was a steady mass in the drying chamber. 
Approximately 3 grams (g) of the dried sample was mixed and 
homogenized with 1 g of wax. The samples were then pressed into steel 
rings with a pressure of 15 kilonewtons (kN) to produce the final 
pellets. This preparation concentrated sample components and 
introduced some degree of homogeneity for improved analytical 
accuracy and precision. Samples were analyzed using a SPECTRO 
XEPOS (XEPOS HE) simultaneous ED-XRF spectrometer from 
SPECTRO Analytical Instruments. This model was equipped with an 
air-cooled, 50-W end-window X-ray tube—a bright laboratory-
quality source optimized for maximum energy generation. The 
measurement time of one sample was 600 s, and the accuracy of 
elemental composition was less than 10%. The limit of detection 
(LOD) of trace elemental composition of samples is presented in 
Table 1. To further heighten stability, the excitation chamber, including 
the X-ray tube, optics, and detector, was maintained under constant 

vacuum conditions even in periods between measurements. The 
concentrations of Pb, W, Sb, Sn, Zr, Rb, Cu, Ni, Mn, Cr, V, As, Ba, Br, 
and Zn were thus measured in dust samples.

2.4 Data on morbidity in schools under 
study

The annual incidence of doctor-diagnosed acute infections of the 
upper respiratory tract (J00–J06) among 6- to 11-year-old pupils in 
each school was calculated based on clinical records of health care 
providers collected by the National Institute of Hygiene: acute 
nasopharyngitis (common cold) (J00), acute sinusitis (J01), acute 
pharyngitis (J02), acute tonsilitis (J03), acute laryngitis and tracheitis 
(J04), acute obstructive laryngitis and epiglottitis (J05), and acute 
upper respiratory infections of multiple and unspecified sites (J06). 
According to national legislation, personal codes of children and 
codes of diagnoses based on the Australian Modification of the 
International Statistical Classification of Diseases and Related Health 
Problems (ICD-10-AM) were received by the National Institute of 

FIGURE 1

Location of the schools engaged in the research. The scheme of average annual ambient PM2.5 concentrations in Vilnius on 2018. Adapted from the 
public domain “Air Pollution Dispersion Maps” of the Environmental Protection Agency of Lithuania (19), published with permission, available at https://
aaa.lrv.lt/lt/veiklos-sritys/oras/oro-uzterstumo-sklaidos-zemelapiai-duomenys-fonines-koncentracijos-paov-skaiciavimams/.

TABLE 1 Limit of detection (LOD) of trace element concentrations.

Element Pb W Sb Sn Zr Rb Cu Ni Mn Cr V As Ba Br Zn

LOD, ppm 0.2 0.6 0.4 0.3 0.2 0.07 0.5 1.0 0.2 0.2 0.3 0.1 2.0 0.06 0.2
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Hygiene. The incidence of acute upper respiratory infections (J00–J06) 
per school represents an annual number of doctor-diagnosed cases 
among school children of 6–11 years of age divided by the total 
number of children of this age group in the school and 
multiplied by 100.

2.5 Statistical analysis

This study employed the linear regression model to determine the 
dependence of respiratory diseases on air pollution. The dependence 
of the annual incidence of respiratory infections on the microelemental 
concentration of dust samples can be expressed via a linear function 
where the dependent value is incidence (%), and the independent 
value is microelemental concentration (ppm).

We used Pearson’s correlation to evaluate the correlation between 
the elemental composition of dust samples and the incidence of acute 
upper respiratory infections in children. A p-value of < 0.05 was 
considered significant. IBM SPSS Statistics 23 was used for 
statistical analysis.

3 Results

3.1 The incidence of acute respiratory 
infections in children and elemental 
composition of dust samples

The incidence of upper respiratory infections per school ranged 
from 17.0% to 75.7%. The highest incidence was observed in Schools 
9, 11, 6, and 10: 75.1%, 74.2%, 57.4%, and 52.2%, respectively. If 
we consider the incidence for the entire study period of 2016–2020, 
then the highest incidence rate was observed in 2019. This may be due 
to cross-diagnosis between influenza and upper respiratory tract 
infections (influenza cases were the highest in 2019) (20). Data on the 
elemental composition (Pb, W, Sb, Sn, Zr, Rb, Cu, Ni, Mn, Cr, V, As, 
Ba, Br, Zn) of dust samples in 11 schools in Vilnius are presented in 
Table 2.

Regression analysis was performed for all elements in Table 2. It 
turned out that a significant correlation was found only between 
vanadium concentrations and acute upper respiratory infections (J00–
J06) in 2016, 2017, 2018, and 2020 years: r = 0.67, p = 0.024; r = 0.75, 
and p = 0.008; r = 0.82. p = 0.002; r = 0.73, and p = 0.01, respectively. In 
2019 year, the correlation was not significant: r = 0.57, p = 0.067. The 
correlation between the concentration of vanadium and the average 
value of acute upper respiratory infections for the 2016–2020 years 
was also evaluated (r = 0.73, p = 0.01) because dust accumulation is an 
integral value for a longer time. The results are summarized in 
Figure 2. Linear regression equations were obtained and indicated 
reliable results. The linear regression data for the concentrations of 
vanadium (ppm) in dust samples and the incidence of acute upper 
respiratory tract infections in 11 schools (annual data) are presented 
in Table 3.

For vanadium data in 2016 (in case of incidence of acute upper 
respiratory infections), the F-statistic is 7.381, the p-value is 0.024, and 
the coefficient of determination (R2) is 0.45 (for the 2016 year). The 
F-statistic is 11.293, the p-value is 0.008, and R2 is 0.56 for 2017. The 
F-statistic is 18.661, the p-value is 0.002, and R2 is 0.68 for 2018. The 
F statistic is 4.332, the p-value is 0.067, and R2 is 0.32 for 2019. The 
F-statistic is 10.096, the p-value is 0.011, and R2 is 0.53 for 2020. The 
F-statistic is 10.114, the p-value is 0.011, and R2 is 0.52 for the average 
of 2016–2020.

Thus, p-values are less than 0.05, which indicates coefficient 
reliability. The coefficients of determination (R2 = 0.45, R2 = 0.56, 
R2 = 0.68, R2 = 0.53, R2 = 0.52) demonstrate that the vanadium data (in 
the case of incidence of acute upper respiratory infections) correspond 
to the linear regression. We  checked that our linear regression 
assumptions concerning the residual are satisfied. The residuals are 
normal (Kolmogorov–Smirnov test), and their mean does not differ 
from 0. The summary of the results is presented in Figures 2A–F.

According to the linear regression equation, an increase in the 
concentration of vanadium by 1 ppm leads to an increase in the 
incidence of acute upper respiratory infections by 0.92–1.06% in 2016, 
2017, 2018, and 2020 (Figures 2A–C,E). The exception is 2019 (0.66%; 
Figure 2D) possibly due to the highest incidence of influenza in that 
year. It can be caused by cross-diagnosis between influenza and upper 

TABLE 2 Elemental composition of dust samples, ppm.

School 
no.

Pb W Sb Sn Zr Rb Cu Ni Mn Cr V As Ba Br Zn

1 34 7.91 4.83 5.71 31.8 7.52 42.63 5.74 87 127.63 29.53 7.94 654 9.64 384

2 132 19.48 9.48 6.24 104 20.64 436.00 14.11 152 64 19.07 28.17 3,301 20.14 17,865

3 24 11.58 11.48 7.45 32 11.69 108.63 11.47 56 89 12.69 6.23 890 17.36 510

4 185 34.61 10.74 9.42 120 23.53 134.60 26.88 240 168 15.49 4.33 272 49.04 1887

5 504 14.69 13.00 9.42 93.55 18.52 77.83 20.46 159 180 17.18 20.93 1,653 19.07 1755

6 22 10.18 4.96 4.36 29.47 13.52 86.32 6.52 68 56.24 32.54 4.91 1,158 13.85 553

7 19 8.56 5.63 4.84 30.42 12.41 69.12 6.41 91 97.1 38.42 5.29 740 10.15 424

8 114 21.39 10.07 6.17 122 28.94 138.79 61.06 319 147 20.06 5.79 480 51.55 1,251

9 46 17.43 8.27 5.66 59 14.51 61.30 12.84 93 13.57 52.09 6.74 1923 16.92 247

10 17 11.85 7.52 6.11 27.42 11.81 134.12 8.4 72 96.21 41.63 6.29 1,532 14.93 319

11 14 9.85 4.56 5.09 31.25 7.42 91.59 5.78 86 108.52 41.09 6.32 984 11.39 248
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respiratory tract infections—especially in cases where a viral search 
was not conducted.

4 Discussion

This is the first study devoted to the relationship between the 
chemical composition of natural dust aggregates and respiratory 
morbidity in children. Trace element analysis can indicate the time-
dependent pollution history of public buildings or residential areas. It 

allows us to evaluate the concentration of heavy metals in 
pre-aggregate aerosol forms of pollutants. A significant correlation 
was found between the concentration of vanadium in dust samples 
and physician-diagnosed upper respiratory infections in younger 
school-age children. The concentrations of vanadium in Vilnius 
schools were 12.69–52.09 ppm.

Vanadium is important for normal cell function and 
development (21, 22). It exists in all tissues involved in glucose 
homeostasis, lipid metabolism, and antioxidant functions. For the 
general population, food is the major source of vanadium exposure 

A B

C D

E F

FIGURE 2

(A–F) Correlation between vanadium concentrations in dust samples and incidence of acute upper respiratory infections among pupils in studied schools.
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(23–25). Despite the positive effect of vanadium on various 
processes in humans, a safe dose is still unclear. High concentrations 
can lead to various pathological alterations including modified 
intracellular enzyme systems, which have an impact on digestion, 
respiration, etc. (26–29).

Two-thirds of vanadium enters in aerosol form due to 
anthropogenic sources, such as the burning of fossil fuel, vehicle 
emissions and leaks when used it in industrial production (30). 
Therefore, it is not surprising that the maximum concentrations of 
vanadium in dust samples are seen in Schools No. 9, 10, and 11. 
School No. 9 is located in a suburb of Vilnius where there are 20 
industrial enterprises and many houses use stove heating. School No. 
10 is located next to a very busy transport artery. School No. 11 is 
located near a big paper factory. The children in School No. 6 are in 
the zone of influence of the thermal power plant when the wind is 
from the South.

Vanadium is especially dangerous in the form of aerosols. Only 
<1–2% of vanadium is absorbed by the body during oral ingestion 
(23), but up to 90% of vanadium is absorbed when inhaled (31, 32). 
At the same time, the greatest harm comes from aerosols carrying 
vanadium with sizes below 2.5 microns, because these particles can 
reach the alveolar sacs. Prolonged inhalation of vanadium aerosols can 
cause shortness of breath, wheezing, cough, epistaxis, headache, 
dizziness, fatigue, as well as cancer (29, 33). One hour per day 
exposure of rabbits to vanadium of 20–40 mg/m3 during several 
months caused chronic rhinitis, tracheitis, emphysema, atelectasis, 
and bronchopneumonia (34). Continuous exposure to a concentration 
of 10–30 mg/m3 was distinctly toxic to rabbits, causing bronchitis and 
pneumonia, loss of weight, and bloody diarrhea. With rats, 10 mg/m3 
was toxic, and a small exposure of 3–5 mg/m3 caused the same 
symptoms with 2 months delay. A lethal exposure was considered to 
be 70 mg/m3 if prolonged for more than 20 h. In another study, groups 
of 50 male and 50 female F344 rats were exposed to 0, 0.5, 1, or 2 mg 
vanadium pentoxide/m3 (0, 0.28, 0.56, and 1.1 mg vanadium/m3) 6 h/
day, 5 days/week for 104 weeks. Alveolar histiocytic infiltrates were 
observed in males and females rats exposed to ≥0.28 mg vanadium/
m3 (35). An inhalation model demonstrated that vanadium generates 
histological and physiological changes in different cells and organs 
including the lung, lymphoid organs, and the immune system. 

Oxidative and nitrosative stress play a relevant role in the vanadium 
toxic mechanisms (30, 36).

The U.S. Environmental Protection Agency (EPA) published a 
review (37) that summarized 67 human studies devoted to the health 
effects of vanadium on infants, children, pregnant women, the general 
population (adults) and occupational workers. The predominant 
health outcomes investigated included respiratory, cardiovascular, 
nervous system and immune system effects. Twenty studies examined 
the effects of vanadium on the respiratory system; however, only two 
of these (38, 39) were devoted to children’s respiratory health. Patel 
et al. reported that increases in ambient vanadium concentrations 
(0.0033 mg/m3) were associated significantly (p = 0.0003) with an 
increased probability (31%) of wheezing in children through age two 
(38). Gehring et al. did not find an association between vanadium in 
PM2.5 or PM10 and children’s respiratory health (39). However, PM 
constituents, in particular iron, copper and zinc, may increase the risk 
of asthma and allergies in schoolchildren. Five studies (40–44) were 
devoted to general population-adult respiratory health and 13 studies 
were on occupational exposure and respiratory health. An association 
has been reported between hospitalization for respiratory illness and 
observed vanadium concentrations in PM2.5 outdoors (41). Urinary 
vanadium, nickel, and antimony have been reported to be associated 
with increased exhaled nitric oxide (42). Zenz and Berg studied 
responses in nine human volunteers exposed to vanadium pentoxide 
from 1 to 0.2 mg/m3 (particle size, 98% < 5 μm) for 8 h in a controlled 
environmental chamber (40). Coughing began and then remained in 
all subjects for 7 to 10 days. However, Lagorio et al. (43) and Wu et al. 
(44) found no adverse effects of vanadium on the adult respiratory 
system. There is even more limited and controversial data on the 
disease initiation and/or modification effects of vanadium in children 
(37, 45).

In our study, a significant and replicable correlation was found 
between the concentration of vanadium in the samples of natural dust 
aggregates and the incidence of doctor-diagnosed acute upper 
respiratory infections in younger school-age children in the years 
2016–2020. The exception was 2019, when a moderate, but 
non-significant correlation was found. It can be caused by a very high 
incidence of influenza cases and misdiagnosis of other than influenza 
respiratory infections especially when the diagnosis was done without 

TABLE 3 Results of linear regression data for vanadium concentrations in dust samples and incidence of acute upper respiratory infections.

Model Regression coefficient Student’s t-test p-value

Constant 15.224 1.421 0.189

Vanadium, ppm (Incidence for 2016) 0.920 2.717 0.024

Constant 13.722 1.529 0.161

Vanadium, ppm (Incidence for 2017) 0.954 3.361 0.008

Constant 10.679 1.371 0.204

Vanadium, ppm (Incidence for 2018) 1.063 4.319 0.002

Constant 29.139 2.898 0.018

Vanadium, ppm (Incidence for 2019) 0.662 2.082 0.067

Constant 7.344 0.805 0.442

Vanadium, ppm (Incidence for 2020) 0.917 3.177 0.011

Constant 15.333 1.712 0.121

Vanadium, ppm (Incidence for 2016–2020) 0.900 3.180 0.011
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virus verification. The highest incidence of influenza among children 
in the period of 2016–2020 was observed in 2019.

There are a limited number of studies on the microelemental 
composition of aerosol particles in residential premises (46–49) 
and schools (50–52). In these cases (46, 48, 49), indoor dust does 
not characterize the composition of the aerosol particles because 
the dust can be of various origins. As a rule, the dust was collected 
by a vacuum cleaner from the floor surfaces. One study was 
conducted in kindergartens (53), but it did not target the 
composition of the aerosols, and dust was collected from floors and 
window sills.

Studies of the microelemental composition of aerosol particles is 
a very laborious process. This also applies to the time of sampling 
when using special filters, i.e., from 8 h to several days or even months. 
To date, this method has been used to determine the composition of 
aerosols (47, 50–52). This challenging analysis likely explains the 
paucity of data on the elemental composition of aerosol pollution. 
Indeed, data about the microelemental composition of aerosol 
particles and their relation to diseases in children are rare and 
insufficient (54–57).

High PM2.5 values in residential areas have been associated with 
lower lung function among urban children. An association was found 
between short-term vanadium exposure and DNA methylation in the 
asthma gene loci (58). A study of children (10–12 years of age) living 
in the vicinity of a facility involved in hydrometallurgical processing 
of vanadium-rich slag found significant decreases in lymphocyte 
stimulation with phytohemagglutinin and an increase in the incidence 
of viral and bacterial respiratory infections (59).

Data from occupational studies suggest that the lowest-observed-
adverse-effect level of vanadium is assumed to be 20 μg/m3, based on 
chronic upper respiratory tract symptoms (60). Particularly high PMC 
values (up to 230 μg/m3) were earlier reported in the air of classrooms 
School No. 9 (61), while vanadium concentration in dust samples 
from the same school was as high as 52 ppm. This allows us to calculate 
the hypothetic amount of inhaled vanadium before it turns to dust 
aggregates. Thus, in the case of inhalation of 1 m3 of air, 230 μg of 
particulate matter including 0.012 μg of vanadium can enter the 
respiratory tract of a child. Taking into account one school year 
(39 weeks, 5 days per week, and 6 h per day) and an inhalation rate of 
0.9 m3/h (62), that is 1,053  m3/year, and we  can estimate that the 
annual inhaled amount of vanadium can be 12.64 μg. However, we do 
not know the proportion of inhaled vanadium that has settled in 
the lungs.

Studies of the effects of heavy metals on the development of 
respiratory morbidity in children (with different levels of 
microelemental concentrations in polluted air) are rarer and more 
controversial (37, 45, 59). The EPA emphasizes the need for more 
in-depth research on vanadium to identify the mechanism of this 
microelement’s effects on human health and the possibility of 
determining safe concentrations. It seeks to analyze the impact of 
short-term and long-term cumulative exposures (37).

Nevertheless, we hypothesize that vanadium-induced damage to 
the respiratory system may be  complex. These may include the 
destruction of the barrier function of the bronchial wall due to chronic 
inflammation, reduced clearance of bacteria in the lungs, and reduced 
capacity of alveolar macrophages. It has been earlier reported, that 
exposure of human fibroblasts to vanadate effectively causes DNA 

strand breaks, and co-exposure of cells to other genotoxic agents may 
result in persistent DNA damage (24). We can also extrapolate our 
suggestions from brake abrasion dust (BAD) research which shows 
the dose-dependent relationship between BAD and the impaired 
ability of immune cells to ingest respiratory pathogens and enhanced 
inflammatory signaling in a transient but metal-dependent manner 
(63). Responses to particles were characterized by decreased 
mitochondrial depolarization, increased secretion of IL-8, IL-10 and 
TNF-α as well as decreased phagocytosis of S. aureus. Mitochondrial 
dysfunction leading to early airway remodeling was recently identified 
in preschool children with infection-induced recurrent wheezing 
syndrome (64).

The World Health Organization (WHO) has no data on the 
annual exposure level of children and adults to vanadium (60). 
However, WHO considered annual average values for inhalation of 
vanadium for urban areas to be in the range of 0.05–0.18 μg/m3. In the 
most densely populated areas, maximum vanadium concentrations 
reach up to 2 μg/m3. In Lithuania, the maximum permissible indoor 
concentration of vanadium for both adults and children is 1 μg/m3 
(27). In the present study, we found a linear relationship between 
respiratory morbidity in children and the concentration of vanadium 
in dust aggregates. This suggests that any concentration of vanadium 
inhaled by children can increase respiratory morbidity caused by 
viruses and bacteria. It supposes the necessity to re-evaluate the 
current understanding of the safe limits of inhaled vanadium 
in children.

There are some limitations of our study. Eleven schools 
participating in our survey might be insufficient to analyze all health-
damage effects of pollutants. In contrast to vanadium, the 
concentrations of other heavy metals in dust samples did not reach the 
threshold values, and a correlation with the incidence of upper 
respiratory infections was not found. Thus, the disease initiation and/
or modification effects of these heavy metals need a larger research 
sample. Another limitation is related to an unknown period of dust 
accumulation in one school or another. The incidence of respiratory 
infections was calculated based on medical records only and some 
home-cared mild respiratory infections can be  missed or 
improperly recorded.

Our research is the first attempt to evaluate the impact of the 
chemical composition of indoor air pollutants on the respiratory 
morbidity of younger school-age children using samples of natural 
dust aggregates taken from primary schools. It opens the possibility 
for further prospective studies with the evaluation of known periods 
of dust accumulation and dose–response effects of different pollutants.

5 Conclusion

The incidence of acute upper respiratory infections among 6- to 
11-year-old children is related to the concentration of vanadium in the 
natural dust aggregates collected from their primary schools. Unlike 
the difficulties of aerosol sampling using filters, samples of natural dust 
aggregates collected in classrooms are very convenient and reliable 
materials for studying the time-dependent trace element composition 
of indoor pollutants. Regular assessment of indoor air quality 
including the post-aerosol dust aggregates can be an important tool 
for the prevention and control of respiratory morbidity in children.
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