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Introduction: The precise associations between temperature-related indices 
and mental and behavioral disorders (MBDs) have yet to be fully elucidated. Our 
study aims to ascertain the most effective temperature-related index and assess 
its immediate impact on emergency ambulance dispatches (EADs) due to MBDs 
in Shenzhen, China.

Methods: EADs data and meteorological data from January 1, 2013, to 
December 31, 2020, in Shenzhen were collected. Distributed lag non-linear 
models (DLNMs) were utilized to examine the non-linear and lagged effects of 
temperature-related indices on EADs due to MBDs. The Quasi Akaike Information 
criterion (QAIC) was used to determine the optimal index after standardizing 
temperature-related indices. After adjusting for confounding factors in the 
model, we estimated the immediate and cumulative effects of temperature on 
EADs due to MBDs.

Results: The analysis of short-term temperature effects on EADs due to MBDs 
revealed Humidex as the most suitable index. Referring to the optimal Humidex 
(3.2th percentile, 12.00°C), we observed a significant effect of Humidex over the 
threshold (34.6th percentile, 26.80°C) on EADs due to MBDs at lag 0–5. The 
cumulative relative risks for high temperature (90th percentile, 41.90°C) and 
extreme high temperature (99th percentile, 44.20°C) at lag 0–5 were 1.318 (95% 
CI: 1.159–1.499) and 1.338 (95% CI: 1.153–1.553), respectively. No significant 
cold effect was observed on EADs due to MBDs.

Conclusion: High Humidex was associated with more EADs due to MBDs in 
subtropical regions. Health authorities should implement effective measures 
to raise public awareness of risks related to high temperature and protect 
vulnerable populations.
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1 Introduction

Mental and behavioral disorders (MBDs) are serious mental 
health conditions characterized by changes in cognition, emotion, and 
behavior. These disorders often cause distress and functional 
impairment, including mood disorders, neurotic disorders, 
schizophrenia, organic mental disorders, and others. The World 
Health Organization estimated that approximately 970 million 
individuals worldwide had a mental disorder in 2019 (1). A global 
prevalence study of MBDs reported that 29.2% of respondents had 
experienced at least one MBDs in their lifetime (2). Another study 
found that MBDs accounted for 13.0% of global disability-adjusted life 
years (DALYs) (3). DALYs, a metric utilized to evaluate the global 
impact of a disease or health condition, take into consideration both 
the years of life lost due to premature mortality and the years of life 
lived with disability. It is important to note that as the disease burden 
escalates, the value of DALYs also rises. In China, the lifetime weighted 
prevalence of MBDs (excluding dementia) was 16.6% among 
individuals (4). Furthermore, a systematic analysis conducted in 2019 
indicated that the age-standardized DALYs per 100,000 due to MBDs 
ranged from 1150.2 to 1409.1 in China (5).

Climate change has resulted in a wide range of extreme weather 
events globally, including droughts, rainstorms, heat waves, cold 
spells, and so forth (6). These extreme weather events have had 
unprecedented global impacts, leading to an increase in morbidity and 
mortality (7). The relationship between climate change and MBDs has 
recently garnered increased attention. Some studies have revealed that 
climate change may have a direct or indirect long-term impact on 
MBDs (8–10). Researches conducted in Quebec and Toronto found a 
correlation between daily mean temperature and an increase in 
emergency room visits due to MBDs (11, 12). A study in England 
indicated that for every 1°C increase in temperature above the 93rd 
percentile of the yearly temperature range, the mortality of individuals 
with MBDs increased by 4.9% (13). Similarly, a study in Shanghai 
demonstrated that compared to the median temperature (18.30°C), 
the relative risk (RR) of extreme high temperature (33.10°C, 99th 
percentile) on MBDs was 1.266 (95% CI: 1.074–1.493) at lag 0–1 (14). 
Additionally, Niu et  al. found that both high and low apparent 
temperatures could be risk factors for psychiatric emergency room 
visits (15).

While several studies have explored the relationship between 
ambient temperature and MBDs (13, 16, 17), few have considered a 
composite index that combines temperature with other meteorological 
factors. Besides temperature, other environmental factors, such as 
humidity and sunshine hours, may also influence the occurrence of 
mental disorders. A study conducted in New York State found that the 
risk of mental illnesses peaked during hot and humid conditions, 
particularly when there were high levels of sun radiation, relative 
humidity, and temperature simultaneously (18). Taniguchi et  al. 
demonstrated that exposure to sunlight positively affects emotional 
and psychological health (19). Some studies have examined the 
relationships between weather variables and health using 
comprehensive indices. For example, a cross-sectional study in Italy 
used the humidex index as a predictor of involuntary admission in 
psychosis (20). Furthermore, comprehensive temperature indices such 
as physically equivalent temperature have also been employed to 
explore the links between temperature and MBDs (21). However, 
despite the use of composite indices in these studies, only a single 

index was used without any comparison between different 
composite indices.

Our study aims to investigate the relationships between ten 
commonly used temperature-related indices and emergency 
ambulance dispatches (EADs) due to MBDs in Shenzhen. We utilized 
a standardization methodology to address the scale differences among 
various composite indices, enabling a more straightforward 
comparison of models and ultimately identifying the optimal index. 
Our main focus is to examine low and high temperature trigger acute 
MBDs attacks in Shenzhen and the lagged effect of such associations. 
This research holds significant value for the study of MBDs in 
subtropical regions. By identifying the meteorological factors 
contributing to an increase in EADs due to MBDs, we seek to uncover 
the short-term and lagged impacts of specific meteorological 
conditions on acute episodes in MBDs patients. This enhances our 
understanding of health risks for MBDs patients under different 
meteorological conditions, providing a scientific basis for the 
formulation of corresponding public health policies.

2 Materials and methods

2.1 Research area

This research was conducted in Shenzhen (N22°27′–22°52′, 
E113°46′–114°37′), a coastal city in southern China. As of the end of 
2020, Shenzhen encompasses an area of 1997.47 km2 with a permanent 
population of 17.63 million. The city is situated at a low latitude and 
experiences a subtropical monsoon climate with mild temperatures 
and abundant rainfall and sunshine. Historical meteorological data 
shows an annual average temperature of 23.00°C, with the highest 
recorded temperature at 37.60°C and the lowest at 1.90°C (22).

2.2 Data collection

The data collected for this study spanned from 2013 to 2020 in 
Shenzhen and included EADs data, meteorological data, and air 
pollutants data. EADs data, containing dispatch details such as date, 
time, and cause, as well as patient information like patient ID, age, 
gender, address, symptoms, chief complaints, initial diagnosis, and 
supplementary diagnosis, were provided by the Shenzhen First-aid 
Command Center. MBDs were defined based on the 10th Revision of 
the International Classification of Diseases (ICD-10), with disease 
codes ranging from F01 to F99. We  conducted data screening 
according to strict diagnostic criteria, and only included cases where 
both the initial and supplementary diagnoses indicate mental and 
behavioral disorders. Daily count data were obtained by counting the 
number of MBD cases per day. Daily meteorological data, including 
mean temperature (Tmean, °C), minimum temperature (Tmin, °C), 
maximum temperature (Tmax, °C), relative humidity (RH, %), and 
wind speed (WS, m/s), were obtained from the Shenzhen 
Meteorological Service Center. Air pollutants variables comprised 
particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5, 
μg/m3), particulate matter less than 10 μm in aerodynamic diameter 
(PM10, μg/m3), nitrogen dioxide (NO2, μg/m3), sulfur dioxide (SO2, μg/
m3), ozone (O3, μg/m3), and carbon monoxide (CO, mg/m3). Daily 
levels of air pollutants were determined by averaging measurements 
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from seven (eleven since 2017) standard monitoring stations. To 
ensure the quality of environmental data, both air pollutants and 
meteorological variables were monitored in accordance with the 
quality assurance and quality control (QA/QC) processes established 
by the China Meteorological Bureau and China Environmental 
Protection Administration.

2.3 Temperature-related indices

Our study incorporated 10 commonly used temperature-related 
indices to examine the associations between meteorological factors 
and MBDs. Supplementary Table S1 presents a detailed description of 
these indices, including the daily mean, minimum, and maximum 
temperature (Tmean, Tmin, and Tmax), apparent temperature (AT) 
(23), Rothfusz’s heat index (RHI) (24), wind chill index (WCI) (25), 
effective temperature (ET) (26), net effective temperature (NET) (25), 
humidity index (Humidex) (27), and alternative temperature-
humidity index (THIa) (28).

2.4 Statistical analysis

We utilized the distributed lag non-linear models (DLNMs) and 
Quasi Akaike Information Criterion (QAIC) to determine the most 
suitable index from 10 temperature-related comprehensive indices. 
Subsequently, we assessed the impact of the optimal index on EADs 
due to MBDs and conducted subgroup analysis. To account for the 
non-linear and lagged effect of the relationships between 
meteorological variables and mental health (12, 29), we employed 
DLNMs in conjunction with a quasi-Poisson regression model to 
analyze the associations between temperature-related indices (both 
raw measured values and their standardized values—Z score) and 
EADs due to MBDs. DLNMs integrate prediction and lagged effect 
into a cross-basis, which is a two-dimensional matrix facilitating the 
examination of lag-exposure-response effects over specific lag periods 
(30, 31). We standardize the temperature-related index Xi, t (i = 1–10 
for ten temperature-related indices) on the day (t) into a standardized 
value (Zi, t) to eliminate the influence of different units and scales. The 
equation was as follows:

 
Z

X
i t

i t i

i
,

,=
− µ

σ

Where μi is the mean and σi is the standard deviation of ten 
temperature-related indices. The DLNMs for EADs due to MBDs at 
day (t) are presented as follows:
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( ) = + + ( ) + ( ) + ⋅ +

( ) + ⋅ aay dowt t+ ⋅γ .

Where Yt represents the count of EADs due to MBDs at day t, and 
μt is the expected number of EADs due to MBDs at day t; α refers to 
the intercept; cbt l, represents a cross-basis object generated by 
DLNMs, which is used to estimate the non-linear and lagged effects 

of temperature-related indices. The l denotes the lag days. Based on 
previous studies, we chose a maximum lag of 14 days (32). We also 
conducted sensitivity analyses to evaluate the cumulative effects from 
lag 0–7 to lag 0–21 (14, 29). We applied a natural cubic spline with 3 
degrees of freedom (df) for both temperature-related indices and lag 
space to construct the final model (23). Furthermore, we used natural 
cubic spline functions, ns(RH) and ns(WS), for relative humidity and 
wind speed, respectively, and assigned 3 df to each of them to control 
for their potential confounding effects (23). The long-term trend was 
modeled by a natural cubic spline function of time, ns(time), with 4 df 
per year, determined by the QAIC value and Partial autocorrelation 
coefficient (PACF) for ns(time), as shown in Supplementary Figure S1. 
QAIC considers the model’s goodness of fit and complexity to prevent 
overfitting by penalizing over-parameterization. Generally, a smaller 
QAIC value indicates a better fit for the model. PACF is the sum of the 
absolute values of the partial autocorrelation function of the residuals, 
used to compare the autocorrelation of residuals between different 
models. A lower PACF value typically signifies a lower level of 
autocorrelation in the residuals. Additionally, the variables pollutant, 
holidayt, and dowt represent air pollutant levels, public holidays (33), 
and day of week, respectively, with β, λ, and γ as the corresponding 
regression coefficients.

Notably, owing to the strong correlation between meteorological 
factors and air pollutants, with correlation coefficients exceeding 0.6 
(Supplementary Figure S2), the final models included only RH, WS, 
and NO2 to avoid potential biases resulting from multicollinearity, as 
was undertaken in a prior study (29). It is important to highlight that 
either RH or WS would be  excluded from the model when the 
temperature-related indices incorporated relative humidity or wind 
speed. Furthermore, NO2 was directly incorporated into the model as 
a linear function, in accordance with previous research suggesting a 
linear association between NO2 and mental health (34). For these ten 
temperature-related indices, estimating the risk of low and high 
temperature effects using the same measurement method is not 
feasible. Therefore, we  calculated the cumulative RRs using the 
standardized Z values for each index (34). Subsequently, we used 
QAIC to select the optimal temperature-related index. RRs and 
corresponding 95% confidence intervals (CI) for EADs due to MBDs 
were then computed at the 1st, 10th, 90th, and 99th percentiles of the 
optimal temperature-related index, assessing the effect of extreme low 
temperature, low temperature, high temperature, and extreme high 
temperature on EADs due to MBDs.

To identify the vulnerable population, we performed subgroup 
analysis based on sex (male or female) and age (0–14, 15–39, 40–59, 
and 60+). We also employed a stratified approach to examine whether 
temperature-related indices affect EADs due to MBDs differently 
across seasons (35). Given that Shenzhen is located at a relatively low 
latitude and experiences a subtropical monsoon climate with a long 
summer and short winter, the traditional astronomical four-season 
method may not accurately reflect the city’s climatic characteristics. 
Hence, following the seasonal classification method provided by the 
Shenzhen Meteorological Bureau (36), we categorized the data into 
warm (from April 20th to November 7th) and cold seasons (remaining 
days), conducting separate analyses for each (37). Furthermore, 
we  conducted sensitivity analyses to assess the robustness of our 
model. These analyses included the following modifications: (1) 
dividing the data into two periods: the first four years (2013–2016) 
and the last four years (2017–2020) to investigate the impact of 
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temporal change on the results; (2) altering the df (2, 4, 5) for wind 
speed; (3) adjusting the df (5–8) for long-term trend; (4) modifying 
the lag days (7–21 days) for daily temperature-related indices; (5) 
substituting NO2 confounding factors with other pollutants 
confounding factors; (6) according to the Lancet’s paper and the 
official announcement of the onset date of the first COVID-19 patient 
(38), omitting data after December 1, 2019 to examine the potential 
impact of the COVID-19 epidemic on the results.

In our study, we utilized a two-dimensional smooth response 
surface model to investigate the interaction effect between air 
pollutants and meteorological variables on EADs due to MBDs. It 
models the joint effect of air pollutants and meteorological variables 
on EADs due to MBDs as a continuous function of both variables. The 
model was as follows:

 

log :µ αt Te air pollutants meteorological variables
ns RH

( ) = + ( ) +
(

 

)) + ( ) + ( ) + ⋅ + ⋅ns WS ns time holiday dowt tλ γ .

Where Te represents smooth tensor product function, Te(air 
pollutants: meteorological variables) denotes the interaction term 
between air pollutants and meteorological variables, and other terms 
are consistent with DLNMs.

All statistical analyses were performed using SAS (version 9.4, Sai 
Shi Software, Cary, NC, United States) and R software (version 4.1.2, 
R Foundation for Statistical Computing, Vienna, Austria). The 
DLNMs were established using the “dlnm” and “splines” packages.

3 Results

3.1 Descriptive analysis

Tables 1, 2 present descriptive statistical results for meteorological 
variables, air pollutants, and EADs due to MBDs during the study period 
from 2013 to 2020. The average values for daily mean, minimum, and 
maximum temperature, relative humidity, and wind speed were 23.56°C, 
21.15°C, 27.15°C, 75.72%, and 1.94 m/s, respectively. In terms of air 
pollutants, the mean daily concentrations of PM2.5, PM10, NO2, SO2, O3, 
and CO were 28.74 μg/m3, 46.87 μg/m3, 34.45 μg/m3, 8.24 μg/m3, 
71.40 μg/m3, and 0.83 mg/m3, respectively. Throughout the study period, 
a total of 24,967 EADs due to MBDs were recorded, with an average of 8 
cases and a maximum of 27 cases per day. Among these cases, 
approximately 51.2% were male and 43.4% were female. The age groups 
15–39 and 40–59 exhibited the highest proportions of EADs due to 
MBDs, accounting for 62.5% and 24.8% of cases, respectively, while the 
age groups 0–14 and 60+ accounted for only 1.4% and 5.7%, respectively. 
Additionally, 1,412 cases did not have recorded age information and 
1,360 cases lacked sex information. Due to the small proportion of 
missing data in this study, no imputation would be performed and these 
data would not be included in the descriptive analysis.

Supplementary Figure S2 illustrates the Spearman correlation 
coefficients between EADs due to MBDs, meteorological variables, 
and air pollutants. The results showed that the correlation between 
EADs due to MBDs and meteorological factors was not strong. A 
strong positive correlation was observed between the daily 
concentrations of NO2 and the daily concentrations of PM2.5, PM10, 
SO2, and CO (Spearman correlation coefficients r > 0.6, p < 0.0001). 

Supplementary Figure S3 presents the time-series distributions of 
meteorological factors, air pollutants, and daily EADs due to MBDs 
in Shenzhen from 2013 to 2020. EADs due to MBDs displayed a 
continuous increase throughout the study period. Additionally, 
temperature-related indices and relative humidity exhibited distinct 
annual cycles but no discernible trends. Supplementary Figure S4 
shows the monthly characteristics of EADs due to MBDs in Shenzhen 
from 2013 to 2020. From the heat map, it can be  seen that the 
incidence of mental disorders remained relatively stable in different 
months throughout the year, and there was no significant fluctuation.

3.2 Associations between 
temperature-related indices and EADs due 
to MBDs

Figure 1 depicts lag-response curves for 10 temperature-related 
indices. Using optimal value as the reference for each index, the analysis 
revealed that the cumulative effects of all indices at Z = 1 peaked at lag 
0–5. No adverse effects were observed when Z = −1. Therefore, 
we selected lag 0–5 to examine the relationships between temperature-
related indices and EADs due to MBDs. Figure 2 shows the cumulative 
relative risks of 10 temperature-related indices (standardized values 
and temperature indices) associated with EADs due to MBDs over a 
5-day lag period. The optimal values (the point of lowest relative risks) 
were used as the reference in DLNMs. We revealed a notable influence 
of high temperature on EADs due to MBDs, whereas low temperature 
did not demonstrate any statistical significance. Table 3 summarizes the 
cumulative relative risks of ten temperature-related indices at Z = ±1 
associated with EADs due to MBDs at lag 0–5. Based on the lowest 
QAIC value, Humidex was identified as the most suitable temperature-
related index linked to EADs due to MBDs. The cumulative relative risk 
of Humidex at Z = 1 was 1.304 (95% CI: 1.158–1.469). 
Supplementary Table S2 displays the single-day relative risks of 
temperature-related indices at Z = 1 on EADs due to MBDs from 0 to 
14 days. The analysis revealed that all 10 temperature-related indices 
had significant immediate short-term effects on EADs due to MBDs. 
The relative risk values of all indices peaked on the day of exposure and 
were mostly detectable up to lag day 3, followed by a declining trend.

Table 4 presents the single-day (lag 0–lag 5) and cumulative (lag 
0–1—lag 0–5) effects of Humidex on EADs due to MBDs, at the 1st, 
10th, 90th, and 99th percentiles of Humidex compared with Humidex 
at the lowest risk (3.2th percentile, 12.00°C). Our study found that 
the 90th percentile (RR = 1.101, 95% CI: 1.056–1.147) and 99th 
percentile (RR = 1.110, 95% CI: 1.058–1.165) of Humidex indicated 
a significant short-term effect at lag 0, lasting for 4 days. High 
temperature (90th percentile, 41.90°C) significantly increased the 
risk of EADs due to MBDs (RR = 1.318, 95% CI: 1.159–1.499), and 
a 33.8% increase (RR = 1.338, 95% CI: 1.153–1.553) was observed 
for exposure to extreme high temperature (99th percentile, 44.20°C) 
over lag 0–5 days. The cumulative effects between Humidex and 
EADs due to MBDs over 5 lag days are depicted in Figure 3. The 
cumulative exposure-response curve between Humidex and EADs 
due to MBDs exhibited a J-shaped. The result demonstrated that 
high temperature significantly raised the risk of EADs due to 
MBDs, while no significant cumulative effects of low temperature 
was observed at lag 0–5. Additionally, it was observed that the 
threshold of Humidex for the high temperature effect was 26.80°C 
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(34.6th percentile) at lag 0–5, suggesting that the harmful effect 
became noticeable when the Humidex exceeded or equaled 
26.80°C. Supplementary Figures S5, S6 depict the 3D graph and 
contour plot, respectively, illustrating the distribution of the effects 
of different Humidex on EADs due to MBDs across different lag 
periods. Both figures visually and intuitively illustrated the 
exposure-lag-response relationship between Humidex and EADs 

due to MBDs. Simultaneously, for comparison, Supplementary  
Figure S7 shows the cumulative relative risks of nine other 
temperature-related indices associated with EADs due to MBDs. It 
is evident from the figure that all indices exhibit a J-shaped 
relationship. Similar to Humidex, only high temperatures have an 
impact on the acute onset of MBDs, although the threshold 
temperature for each index varies significantly.

TABLE 1 Summary of meteorological factors and air pollutants in Shenzhen, 2013–2020.

Mean  ±  SD Min P1 P10 P50 P90 P99 Max

Meteorological factors

Tmean, °C 23.56 ± 5.31 3.50 10.20 15.90 24.70 29.60 30.80 33.00

Tmin, °C 21.15 ± 5.41 1.70 7.90 13.40 22.30 27.30 28.60 29.90

Tmax, °C 27.15 ± 5.32 6.50 12.70 19.40 28.20 33.00 35.00 36.90

AT 25.87 ± 7.94 −1.04 6.62 14.42 27.15 34.70 36.42 39.39

RHI 21.53 ± 5.36 2.33 7.30 13.57 23.25 26.98 27.85 29.41

WCI 25.00 ± 6.22 0.61 9.10 16.12 26.37 32.01 33.33 36.10

ET 22.34 ± 4.96 4.46 10.19 15.12 23.25 27.86 28.81 30.07

NET 19.16 ± 6.36 −5.75 2.53 9.90 20.52 26.00 27.29 29.29

Humidex 30.93 ± 9.66 0.69 8.84 16.90 32.17 41.93 44.18 46.79

THIa 24.80 ± 5.75 3.59 10.36 16.46 25.97 31.22 32.26 33.92

Relative humidity, % 75.72 ± 12.88 19.00 34.00 58.00 78.00 90.00 97.00 100.00

Wind speed, m/s 1.94 ± 0.78 0.30 0.80 1.10 1.80 3.00 4.50 6.10

Daily air pollutants

PM2.5, μg/m3 28.74 ± 17.91 3.13 6.09 10.36 24.91 51.18 91.27 137.07

PM10, μg/m3 46.87 ± 25.85 5.55 12.91 20.14 40.69 80.35 129.88 181.76

NO2, μg/m3 34.45 ± 15.93 6.73 11.64 18.09 31.43 54.81 89.26 133.71

SO2, μg/m3 8.24 ± 3.78 3.09 3.73 4.91 7.36 12.27 23.07 54.81

O3, μg/m3 71.40 ± 36.36 15.36 21.91 33.96 62.80 122.09 193.00 246.36

CO, mg/m3 0.83 ± 0.28 0.40 0.44 0.53 0.76 1.24 1.59 1.93

Tmean, daily mean temperature; Tmin, daily minimum temperature; Tmax, daily maximum temperature; AT, apparent temperature; RHI, Rothfusz’s heat index; WCI, Wind chill index; ET, 
effective temperature; NET, net effective temperature; Humidex, humidity index; THIa, alternative temperature-humidity index; PM2.5, particulate matter less than 2.5 mm in aerodynamic 
diameter; PM10, particulate matter less than 10 mm in aerodynamic diameter; NO2, nitrogen dioxide; SO2, sulfur dioxide; O3, ozone; CO, carbon monoxide; EADs due to MBDs, emergency 
ambulance dispatches due to mental and behavioral disorders; SD, standard deviation; Min, minimum; Max, maximum; P, percentile.

TABLE 2 Summary of EADs due to MBDs counts in Shenzhen, 2013–2020.

No. of EADs 
due to MBDs

Sum(%) Mean  ±  SD Min P1 P10 P50 P90 P99 Max

Total EADs due to 

MBDs a

24,967 (100.00) 8.54 ± 4.36 0 1 4 8 14 21 27

Sex

Male 12,784 (51.20) 4.38 ± 2.63 0 0 1 4 8 12 16

Female 10,823 (43.35) 3.70 ± 2.31 0 0 1 3 7 11 16

Age

0–14 years old 359 (1.44) 0.12 ± 0.37 0 0 0 0 1 2 3

15–39 years old 15,592 (62.45) 5.34 ± 2.83 0 0 2 5 9 13 19

40–59 years old 6,182 (24.76) 2.12 ± 1.67 0 0 0 2 4 7 10

60 ~ years old 1,422 (5.70) 0.49 ± 0.74 0 0 0 0 1 3 5

EADs due to MBDs, emergency ambulance dispatches due to mental and behavioral disorders; Sum, total number; SD, standard deviation; Min, minimum; Max, maximum; P, percentile.
aThere are 1,360 cases of EADs due to MBDs that lacked gender information and 1,412 cases lacked age information.
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3.3 Subgroup analysis

Table 5 and Figure 4 show the findings of the subgroup analysis. 
The results indicate a significant association in males, females, 15–39 
age group, and 40–59 age group. Among these groups, the highest 
relative risks were observed for extreme high temperature exposure 
in the 40–59 age group at lag 0–5 (RR = 1.433, 95% CI: 1.072–1.917). 
Notably, we did not find significant positive associations in the 0–14 
and 60+ age groups. Figure 4 provides the exposure-response curves 
illustrating the relationship between Humidex and EADs due to 
MBDs at a lag of 0–5 days. Similarly, only males, females, 15–39 age 
group, and 40–59 age group displayed consistency with the overall 
population analysis outcome. The threshold temperatures for these 

groups were 32.20°C, 26.10°C, 28.70°C, and 36.40°C, respectively. 
Supplementary Table S3 presents the cumulative effects of Humidex 
on EADs due to MBDs during the cold and warm seasons. Clearly, 
the warm season predominantly contributes to this impact, with the 
highest RR value reaching 1.326 (95% CI: 1.119–1.572) during high 
Humidex in the warm season.

3.4 Sensitivity analysis

Supplementary materials display the results of sensitivity 
analyses. Supplementary Figure S8 illustrates the temporal variations 
for two periods (2013–2016 and 2017–2020). Results for both periods 

FIGURE 1

Lag-response curves for ten temperature-related indices associated with EADs due to MBDs at standardized Z values = 1 or −1 (With optimal value as a 
reference).
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exhibit a J-shaped pattern, indicating that only high Humidex values 
have an impact on EADs due to MBDs. The temporal change did not 
significantly affect the outcomes. Modifying the degrees of freedom 
for wind speed and long-term trend did not substantially alter the 
significant impact of high Humidex on EADs due to MBDs 
(Supplementary Figures S9, S10). Likewise, adjusting for the 
maximum lag days did not result in any discernible changes in the 
cumulative effects (Supplementary Figure S11). After substituting 
NO2 confounding factors with other confounding factors related to 
pollutants, the outcomes remained relatively unchanged 
(Supplementary Figure S12). Additionally, after excluding the data 
post the COVID-19 epidemic, no significant changes were observed 
in our results (Supplementary Figure S13). The aforementioned 
sensitivity analyses demonstrate the stability of our results.

3.5 Interaction effect analysis

Supplementary Figure S14 depicts the three-dimensional 
graph illustrating the interaction effect of air pollutants and the 
Humidex on EADs due to MBDs. It can be  observed that for 
pollutants such as NO2, SO2, PM2.5, and PM10, at lower Humidex, 
an increase in pollutant concentration is associated with a 
noticeable rise in EADs due to MBDs, reaching its peak at low 
Humidex and high pollutant concentrations. Conversely, for CO 
and O3, the EADs due to MBDs peaks at high Humidex and 
relatively higher pollutant concentrations. Our study findings 
elucidate the interaction effect between pollutants and Humidex 
on EADs due to MBDs. Specifically, for pollutants like NO2, SO2, 
PM2.5, and PM10, a lower Humidex may enhance the adverse 

FIGURE 2

Cumulative relative risks of ten temperature-related indices (standardized values and temperature indices) associated with EADs due to MBDs (lag 0–5).
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impact of air pollutants on EADs due to MBDs. On the other 
hand, for CO and O3, a higher Humidex may increase their 
adverse effects on EADs due to MBDs.

4 Discussion

This study represents the first investigation to screen various 
temperature-related indices and assess the influence of the optimal 
index on EADs due to MBDs in Shenzhen, China. Our findings 
demonstrated a significant association between exposure to high 
Humidex and an increase in EADs due to MBDs. The QAIC results 
indicated that Humidex was the best index for associating with EADs 
due to MBDs. Additionally, the results showed that high Humidex 
affected EADs due to MBDs on the day of exposure and lasted for 
about 4 days. Subgroup analysis results revealed that the effect of high 
Humidex on EADs due to MBDs was more significant in males, 

females, 15–39 age group, and 40–59 age group. However, this study 
did not observe any cold effect on EADs due to MBDs.

Previous studies have primarily focused on examining the 
association between a single composite index and emergency room 
visits due to MBDs. A study conducted in Yancheng discovered a 
connection between increased emergency room admissions for MBDs 
and short-term exposure to high apparent temperature (23). In recent 
years, other comprehensive indices have become widely used in 
meteorological research. For instance, a study in Romania assessed 
summer thermal comfort using the net effective temperature index 
(39). Carder et al. found that the wind chill index is considered to be a 
better index than other temperature-related indices for estimating the 
impact of cold on health (40). However, no studies have examined 
comprehensive indices to determine the best index for exploring the 
influence of temperature on EADs due to MBDs. Consequently, there 
is currently no temperature index and threshold suitable for 
subtropical areas to protect the mental health of individuals. By 

TABLE 3 Cumulative relative risks of ten temperature-related indices at Z  =  ±1 associated with EADs due to MBDs (lag 0–5).

Temperature-related indices RRs (95% CI) at Z  =  −1 RRs (95% CI) at Z  =  1 QAIC

Tmean 1.019 (0.969–1.072) 1.250 (1.097–1.423) 14575.95

Tmin 1.016 (0.984–1.049) 1.301 (1.146–1.476) 14571.88

Tmax 1.018 (0.968–1.070) 1.185 (1.057–1.328) 14571.74

AT 1.024 (0.971–1.080) 1.273 (1.131–1.432) 14569.91

RHI 1.058 (0.881–1.271) 1.344 (1.096–1.648) 14571.12

WCI 1.018 (0.971–1.068) 1.244 (1.093–1.415) 14574.15

ET 1.031 (0.972–1.093) 1.312 (1.159–1.486) 14570.62

NET 1.025 (0.973–1.079) 1.256 (1.114–1.415) 14574.82

Humidex 1.028 (0.970–1.089) 1.304 (1.158–1.469) 14568.31

THIa 1.031 (0.967–1.099) 1.315 (1.157–1.494) 14569.72

EADs due to MBDs, emergency ambulance dispatches due to mental and behavioral disorders; RR, relative risks; CI, confidence intervals; SD, standard deviation; QAIC, Quasi Akaike 
information criterion; Tmean, daily mean temperature; Tmin, daily minimum temperature; Tmax, daily maximum temperature; AT, apparent temperature; RHI, Rothfusz’s heat index; 
WCI, wind chill index; ET, effective temperature; NET, net effective temperature; Humidex, humidity index; THIa, alternative temperature-humidity index; With optimal value as a reference; 
Statistical significance is shown in bold.

TABLE 4 Single-day (lag 0–lag 5) and cumulative (lag 0–1—lag 0–5) effects of Humidex on EADs due to MBDs, at different percentiles of Humidex 
relative to Humidex at the lowest risk (3.2th percentile, 12.00°C).

Lag days Relative risk (95% Confidence interval)

1st percentile  
(8.90°C)

10th percentile 
(16.90°C)

90th percentile 
(41.90°C)

99th percentile 
(44.20°C)

Lag0 0.998 (0.988–1.008) 1.006 (0.992–1.019) 1.101 (1.056–1.147) 1.110 (1.058–1.165)

Lag1 0.999 (0.992–1.007) 1.004 (0.994–1.014) 1.077 (1.044–1.112) 1.084 (1.044–1.125)

Lag2 1.000 (0.995–1.006) 1.002 (0.994–1.009) 1.055 (1.030–1.081) 1.059 (1.030–1.088)

Lag3 1.001 (0.997–1.006) 1.000 (0.994–1.006) 1.035 (1.015–1.054) 1.036 (1.013–1.058)

Lag4 1.002 (0.998–1.006) 0.999 (0.993–1.004) 1.017 (0.999–1.035) 1.016 (0.995–1.037)

Lag5 1.002 (0.997–1.007) 0.998 (0.992–1.004) 1.002 (0.982–1.021) 0.999 (0.977–1.022)

Lag0–1 0.997 (0.980–1.015) 1.009 (0.986–1.032) 1.186 (1.103–1.276) 1.203 (1.105–1.310)

Lag0–2 0.998 (0.975–1.021) 1.011 (0.981–1.041) 1.251 (1.137–1.377) 1.274 (1.139–1.424)

Lag0–3 0.999 (0.972–1.026) 1.011 (0.976–1.046) 1.294 (1.158–1.447) 1.319 (1.159–1.501)

Lag0–4 1.000 (0.972–1.030) 1.009 (0.972–1.047) 1.316 (1.165–1.486) 1.340 (1.164–1.542)

Lag0–5 1.003 (0.973–1.033) 1.00 (0.968–1.047) 1.318 (1.159–1.499) 1.338 (1.153–1.553)

EADs due to MBDs, emergency ambulance dispatches due to mental and behavioral disorders; Humidex, humidity index; Statistical significance is shown in bold.
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utilizing a standardized method that eliminates the influence of 
dimensions, our study allows for direct comparisons between different 
temperature-related indices. Humidex, proposed by Masterton and 
Richardson, is a temperature-humidity combination index utilized to 
reflect human-perceived heat, widely employed by Canadian 
meteorologists to describe an individual’s thermal comfort in hot or 
humid weather (27). Compared with a single index, Humidex more 
comprehensively captures the combined impact of temperature and 
humidity on mental health. Compared with other comprehensive 
indices, it is a thermal comfort index that specifically describes hot 
and humid weather. Similarly, Humidex was also selected as the 
research index in the previous study on temperature and 
depression (41).

Recent studies have shown a significant association between high 
ambient temperatures and hospital admissions for MBDs (17, 42, 43). 
In Shanghai, the cumulative relative risk of high temperature 
(33.10°C) was 1.266 (95% CI: 1.074–1.493) at lag 0–1 (14). A study in 
Ho Chi Minh City demonstrated a strong correlation between the 
main and added effects of heat waves on MBDs (42). However, 
conflicting conclusions were drawn in other studies. A case-crossover 
study in Beijing indicated that both low and high apparent 
temperatures could contribute significantly to emergency visits for 
psychiatric disorders (15). This discrepancy may be attributed to the 
higher latitude and lower average temperature in Beijing compared to 
Shenzhen, where the effect of low temperature is more noticeable. A 
previous study in Shenzhen investigated the impact of ambient 
temperature on emergency ambulance dispatches due to MBDs, 
reporting relative risk values of 1.01 (95% CI: 0.61–1.70) for the heat 
effect and 1.26 (95% CI: 1.06–1.51) for the cold effect (44). However, 
this study had limitations, including a small sample size resulting from 
data collection only from 2015 to 2016, as well as stratification by 
season, which hindered the observation of existing effects. In our 

study, we observed J-shaped cumulative exposure–response curves, 
where EADs due to MBDs increased at high Humidex. Harvesting 
effects of high Humidex were noted in our study, leading to an 
overestimation of EADs due to MBDs attributable to high Humidex. 
Several factors were suggested to potentially impact the appearance of 
these harvesting effects, including the socioeconomic and baseline 
health status of the population, interactions between air pollutants and 
meteorological variables, and the choice of model parameters. High 
Humidex was found to hasten the onset of mental disorders in 
individuals already in a high-risk pool but did not cause the 
recruitment of new individuals into the pool, resulting in the observed 
harvesting effects. Shenzhen, being a relatively young economically 
developed city with a constant influx of population, particularly in the 
younger age groups, may experience an increase in the incidence of 
high-risk individuals due to high Humidex. However, the rate of 
recruitment of new individuals into the high-risk group may not 
increase at the same rate.

Age and sex play a crucial role in influencing the occurrence of 
EADs due to MBDs associated with high temperatures. Previous 
studies conducted in South Korea and California have suggested that 
the older adult constitute a susceptible population (29, 43). However, 
conflicting results from other studies have proposed that young 
individuals or those under 45 years old may be more susceptible to 
high temperature compared to the older adult (13, 23). Variations in 
the results of age subgroups may stem from differences in the 
demographic composition of various cities and the neglect of 
individual socio-economic factors. Notably, Shenzhen is an immigrant 
city with a sizable young population, potentially making young people 
more prone to mental disorders acute attacks triggered by high 
temperature. Regarding gender differences, some studies have 
suggested that women are more susceptible (14, 17), while others have 
indicated that men are at higher risk (15, 42). Discrepancies in these 

FIGURE 3

Cumulative relative risks of Humidex associated with EADs due to MBDs at lag 0–5.
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findings could be attributed to physiological variations (45), lifestyle 
differences (46, 47), and adaptability between genders (48, 49). 
Therefore, further research is necessary to enhance our understanding 
of the effect of gender on the relationship between temperature and 
mental disorders.

Furthermore, different geographical areas exhibit varying 
threshold temperatures for the heat effect. Our study has identified a 
Humidex threshold for the high temperature effect at 26.80°C. The 
Humidex thresholds for males, females, 15–39 age group, and 40–59 
age group are 32.20°C, 26.10°C, 28.70°C, and 36.40°C, respectively. 
It is important to note that the ambient temperature threshold in 
Shanghai is reported to be 24.60°C (14), while in northern Vietnam 
it can be as high as 35.00°C (42). These discrepancies in results may 
be  attributed to different statistical models, temperature indices, 
study locations, or demographic factors. In addition, our study also 
found there may be  interaction between pollutants and 
meteorological factors, and more accurate models are needed to 
quantitatively analyze the impact of interaction on mental disorders 
in the future.

The biological mechanism underlying the associations 
between meteorological variables and MBDs has been widely 

reported. MBDs encompass disorders of brain functional 
activities, influencing mental aspects such as cognition, emotion, 
behavior, and will to varying degrees. Patients with MBDs have 
diverse genetic backgrounds and living environments. However, 
the specific mechanism by which meteorological factors increase 
the incidence of MBDs remains unclear. On one hand, MBDs 
patients often experience cognitive impairments that hinder their 
ability to understand and respond to extreme weather conditions. 
This lack of appropriate evasive measures further contributes to 
the development of these disorders (50). Additionally, certain 
psychotropic drugs may interfere with the body’s temperature 
regulation system, increasing susceptibility to temperature 
changes (51). Neurotransmitters such as dopamine, serotonin, and 
norepinephrine are known to regulate body temperature through 
the hypothalamus-pituitary-thyroid and hypothalamus-pituitary–
adrenal axes (52–54). Consequently, high temperature has been 
found to negatively impact cognitive function, leading to 
increased plasma serotonin levels and dopamine suppression (55). 
In the context of schizophrenia, the dopamine hypothesis suggests 
that an excess of dopamine activity may underlie its symptoms 
(56). Similarly, patients with bipolar disorder commonly exhibit 

TABLE 5 Single-day (lag 0–lag 5) and cumulative (lag 0–1—lag 0–5) effects of Humidex on EADs due to MBDs stratified by sex and age, at the 90th and 
99th percentiles of Humidex relative to Humidex at the lowest risk.

Lag 
days

Male Female 0–14 age 
group

15–39 age 
group

40–59 age 
group

60+ age group

90th percentile RR (95% CI)

Lag0 1.101 (1.040–1.165) 1.103 (1.037–1.173) 1.179 (0.828–1.679) 1.111 (1.055–1.170) 1.088 (1.004–1.179) 1.033 (0.878–1.216)

Lag1 1.075 (1.029–1.123) 1.082 (1.032–1.135) 1.135 (0.865–1.489) 1.084 (1.042–1.128) 1.073 (1.008–1.141) 1.025 (0.904–1.163)

Lag2 1.051 (1.017–1.086) 1.062 (1.025–1.101) 1.092 (0.892–1.337) 1.058 (1.027–1.090) 1.058 (1.010–1.109) 1.018 (0.926–1.118)

Lag3 1.030 (1.003–1.057) 1.044 (1.015–1.074) 1.053 (0.900–1.232) 1.035 (1.011–1.060) 1.044 (1.007–1.084) 1.010 (0.938–1.089)

Lag4 1.011 (0.986–1.036) 1.027 (1.000–1.055) 1.017 (0.880–1.175) 1.014 (0.992–1.037) 1.032 (0.997–1.069) 1.004 (0.936–1.077)

Lag5 0.996 (0.969–1.023) 1.013 (0.984–1.043) 0.984 (0.841–1.152) 0.998 (0.974–1.022) 1.022 (0.984–1.061) 0.998 (0.925–1.077)

Lag0–1 1.183 (1.070–1.308) 1.194 (1.071–1.330) 1.338 (0.717–2.496) 1.205 (1.100–1.320) 1.167 (1.013–1.346) 1.060 (0.795–1.413)

Lag0–2 1.244 (1.090–1.419) 1.268 (1.100–1.462) 1.461 (0.645–3.311) 1.275 (1.131–1.437) 1.235 (1.025–1.489) 1.078 (0.739–1.574)

Lag0–3 1.281 (1.099–1.493) 1.324 (1.122–1.562) 1.539 (0.596–3.971) 1.319 (1.148–1.517) 1.290 (1.039–1.603) 1.090 (0.702–1.691)

Lag0–4 1.295 (1.095–1.531) 1.360 (1.135–1.630) 1.565 (0.558–4.384) 1.338 (1.149–1.559) 1.332 (1.051–1.688) 1.094 (0.677–1.768)

Lag0–5 1.289 (1.079–1.540) 1.378 (1.138–1.669) 1.540 (0.521–4.552) 1.335 (1.136–1.570) 1.361 (1.058–1.749) 1.092 (0.657–1.816)

99th percentile RR (95% CI)

Lag0 1.112 (1.041–1.188) 1.111 (1.034–1.193) 1.184 (0.789–1.776) 1.122 (1.057–1.191) 1.095 (0.997–1.203) 1.044 (0.862–1.265)

Lag1 1.082 (1.029–1.139) 1.089 (1.030–1.150) 1.139 (0.835–1.555) 1.090 (1.041–1.142) 1.081 (1.005–1.162) 1.034 (0.893–1.198)

Lag2 1.055 (1.015–1.096) 1.068 (1.025–1.113) 1.097 (0.871–1.382) 1.060 (1.024–1.097) 1.067 (1.011–1.127) 1.024 (0.918–1.143)

Lag3 1.030 (0.999–1.061) 1.048 (1.015–1.083) 1.057 (0.884–1.264) 1.033 (1.005–1.062) 1.054 (1.010–1.100) 1.015 (0.932–1.107)

Lag4 1.008 (0.980–1.037) 1.030 (0.999–1.062) 1.020 (0.865–1.203) 1.010 (0.984–1.036) 1.043 (1.002–1.085) 1.007 (0.929–1.093)

Lag5 0.991 (0.961–1.022) 1.015 (0.982–1.050) 0.986 (0.823–1.182) 0.991 (0.963–1.019) 1.032 (0.988–1.079) 1.001 (0.915–1.094)

Lag0–1 1.203 (1.071–1.353) 1.209 (1.066–1.372) 1.349 (0.660–2.757) 1.223 (1.100–1.359) 1.184 (1.003–1.397) 1.080 (0.770–1.514)

Lag0–2 1.269 (1.089–1.479) 1.291 (1.094–1.524) 1.479 (0.580–3.775) 1.296 (1.128–1.490) 1.263 (1.016–1.570) 1.106 (0.710–1.722)

Lag0–3 1.307 (1.094–1.561) 1.353 (1.117–1.640) 1.564 (0.529–4.625) 1.339 (1.140–1.574) 1.332 (1.035–1.714) 1.123 (0.672–1.877)

Lag0–4 1.318 (1.085–1.600) 1.394 (1.131–1.719) 1.595 (0.492–5.175) 1.352 (1.134–1.613) 1.389 (1.055–1.828) 1.131 (0.647–1.979)

Lag0–5 1.306 (1.063–1.603) 1.416 (1.134–1.767) 1.573 (0.457–5.419) 1.340 (1.112–1.615) 1.433 (1.072–1.917) 1.132 (0.627–2.044)

EADs due to MBDs, emergency ambulance dispatches due to mental and behavioral disorders; Humidex, humidity index; RR, relative risks; CI, confidence intervals; Statistical significance is 
shown in bold.
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symptoms such as mood swings, anxiety, and insomnia, 
which are associated with abnormal dopamine and serotonin 
levels (57).

This study builds upon previous literature that explored the 
influence of temperature on MBDs. Our research has several 
strengths. Firstly, EADs data may be more responsive to temperature 
and humidity changes compared to hospitalization data. The EADs 
were collected from the Shenzhen First-aid Command Center 
which handles calls from the entire city and covers a significant 
portion of the permanent population in Shenzhen. Therefore, the 
results obtained in this study may accurately represent the 
relationship between temperature-related indices and EADs due to 
MBDs. Secondly, we  standardized and screened ten different 
temperature-related indices in our study. This approach allowed us 
to compare these indices and identify the most suitable one for 
investigating the relationship between temperature and EADs due 
to MBDs through standardization and QAIC. Thirdly, after selecting 
the optimal index, we specifically studied the immediate and lagged 
effect of Humidex on EADs due to MBDs at different percentiles 
and identified the threshold temperature. However, there are some 
limitations that should be addressed. Firstly, the EADs data did not 
include detailed individual medical records, which may have 
resulted in inappropriate MBDs diagnoses. Detailed diagnostic data 
are needed in the future to enhance the reliability of the obtained 
MBDs patient data. Secondly, the local weather data were based on 
station monitoring data rather than direct measurements of 
individuals’ real environmental exposure. This might have 
contributed to exposure misclassification to some extent in our 
study. Additionally, we  lacked information on personal lifestyle, 
socioeconomic status, occupation, education level, etc. 
Consequently, we were unable to adjust for the impact of these 
factors on our models and results. Future research should consider 

incorporating these variables into the models to enhance the 
accuracy of the results.

5 Conclusion

Our study indicates that Humidex was the most appropriate index 
for evaluating the short-term effects of temperature on EADs due to 
MBDs. In subtropical areas like Shenzhen, high Humidex may increase 
the risk of EADs caused by MBDs. When Humidex exceeds 26.80°C, the 
high temperature effect gradually becomes significant. With the ever-
growing impact of global warming, the number of MBDs linked to high 
temperatures may escalate, exacerbating the disease burden. Based on 
this study, policymakers in the healthcare sector could enhance relevant 
legislation and regulations based on measurement indices, critical 
temperature thresholds, and vulnerable populations. Additionally, there 
should be a reasonable allocation of medical resources to accommodate 
the potential surge in emergency treatments. Social institutions specific 
to this issue can notify the public about anticipated hot and humid 
weather conditions and their duration, providing detailed information 
on the adverse effects of high temperature on the human body and 
opening public cooling centers. Individuals, especially susceptible people 
should receive high temperature warning information in advance and 
take cooling measures such as using air conditioners or drinking cold 
beverages, thus reducing the number of mental disorders requiring 
emergency treatment in high Humidex environments.
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