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Objective: Tuberculosis (TB) is a major public health concern in Ecuador 
and Colombia, considering that both countries are high-burden TB settings. 
Molecular epidemiology is crucial to understand the transmission dynamics of 
Mycobacterium tuberculosis complex (MTBC) and to identify active transmission 
clusters of regional importance.

Methods: We studied the potential transmission of TB between Colombia and 
Ecuador through the analysis of the population structure of MTBC lineages 
circulating in the Ecuadorian province of Esmeraldas at the border with 
Colombia. A total of 105 MTBC strains were characterized by 24-loci MIRU-
VNTR and spoligotyping.

Results: MTBC lineage 4 is only present in Esmeraldas; no MTBC strains 
belonging to Lineage 2–sublineage Beijing were found despite its presence in 
other provinces of Ecuador and, in Colombia. Genotyping results revealed a 
high degree of diversity for MTBC in Esmeraldas: Neither active transmission 
clusters within this province nor including MTBC strains from Colombia or other 
provinces of Ecuador were found.

Conclusion: Our data suggest that tuberculosis dynamics in this rural and isolated 
area may be not related to highly transmitted strains but could be influenced by 
other health determinants that favor TB relapse such as poverty and poor health 
system access. Further studies including a larger number of MTBC strains from 
Esmeraldas are necessary to test this hypothesis.
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Introduction

The Mycobacterium tuberculosis complex (MTBC) includes 
bacteria with specific microbiological characteristics that confer 
certain properties for host adaptation, virulence, and transmission, 
thus contributing to the development of tuberculosis (TB), an 
infectious disease that mainly spreads by close person-to-person 
contact through expulsion and inhalation of contaminated 
aerosols, affecting the lungs or other organs (1, 2). Considering 
the importance of TB as one of the leading causes of death around 
the world, behind COVID-19 and above HIV-AIDS, the 
understanding of the genetic diversity of M. tuberculosis (MTB) is 
critical for TB surveillance and prevention (1, 3). Briefly, the 
MTBC is comprised of seven highly related lineages that differ in 
geographical distribution, infectious capabilities, transmission 
modes, and resistance to antibiotics: Lineage 1 (Indo-Oceanic), 
Lineage 2 (East Asia), Lineage 3 (India–East Asia), Lineage 4 
(Euro-American), Lineage 5 (West African 1), Lineage 6 (West 
African 2), and Lineage 7 (Ethiopia). The most significant 
sublineages are lineage 1, MANU and EAI; lineage 2, Beijing; 
lineage 3, Central Asian (CAS) and Delhi; lineage 4, Haarlem, 
Latin American Mediterranean (LAM), T, X, S, Ghana, URAL, 
TUR, Uganda, and H37Rv; and lineage 6, AFRI and West African 
(3, 4). Therefore, the use of molecular markers present in the 
genome of M. tuberculosis, such as mycobacterial interspersed 
repetitive units (MIRU-VNTR typing method) and/or spacer 
sequences in the direct repeat (DR) region (spoligotyping 
method), allows the characterization of transmission dynamics 
and clusters of MTBC strains (5–7).

For 2021, the World Health Organization (WHO) estimated for 
Ecuador a burden of 8500 TB cases (rate of 48/100,000 population) 
and 370 cases of multidrug resistance TB (MDR-TB) (rate 2.1 of 
100,000 population), 830 deaths of HIV-negative TB patients and 
330 deaths of HIV-positive TB patients (TB case fatality ratio: 14%) 
(8). MTBC molecular epidemiology studies in Ecuador are really 
scarce (9–12). There is a single study addressing the population 
structure and genetic diversity of MTBC in the whole country, 
showing that MTBC lineage 4 sublineage LAM is predominant 
countrywide, and sublineages X and S are also predominant in the 
Coastal and Andean regions, respectively (9). Similar results have 
been reported in other studies with MTBC strains from Quito (10) 
and Guayaquil (12).

For the same year 2021, the estimates of TB cases for Colombia 
provided by WHO were 21,000 (rate 41 of 100,000 population) and 
1,100 cases of MDR-TB (rate 2.2 of 100,000 population), 1700 
deaths of HIV-negative TB individuals, and 840 deaths of 
HIV-positive TB individuals (TB case fatality ratio: 12%) (13). 
However, total notified TB cases in both countries are lower than 
the estimates provided by the WHO, with 5,595 cases notified in 
Ecuador and 13,659 cases in Colombia, suggesting an 
underestimation of TB cases in both countries (8, 13, 14). The most 
predominant MTBC lineage in Colombia is lineage 4 (including 

sublineages like LAM, Haarlem, X, and S) but also lineage 2–
sublineage Beijing (4, 15). Colombia and Peru have a significantly 
higher presence of MTBC lineage 2–sublineage Beijing than other 
countries in South America, representing a potential risk for TB 
control in the region (4, 15–22).

As neighbor countries and members of the Andean Community, 
Ecuador and Colombia have a historically intense migration flow 
(9). Considering that both countries are high-burden TB settings, 
and also that Colombia is a hot spot for MTBC lineage 2-Beijing 
(11, 23, 24), TB transnational transmission studies could improve 
strategies for TB control (9, 11). There is a previous study addressing 
the population structure of MTBC in Ecuador that reported clonal 
complexes formed by MTBC strains from Ecuador and Colombia, 
although no active transmission clusters were found (9). However, 
MTBC strains from the northern provinces of Ecuador on the 
border with Colombia were underrepresented in this study, so the 
existence of active transmission clusters could not be totally ruled 
out (9).

The goal of this retrospective study was to assess the population 
structure of MTBC in the province of Esmeraldas on the border of 
Ecuador and Colombia to analyze the TB transmission between 
those countries.

Materials and methods

Mycobacterium tuberculosis strains 
included in the study

A collection of 105 MTBC isolates from years 2014 to 2016 
stored at “Instituto Nacional de Salud Pública e Investigación 
Leopoldo Izquieta Pérez” (INSPI) in Guayaquil (Ecuador) was 
included in the study, distributed in 42, 16, and 47 samples for 2014, 
2015, and 2016, respectively. MTBC isolates are routinely processed 
at INSPI laboratories, where culture and antibiotic resistance 
profiling for first- and second-line drugs used in TB therapy is 
performed for MTBC cultures following Pan American Health 
Organization guidelines (25, 26). The samples were previously 
inactivated and stored to follow the guidelines from this government 
center. MTBC culture manipulation prior to inactivation was 
carried out in a BSL2+ facility.

This collection of 105 MTBC isolates included all the MTBC 
strains available at the time this study was carried out for 
Esmeraldas, located in the Northern Coastal Region of Ecuador, 
that borders with Colombia. Nevertheless, according to the 
reports from the Ecuadorian Ministry of Health for TB cases 
distributions by province, there were 121 and 200 TB cases 
reported in Esmeraldas for the years 2017 and 2018, respectively.1 

1 https://www.salud.gob.ec/gacetas-tuberculosis/
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If we estimate an average of 200 TB cases per year in this province, 
the total number of cases for 2014–2016 would be  600, so a 
collection of 105 MTBC strains would represent 17.5% of the 
total cases in Esmeraldas province.

Additionally, information from MTBC strains from Ecuador and 
Colombia was retrieved from the bibliography, as it has been done in 
similar studies (27, 28). For the phylogenetic analysis described below, 
190 MTBC strains from Colombia for the years 2012–2014 (4) and 
385 MTBC strains from Ecuador from the years 2012–2016 (9, 26) 
were included in the study.

Mycobacterium tuberculosis heat inactivation 
and DNA isolation

A sample from cultures of MTBC was collected and resuspended 
in TE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0), then inactivated 
by boiling at 95°C for 45 min. After this process, samples were 
centrifuged for 5 min at 10000 g and the supernatant was directly used 
for genotyping (11, 30).

MIRU-VNTR genotyping of MTBC strains
The method is PCR-based and allows the detection of different 

mycobacterial interspersed repetitive units (MIRU) located at multiple 
loci in the MTBC genome. Each MIRU allele is identified by a number, 
thus generating a numerical profile that is used for genotyping studies 
(5, 31, 32). Amplicons were observed in 2% UltraPure™ Agarose 
(Invitrogen, California, USA) gels of 15 cm x 10 cm in 0.5X Tris-boric 
acid-EDTA (TBE) buffer at 100 V for 3 h using a ladder 100-bp Plus 
Opti-DNA Marker (Cat.No.: G016, Applied Biological Materials Inc., 
British Columbia, Canada) for size determination. MIRU allele 
identification was performed according to Supply et al. (33).

Mycobacterium tuberculosis complex strains 
spoligotyping

Spoligotyping was performed as described elsewhere (34, 35). The 
results were compared to the databases available in the following free 
sites: the SITVIT2 website (http://www.pasteur-guadeloupe.fr:8081/
SITVIT2/) and the MIRU-VNTRplus (https://www.miru-vntrplus.
org/MIRU/index.faces).

Phylogenetic analysis of MTB strains
For phylogenetic analysis, 24 MIRU-VTNR and spoligotyping 

patterns belonging to the 105 MTBC strains from the years 2014–
2016 from Esmeraldas were used. In addition, we  retrieved 
information on MTBC strains from Ecuador and Colombia from the 
literature: (1) 24 MIRU-VTNR patterns of 385 MTBC isolates for 
years 2012–2016 from Ecuador (9, 29); (2) 24 MIRU-VTNR and 
spoligotyping patterns of 190 MTBC strains for years 2012–2014 
from Colombia (4).

Genotyping data were analyzed using the MIRU-VNTRplus web 
application2 (36). Lineage identification was performed by similarity 
search, using MIRU-VNTR and spoligotyping information, by 
categorical distance measure (MIRU-VNTR weight: 1, Spoligo weight: 
1). Calculation of Neighbor-joining Tree (NJT) and Minimum 

2 https://www.miru-vntrplus.org

Spanning Tree (MST) were performed using MIRU-VNTR and/or 
Spoligotyping information when available.

Results

Drug susceptibility testing of MTBC strains 
from Esmeraldas Province of Ecuador

Regarding the 105 MTBC strains included in the study, the 
information for drug susceptibility testing was available for 98 of 
them: 23 of 98 (23.5%) were resistant to isoniazid (7 of 23 were 
monoresistant), 10 of 98 (10.2%) were resistant to streptomycin (6 of 
10 were monoresistant), 6 of 98 (6.1%) were resistant to ethambutol, 
17 of 98 (17.3%) were resistant to rifampicin (1 of 17 was 
monoresistant), and 5 of 28 (5.1%) were resistant to pyrazinamide. 
MTBC strains resistant to isoniazid and rifampicin (MDR) were 16 of 
98 (16.3%). On the other hand, 71 of 98 (72.4%) MTBC strains were 
sensible to all the drugs tested (Table 1).

Population structure of MTBC strains from 
Esmeraldas province in Ecuador

The 105 MTBC strains from Esmeraldas were analyzed using 
24-loci MIRU-VNTR and spoligotyping. A neighbor-joining tree 
(NJT) based on this genotypic information is shown in Figure 1. The 
lineage distribution obtained for MTBC strains from Esmeraldas 
revealed a high degree of diversity, and no active transmission clusters 
without any single loci variation in 24-loci MIRU-VNTR were found 
(Figure  1). The lineage distribution for the MTBC strains from 
Esmeraldas province was 100% L4, with sublineages LAM 52/105 
(49.5%), Ghana 29/105 (27.6%), Haarlem 12/105 (11.4%), Cameroon 
5/105 (4.8%), S 3/105 (2.9%), Uganda I 3/105 (2.9%), and X 1/105 
(0.95%) (Figures 1, 2). MTBC LAM strains were more diverse in 
comparison with Ghana strains, while Haarlem strains were not well 
defined in a branch (Figure 1).

TABLE 1 Drug resistance profile for MTBC strains from Esmeraldas 
included in this study (MDR-TB are strains resistant to isoniazid + 
rifampicin).

Drug-resistant 
Profile

Isolates Prevalence (%)

Isoniazid resistant 23 23.5

Streptomycin resistant 10 10.2

Ethambutol resistant 6 6.1

Rifampicin resistant 17 17.3

Pyrazinamide resistant 5 5.1

MDR-TB 16 16.3

Sensible to all tested 

drugs
71

72.4

Total 98

Without information 7 6.7
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FIGURE 1

Population structure of MTBC from Esmeraldas province. The neighbor-joining tree was done with 24-loci MIRU-VNTR and spoligotyping data.
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Comparison of population structure of 
MTBC strains from Esmeraldas province, 
Ecuador, and Colombia

The geographic distribution of MTBC strains and lineage 
distribution for Esmeraldas province, Ecuador, and Colombia are 
detailed in Figure 2.

The 24-loci MIRU-VNTR patterns of 385 MTBC strains from 
Ecuador from the years 2012–2016 were retrieved from our 
previous studies (9, 29) and included in this analysis (Figure 2). 
The lineage distribution for the MTBC strains from Ecuador 
(excluding Esmeraldas province) was as follows: 5 of 385 Lineage 
2–sublineage Beijing (1.3%) and 380 of 385 Lineage 4 (98.7%). 
Within Lineage 4: 173 of 385 LAM (44.9%), 117 of 385 Haarlem 
(30.4%), 27 of 385 Ghana (7%), 26 of 385 S (6.7%), 18 of 385 
Cameroon (4.7%), 17of 385 Uganda I (4.4%), 1 of 385 NEW-1 
(0.26%), and 1 of 385 (0.26%).

Spoligotyping and 24-loci MIRU-VNTR information of 190 
MTBC strains from Colombia from years 2012–2014 was retrieved 
from reference 4, obtaining the following MTBC lineage distribution: 
2 of 190 Lineage 1–Sublineage Manu (1.1%); 20 of 190 Lineage 2–
Beijing (10.5%); 158 of 190 Lineage 4 (83.2%). Within Lineage 4: 71 
of 190 LAM (37.4%); 44 of 190 Haarlem (25.8%); 18 of 190 T (9.5%); 
14 of 190 X (7.4%); 5 of 190 S (2.6%); 1 of 190 Cameroon (0.52%); and 
15 of 190 were of unknown lineage (Figure 2).

Figure 3 represents the Minimum Spanning Tree (MST) for 
MTBC strains from Ecuador (2012–2016) and Esmeraldas (2012–
2016) using 24-loci MIRU-VNTR information. This analysis 
included a total number of 495 MTBC strains, including the 105 
MTBC strains for Esmeraldas province (See also de NJT in 
Supplementary Figure S1). This province is highly represented in 
this analysis as the number of MTBC strains from the most 
populated provinces of Pichincha and Guayas were 155 and 59, 
respectively. A very strong segregation of 99 out of the 105 MTBC 
strains from Esmeraldas compared to the rest of the provinces of 

Ecuador was observed. Within those 99 strains, two big and clearly 
delimitated groups of MTBC strains belonging to sublineage LAM 
and Ghana were found. Only one clonal complex was observed 
from MTBC strains from Esmeraldas, including exclusively 2 
MTBC strains sublineage Ghana from Esmeraldas, with a maximum 
of 2 loci difference in the 24 MIRU-VNTR pattern (Figure 3). On 
the other hand, six MTBC strains from Esmeraldas are clearly 
dispersed within the MTBC strains from the rest of Ecuador. 
However, none of the 19 clonal complexes that occur in different 
groups of lineages of MTBC strains from Ecuador included MTBC 
strains from Esmeraldas.

Figure  4A represents the minimum spanning tree (MST) for 
MTBC strains from Colombia (2012–2014) and Esmeraldas (2012–
2016) using 24-loci MIRU-VNTR information. This analysis included 
a total number of 190 MTBC strains from Colombia and 105 strains 
from Esmeraldas province. There is a strong segregation between all 
the MTBC strains of Esmeraldas and Colombia in the MST, without 
any clonal complex including strains from both locations (Figure 3). 
A consistent result was obtained for the NJT (Supplementary Figure S2) 
where only 2 MTBC strains from Esmeraldas belonging to sublineage 
Haarlem and LAM were found more phylogenetically related to 
MTBC strains from Colombia than to other strains from Esmeraldas, 
both not clustering in clonal complexes.

Figure  4B represents the Minimum Spanning Tree (MST) for 
MTBC strains from Colombia (2012–2015) and Esmeraldas (2012–
2016) using only spoligotyping information. Within the reduced 
segregation capacity of the spoligotyping method for active 
transmission events, five well-defined clonal complexes (CC1, CC2, 
CC3, CC7, and CC9) of L4 sublineages including MTBC strains from 
Esmeraldas and Colombia were observed. Interestingly, three of those 
clonal complexes (CC1, CC2, and CC3) included MTBC strains from 
the department of Nariño in the south of Colombia on the border with 
Esmeraldas and Carchi provinces in Ecuador; isolates reported from 
this department share three clonal complexes with strains from 
Esmeraldas (CC1, CC2, and CC3).

FIGURE 2

Geographical and sublineage distribution of MTBC strains from Esmeraldas (our study), Ecuador (9), and Colombia (20). Ring charts represent the 
occurrence of MTBC lineages in Esmeraldas province, the rest of Ecuador, and Colombia.
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Discussion

The rapid identification of a highly active transmission complex 
of MTBC is crucial to reinforce TB surveillance and control programs. 
Colombia is one of the countries in Latin America that reports a high 
burden of MTB of lineages commonly associated with antibiotic 
resistance and increased transmission (4, 7, 13, 15, 23, 24). 
We addressed the potential transmission of high-risk MTBC strains 
from Colombia to Ecuador through the identification of the dominant 
MTBC genotypes in the border province of Esmeraldas.

The population structure of MTBC in the province of Esmeraldas 
showed a high genetic variability itself, as no MTBC active 
transmission clusters were found in the collection of 105 strains for 
2014–2016. Additionally, most MTBC strains from Esmeraldas were 
not phylogenetically closely related to strains from the other 
Ecuadorian provinces, as no mixed clonal complexes were found. A 
high level of variability within a reduced rural and isolated 
geographical area has been also described in Panama and Ecuador (29, 
37), and the lack of active transmission clusters despite the high 
burden of TB could be explained as a consequence of relapse of latent 
tuberculosis cases (9, 29, 37). Interestingly, the MTBC lineage 
distribution in Esmeraldas is exclusively composed of MTBC lineage 
4 strains with no presence of Lineage 2–sublineage Beijing. Despite 
the close proximity to Colombia where Lineage 2–sublineage Beijing 
represents 5% of the MTBC population (4, 24), we could not find 
evidence of recent transnational transmission of this lineage. These 

results confirm previous findings reporting circulation of Beijing 
lineage only in limited locations of the Americas like Cuba, Colombia, 
and Peru (24). Nevertheless, permanent genetic surveillance should 
be  implemented within the Ecuadorian national TB surveillance 
program to identify active transmission clusters, as has been described, 
for instance, in Panama (37) or Tunisia (27, 28). This is especially 
relevant considering the presence of hot spots for active transmission 
clusters like prisons in Latin American region (38).

Regarding drug resistance results, we found a 16.3% prevalence of 
MDR-TB in our study population. This value is much higher than the 
4.35% MDR-TB prevalence estimated for Ecuador by the WHO (1, 8). 
However, similar results of higher prevalence of MDR-TB that WHO 
estimation was also found in the previous study for the whole country 
(9). This difference could be explained by a bias in the TB samples that 
are received by the National Reference Laboratory in Ecuador. In this 
sense, not all TB patient samples are processed but those defined by a 
triage protocol that includes all the samples with drug treatment 
failure, increasing the probability of detecting MDR-TB.

This study has some limitations. First, the 105 MTBC strains 
included in the study represented less than 20% percent of total TB 
cases in Esmeraldas (see details in methods), so we cannot totally rule 
out the presence of Beijing lineage or active transmission cluster due 
to sampling bias. Second, as we could only access MTBC strains from 
2014 to 2016, the current TB transmission scenario could have 
changed, especially considering the high level of migration back and 
for across the Ecuador–Colombia border in recent years due to the 

FIGURE 3

Minimum spanning tree of MTBC strains from Ecuador and Esmeraldas included in this study using 24-loci MIRU-VNTR data. Distinction of genotypic 
lineages is shown by dotted circles of different colors. The maximum locus difference within a clonal complex is 2.
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huge humanitarian and migratory crisis following the economic 
collapse of Venezuela (39). Third, the phylogenetic analysis had 
different resolutions depending on the data available: While all the 
MTBC strains from Esmeraldas and Colombia had 24-loci MIRU-
VNTR and spoligotyping data available, the MTBC strains from other 
provinces of Ecuador lacked spoligotyping information. Fourth, either 
MTBC strains collections from Colombia and Ecuador could also 
have geographical bias, as most of those strains came from the 
Department of Valle del Cauca in Colombia and from the main cities 
of Ecuador (Quito and Guayaquil) (4, 9). Moreover, the lack of MTBC 
strains from the other Ecuadorian border provinces with Colombia 
represents another source of potential sample bias.

In conclusion, cheap and easy molecular epidemiology tools are 
still useful for middle to high-burden TB settings in Latin America 
where whole-genome sequencing is still an expensive approach. 
Further studies with greater MTBC sample sizes from recent years in 
this region and others in Ecuador are needed to confirm the main 
findings in our study, so they could be considered for improvements 
in the TB surveillance program in high-burden rural settings 
like Esmeraldas.
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FIGURE 4

Minimum spanning trees of MTBC strains from Esmeraldas and Colombia included in this study: (A) using 24-loci MIRU-VNTR data and (B) using 
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between MTBC strains from Esmeraldas province and Colombia (Maximum locus difference within a clonal complex is 2). MTBC strains from the 
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